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1. Introduction 
In longitudinal data the individuals are followed over time and thus there are multiple observations on each 

individual. Longitudinal data can be collected either prospectively or retrospectively. Prospective longitudinal data 

are collected by following the subjects through a period of time and retrospective longitudinal data are collected by 

getting measurements from subject according to historical records [1]. 

The response variable may be binary, categorical, count or continuous. For longitudinal count data the response 

takes only non-negative integer values, where these integers arise from counting rather than ranking. Longitudinal 

count data often occurs in long-term studies that concerns with the occurrence rate of a recurrent event.  The set of 

observations for each subject may be common or not. Longitudinal count data are common in many areas such as 

demographic studies, epidemiologic studies and medical studies.  

Longitudinal count data are different from ordinal longitudinal data that consist of integer, where the responses 

fall on a specific scale and only the relative ranking is important. Dealing with count data needs more attention 

because of many reasons: 

1. The responses (errors) are not normally distributed. If we try to normalize the responses using 

transformation, it is difficult to deal with zeros. 

2. The variance of the response variable is likely to increase with the mean. 

3. Any assumed linear model might lead to the prediction of negative counts. 

The aim of this article is to compare the performance of available methods to deal with count longitudinal data 

in the presence of missing data. The comparison is based on the relative bias and relative efficiency. The article is 

organized as follows. The Poisson regression model for longitudinal count data is described in Section 2. In Section 

3 we briefly describe the missing data problem in longitudinal studies and describe the missingness patterns and 

mechanisms. Section 4 is devoted to the available methods that deal with longitudinal count data in the presence of 

missing values. The simulation studies are presented in Section 5 whereas the application is presented in Section 6. 

Finally in Section 7 we present conclusions and discussion. 
 

Abstract: Longitudinal data differs from other types of data as we take more than one observation from every 

subject at different occasion or under different conditions. The response variable may be continuous, categorical 

or count. In this article the focus is on count response. The Poisson distribution is the most suitable discrete 

distribution for count data. Missing values are not uncommon in longitudinal data setting. Possibility of having 

missing data makes all traditional methods give biased and inconsistent estimates.  The missing data mechanism 

is missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR). This 

article compares different methods of analysis for longitudinal count data in the presence of missing values. The 

aim is to compare the efficiency of these methods. The relative bias and relative efficiency is used as criteria of 

comparison. Simulation studies are used to compare different methods. This is done under different settings such 

as different sample sizes and different rates of missingness. Also, the methods are applied to a real data.  
Keywords: Count data; Generalized estimating equation; longitudinal data; Missing data; Missingness mechanisms; 

Multiple imputations; Poisson model. 
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2. Poisson Regression Model for Longitudinal Count Data  
The Poisson regression model is proposed by Frome, et al. [2]. It is the most common model to handle count 

data. In this model the dependent variable is non-negative integer number. This model is suitable to describe the 

number of events that occur over a given period of time and rare events. It has the following formula: 

                                                                      (   )=   
                                                                      (1) 

Where,     is the response variable,    are the covariates or design matrix and    are parameters describe the 

change in the log of the population average count per unit, i=1,2, …, m and j=1,2, …, n. In Poisson distribution the 

marginal variance is equal to the marginal mean;  ( )     ( )  This model belongs to a wider class of models; the 

generalized linear model. The generalized linear model popularized by McCullagh and Nelder [3] which consists of 

three components; the random component, the systematic component and the link function. The random 

component represents the response variable and its probability distribution. In our case the probability distribution is 

Poisson. The systematic component represents the predictors (X variables) in the model. These predictors might be 

continuous and/or categorical and interactions between predictors. Also, polynomial function of predictors can be 

used. The link function links the random and the systematic components, and links the expected value of Y to the 

predictors. For Poisson model the log function is the link function.   

    

3. Missing Data in Longitudinal Studies 
The presence of missing values complicates the analysis and affects the properties of the estimates. There are 

two different patterns of missing data; dropout and intermittent. Intermittent missingness occurs whenever a subject 

is observed even after a missing value, while dropout is defined if the existence of the missing value indicates that 

the subject withdraws from the study. When the missing pattern is intermittent it is easy to find the reasons for the 

missingness as the subject still in the study. A dropout occurs if an individual skips a particular visit and then never 

comes back for subsequent visits.  

The missing data mechanisms are missing completely at random (MCAR), missing at random (MAR) and 

missing not at random (MNAR). If we define an indicator variable     to be 1 if the observation    is available and 

equal 0 if     is missing. Following Rubin's taxonomy [4] data are said to be missing completely at random when the 

probability of missingness is independent of both observed and unobserved data; P( 𝑖|  
 ,   

 ) = 𝑃( 𝑖), where  Ri = 

(Ri1, Ri2 , Ri3,….,R𝑖𝑛). The   
  denote the vector of observed responses and   

  denote the vector of missing 

responses for subject i. Data are said to be missing at random when the probability of missingness depends on the set 

of observed response (  
 ); P(Ri|  

 ,   
 ) = P(Ri|  

 ). Data are said to be missing not at random when the probability 

of missingness is related to the values that should have been obtained, in addition to the one actually obtained. This 

relation cannot be ignored when we make inference, so this type of missing data is called non-ignorable missingness. 

When the data has non-ignorable missingness all standard methods of longitudinal data may not be valid. 

   

4. Methods for Longitudinal Count Data with Ignorable Missingness  
In the presence of missingness inference using traditional methods may result in invalid results. So, methods 

that take into account the missingness mechanism are needed. The following are the common methods that used in 

the case of ignorable missingness. 

 

4.1. Complete Case Analysis (CC)  
It is the most common method of dealing with missingness in the covariates or the response. In this method the 

observations of the participants who have any missing data are omitted. This method is simple and can be 

implemented using common software.  However, the method has the following disadvantages:  

1. There is nearly always a substantial loss of information.  

2. When the missing data are not MCAR the result from the CC may be biased. 

3. Dependence on the complete case can be unrepresentative of the full   population and this gives an impact on 

reduced statistical precision and power. 

  

4.2. Generalized Estimating Equations Method (GEE) 
Liang and Zeger [5] proposed this method to study the population-average effect. The GEE approach is an 

extension of generalized linear models. The method is considered as a semi-parametric approach and can be used for 

categorical, count, and continuous response.  

 

Let Si(α) be       symmetric working correlation matrix completely described by the parameters vector α of 

length m. Let Vi =   
 

 

  Si (α)  
 

 

   be the corresponding working covariance matrix of Yi, where Ai is a diagonal 

matrix with entries aij. For given estimates ( ̂,  ̂) of ( ,α) the estimate  ̂  is the solution of the following equations: 

∑
   

 

  

 
     

  (     )   . 

This scheme yields consistent estimate of β. Moreover, N
1/2

(  ̂ − β) is asymptotically multivariate normally 

distributed with zero mean and covariance matrix Σ =       ∑ 
  ∑ ∑ 

  , where  
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∑ =∑
   

 

  

 
     

     

  
  ,      ∑ =∑

   
 

  

 
     

     (  )  
     

  
. 

Replacing the parameters β,    and α by consistent estimates and the covariance matrix Cov(Yi) by (Yi − 

µi)(Yi−µi)
 
, this is called sandwich estimate  ̂ of Σ. The estimate  ̂  is a consistent estimate of Σ even if the 

working correlation matrices Si(α) are misspecified. However, for a small number of clusters (N ≤ 30) the 

sandwich variance estimator exhibits bias. Paik [6] recommended using the jackknife variance estimator which is 

defined as 
   

 
∑ ( 
    ̂    ̂)(  ̂    ̂)   

Where p is the number of parameters in the mean structure and
  ̂  

 
are the estimates of β leaving out the i

th
 

cluster. 

 

4.3. Weighted Generalized Estimating Equations (WGEE) 
The weighted GEE procedure implements the inverse probability-weighted method to account for dropouts 

under the MAR assumption [7]. If the missing values are intermittent for any of the subjects, then the weighted 

generalized estimating equation method does not apply. The estimation of this method is similar to the estimation 

that obtained from the complete-case analysis as a solution to the quasi-likelihood estimating equations [8]. The 

weighted GEE procedure implements two different weighted methods (observation-specific and subject-specific) for 

estimating the regression parameter   occur MAR mechanism and dropout pattern.  Both of the weighted methods 

provide consistent estimates if the missingness is MAR. 

   

a. Observation-Specific Weighted GEE Method  
Suppose wij is the weight for yij, which is defined as the inverse probability of observing yij . In other words, 

   
    𝑃(           ). Suppose that    is a j j diagonal matrix whose j

th
 diagonal is       . Note that     is an 

indicator variable with value 1 if      is observed and value 0 if       is missing. The weighted generalized estimating 

equations [7] are given as 

∑
   

 

  

 
     

    (  -  ( ))    . 

The weighted generalized estimating equations estimates are unbiased assuming MAR. If the observations are 

appropriately weighted it leads to consistent estimates of  . The weights wij are often unknown in practice and are 

estimated by a logistic regression model under the MAR assumption. Let       𝑃(                   ) denotes 

the probability of observing the response yij  given its observed previous responses. Under the MAR assumption,  

     𝑃(                   )= 𝑃(                          ). 

Using the observed data,     can be predicted from a logistic regression model,  

     {   }      , 

Where      are predictors that usually include the covariates    , the past responses, and the indicators for visit 

times. The dropout process implies that the estimated probability of observing    can be expressed as a cumulative 

product of conditional probabilities:  

𝑃(     |     )     ( ̂)     ( ̂) …     ( ̂) 

With the estimated weights  ̂  
  

=𝑃̂(     |     ) the regression parameter   is estimated by solving the 

equation for S ( ) after plugging in the estimated weights. 

  

b. Subject-Specific Weighted GEE Method  
This method assigns a single weight to each subject. In other words, all the observations from the same subject 

receive the same weight. The subject-specific weighted method obtains the regression parameter estimates by 

solving the equations:  

∑
   

 

  

 
     

    [  -  ( )     

Where the responses for the i
th

 subject are Yi =(yi1, yi2,…, yij)
    and the weights wi is the inverse probability that 

the subject i dropout at the observed time. The estimates are unbiased when the subjects are appropriately weighted 

and lead to consistent estimates of the regression parameters   [9].  

The subject-specific weights can be estimated as a cumulative product of conditional probabilities if the dropout 

time (mi) is less than or equal    (the time of last observation) as: 

 ̂ 
  

=   (                     )=[   ( ̂)          ( ̂)  (      ( ̂)) 
  

. 

If  mi     

 ̂ 
  

=   (              )=[   ( ̂)     ( ̂)          ( ̂)) 
  

. 

Thus, the subject-specific weights  ̂  can be obtained depending on   ij which can beestimated by fitting a 

logistic regression to the data (rij, zij ). The regression parameter   from the subject-specific weighted GEE method 

can be estimated by solving for S( ) after plugging in the estimated weights.  
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c. Steps to Find Parameters for the WGEE 
The steps of the observation-specific or the subject-specific weighted GEE method can be summarized as 

follows:  

1. Fit a logistic regression to the data rij , zij to obtain an estimate of    and estimate the weights.  

2. Compute an initial estimate of ɑ using ordinary generalized linear model and assuming independence of the 

responses.  

3. Compute the working correlation matrix S based on the standardized residuals, the current estimate of  , 

and the specified structure of S.  

4. Compute the estimated covariance matrix 

Vi=𝝓   

 

 
   ̂(ɑ)  

 

 

   

5. Update  ̂ as 

 ̂   = ̂ +[∑
   

 

  
   

     

  
]
  

 
   [∑

   
 

  
   

   
     (     ) . 

 

4.4. Imputation Methods  
The imputation methods have two categories; single imputation and multiple imputations. The multiple 

imputations method is common in the count data setting. The multiple imputations by chained equations (MICE) is a 

special case of multiple imputation techniques [10]. The MICE is sometimes called “fully conditional specification” 

or “sequential regression multiple imputation". The MICE is very flexible and can be applied for different responses 

(continuous, categorical, binary and count).  

In the MICE procedure a series of regression models are fitted where each variable with missing data is modeled 

conditional upon the other variables in the data. The chained equation process can be broken down into general 

steps: 

1. A simple imputation is performed for every missing value in the dataset, say mean imputation.  

2. The observed values from the variable in step 1 are regressed on the other variables in the imputation 

model, which may or may not consist of all of the variables in the dataset.  

3. The missing values for the variable are then replaced with predictions (imputations) from the regression 

model.  

4. Then, this variable is subsequently used as an independent variable in the regression models for other 

variables, both the observed and the imputed values are used in this case.  

Steps 1– 4 are conducted for every variable has missing data. Steps are repeated for a number of iterations 

where imputations are updated at each iteration. At the end of these iterations the final imputations are retained, 

resulting in one imputed dataset. Generally, ten iterations are performed [11]. Different MICE software packages 

vary somewhat in their exact implementation of this algorithm (e.g., in the order in which the variables are imputed), 

but the general strategy is the same. 

 

5. Simulation Study 
The aim of this simulation is to compare the performance of the three methods; the GEE, the WGEE and the 

MICE. Data were simulated according to the following model: 

 (   )      (                               )  
where      represent variable (time) that takes the values 0, 1, 2, 3, 4;        represent dummy-variable placebo (0) 

and treatment (1). The number of subjects in each group is the same. The sample size is fixed at 20 (small sample 

size), 50 (moderate sample size), and 100 (large sample size).  The missing data are generated as dropout under two 

types of missingness; MCAR and MAR. Two missingness rate where considered;  low missing rate with missing 

percentage ranges from 10% to 20%, and high missing rate with missing percentage ranges from 50% to 70% 

approximately. The true parameter values were fixed at    =1.5,   = - 0.5,   = - 0.5,   = 0.5. The three methods were 

applied and the weighted GEE is based on the observation weight because it is more powerful than subject weights. 

 

Table-1. The relative bias (RB%) of different methods at different sample sizes. 

   MCAR Mechanism MAR Mechanism 

n Parameter Missing Rate GEE WGEE MI-GEE GEE WGE MI-GEE 

20    low -0.5 2.6 -2.8 8.4 0.4 -3.4 

     2.9 2.9 -4.0 26.4 -1.2 -7.2 

     1.2 -16.0 10.7 24.8 -15.4 -16.8 

     2.6 0.3 -26.1 17.2 0.4 -27.0 
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20    high -0.2 15.2 -1.8 -7.4 -3.7 -3.0 

     0.8 17.1 -9.2 -16.6 2.2 -2.8 

     0.6 -25.5 -12.4 -19.4 -11.0 -7.0 

     0.6 -2.8 -23.4 -16.8 - 9.6 -9.8 

50    low -0.2 -5.1 -3.2 -6.5 0.5 -2.9 

     0.7 5.2 -3.3 -5.2 -0.2 -3.8 

     0.6 -13.1 -15.0 -13.6 -2.8 -16.6 

     0.7 4.8 -25.9 -1.4 0.2 -25.4 

    high -0.2 7.0 -1.8 -5.5 -0.9 -0.7 

     0.8 -12.3 -12.7 -12.8 -4.4 -2.6 

     0.6 23.7 -12.5 -14.8 6.6 -7.6 

     0.6 0.7 -23.3 -13.2 -8.2 -10.4 

100    low -0.1 -13.8 -0.5 6.0 0.1 -2.9 

     0.3 -2.4 -4.9 8.4 -0.2 -0.8 

     0.5 -16.4 -4.9 -9.6 -0.2 -12.8 

     0.3 -9.6 -8.7 9.0 0.0 -18.2 

    high -0.1 4.9 -1.3 -3.5 -0.1 -0.5 

     0.4 -3.9 -8.5 -14.8 -1.4 -1.8 

     0.04 28.1 -10.9 -10.0 -4.4 -5.8 

     0.3 7.0 -16.4 -8.2 -6.2 -8.8 

 

The comparisons are made according to the relative bias (RB%) and the relative efficiency (RE%). The RB can 

be obtained using the formula;  

RB=
                        

          
  00. 

The relative efficiency (RE%) can be obtained as  

   
   ( )    𝑛         

   ( )                   
     

The results are shown in Table 1. We present the relative bias only for the sake of space limitation. From the 

results, in the missing completely at random (MCAR), we can see that all methods produce relatively unbiased 

estimates. The relative biased is below 30% for all methods. There is small change in the result when the missing 

rates and sample sizes change. Under MCAR the GEE less biased. Under MAR the WGEE is better in most of the 

cases than other methods; the generalized estimating equation and the multiple imputations. The WGEE has less 

relative bias especially when the simple size is large =100. 

 

5.1. Application (Epileptic’s Data)  
This data set consists of 59 epileptics patients. The data have been analyzed by Thall and Vail [12] and Breslow 

and Clayton [13] as a complete data.  In this study 31 patients receive the anti-epileptic drug (progabide) and the 

other 28 patients receive (placebo).  For each patient, the number of epileptic seizure was recorded during a base line 

period of eight weeks. Patients were then randomized to treatment with the anti-epileptic drug group or to placebo. 

The number of seizures was recorded during four consecutive two-week intervals.  

Hence the response Yij is the number of epileptics of subject i during the period j. The treatment groups are 

coded as 1 for treatment and 0 for placebo. The time points are labeled as 1, 2, 3, and 4.  A base line variable is the 

number of seizure for every patient before the treatment. The age (in years) of patients during this study is 

considered.  
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Figure-1. Boxplot of seizures for completers for placebo and treatment 

 
Figure 1 presents a boxplot of the number of seizures for completers in the two groups. From the Figure it can 

be seen that there are some outliers in the treatment group more than the placebo group. Also it can be seen that the 

change in the placebo group are stable over the course of the trail while for the Progabide group there is a decline in 

the number of observed seizure. 

 
Table-2. Estimates and their standard errors of epileptic's data 

Models Intercept Period Trt Age Base 

Complete data 

Estimate 0.676* -.059* -0.148 0.024* 0.023* 

Stander Error 0.354 0.35 0.169 0.012 0.031 

Generalized Estimating Equation 

Estimate 0.267 -0.028 -0.219 0.033* 0.024* 

Stander Error 0.547 0. 65 0.187 0.035 0.032 

Relative Efficiency 238.76% 344.89% 122.43% 850.69% 106.55% 

Weighted Generalized Estimating Equation 

Estimate 0.675 -0.051 -0.14 0.021* 0.023* 

Stander Error 0.404 0.39 0.211 0.014 0.032 

Relative Efficiency 130.24% 124.16% 155.88% 136.11% 106.55% 

Multiple imputation- Generalized Estimating Equation 

Estimate 0.548 -0.013 -0.244 0.03* 0.021* 

Stander Error 0.47 0.44 0.238 0.016 0.04 

Relative Efficiency 176.27% 158.04% 198.32% 177.77% 166.49% 

Multiple imputation- Generalized Estimating Equation(no outliers) 

Estimate 0.612 -0.043 -0.153 0.035* 0.048* 

Stander Error 0.395 0.396 0.22 0.016 0.034 

Relative Efficiency 124.5% 128.01% 169.46% 177.77% 120.29% 

      *: result is significant  at 0.05 level 

 

The parameter estimates and their standard errors are presented in Table 2.  From the results it is clear that the 

values of the WGEE and multiple imputation are more close to each other than the GEE. Also for these two 

methods, only the age and the base variables are significant and have positive relation with the mean number of 

seizures.  

From Figure 2 it is noted that the relative efficiency for the estimated parameters from WGEE near to 100% so 

this mean that it is more efficient than the other methods and GEE is the least efficient. When we remove the outliers 

from the data the performance of the MI-GEE became better and the WGEE and MI-GEE approximately gave the 

same results. 
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Figure-2. The Relative efficiency for the three methods comparing with complete data 

 
 

6. Conclusion 

Several routes are available to analyse incomplete non-Gaussian (e.g., binary, count) longitudinal data. Because 

the standard generalized estimating equations are unbiased except under MCAR, variety of modifications and 

alternatives to GEE have been proposed. An important route is through weighted estimating equations, as proposed 

by Rotnitzky and Robins [7]. A combination of GEE and multiple imputation methods (MI-GEE) provides an 

alternative route. 

Although likelihood methods are appealing because of their flexible properties, their use for non-Gaussian 

outcomes can be problematic due to prohibitive computational requirements. Therefore, the GEE is a good 

alternative method especially in the case of discrete variables. Generalized estimating equations are useful to 

circumvent the computational complexity of full likelihood, can be considered whenever interest is restricted to the 

mean parameters (treatment difference, time evolutions, effect of baseline covariates, etc.). It is rooted in the quasi-

likelihood ideas expressed by Nelder and McCullagh [8].  

The GEE yields biased estimates when the missing data is related to the dependent variable (MAR). This study 

depends on another method that adds weights; the observation weights or subject weights.  The WGEE needs correct 

specification of the dropout model. While imputation-based methodology needs a correctly specified imputation 

model. While each of the two methods, the WGEE and the MI-GEE, depends on the GEE analysis a comparison 

between approaches, inverse probability weighting and MI-GEE are considered. The behavior of both methods in 

terms of efficiency and bias are studied. 

The WGEE is better in most of MAR cases than generalized estimating equation and multiple imputations. It 

has the least relative biased and more efficiency, especially when the simple size is large (n=100). Also the 

performance of the WGEE method is better when the rate of missingness is low. Multiple imputations have results 

similar to the WGEE in the case of low missingness rate. But if there are any outliers in the data, the researcher 

should be conservative to multiple imputation (MICE); although it is attractive and used in different patterns of 

missing data and any types of distribution, but it depends on the mean to find the imputed value and this is affected 

by outliers so the result will not be good in this case especially in the case of high missing rates. 
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