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1. Introduction 
The fuzzy set was published in 1965 and later by Zadeh at the University of Berkeley, California - USA [1]. In 

1970  Mamdani  Queen Mary School, London - UK developed and applied fuzzy logic to control a steam engine 

control instead of classical techniques. Also in the 70s of  XX century, in Germany, Zimmermann fuzzy logic to the 

problem of decision theory. Based on the theory of fuzzy numbers Tagaki early 1980s, Sugeno, Kendel A. and WJ  

Byatt has in turn introduced the model equations under fuzzy form. In 1987, Kaleva [2] mapped introduce fuzzy, the 

Hukuhara derivative  for fuzzy sets, the fuzzy metric space 
nE  most practical problems can be modeled as fuzzy 

differential equations (FDEs) (see [3-5]). In 90s and later, many mathematicians, for example: V. Lakshmikantham, 

Nieto J.,... (see[6-11]), have given model Cauchy problem for differential equations and fuzzy theory.  

The method of fuzzy mapping was  initially introduced by Chang and Zadeh [12]. Later, Dubois and Prade [13] 

presented a form of elementary fuzzy calculus based on the extension principle [14].Bede and Gal [15] suggested 

two defnitions for the fuzzy derivative of fuzzy functions. The first method was based on  H-difference notation and 

was further investigated by Kaleva [2].  Several approaches were later proposed for FDEs and the existence of their 

solutions (e.g. [12, 13, 16-18]). There are several approaches to the study  of fuzzy differential equations. One 

popular approach is based on  H- differentiability. The approach based on H-derivative has the disadvantage that it 

leads to solutions which have an increasing  length of their support. For some references on fuzzy equations and 

applications of fuzzy dynamics, we in [19], [20], [21], [22], [23], and  other recent works such as the study of some 

topological properties and structure  of the solutions to the initial valued problem for fuzzy differential systems (see 

[10], [24]).  We know quite clearly that, in [2, 6-13, 16-18, 21-28] the authors have investigated the some properties 

of solutions of the local initial - valued problems for fuzzy differential equations (LIP for FDEs):  
n

H 0 0
D x(t) f(t, x(t)), x(t ) x E          (1.1) 

where the symbol 
H

D denotes the classical Hukuhara derivative. 

In [16] the authors have  studied FDEs under strongly generalized differentiability of fuzzy-number-valued 

functions. In this case the derivative exists and the solution of a fuzzy differential equation may have decreasing 

length of the support, but the uniqueness is lost. Therefore, our point is that the generalization of the concept of H - 

differentiability can be of  great help in study of local initial  problems (LIP) for fuzzy differential equations under 

generalized Hukuhara differentiability (see [21], [23]).  

In this paper, we present the structure of solutions for fuzzy nonlocal initial problems, that means the properties 

of  solutions of NIP for FDEs under generalized Hukuhara differentiability: 

  g n

H 0 1 2 3 p p
D x(t) f(t, x(t)), t 0 x(0) x h(t , t , t , ..., t , x(·)) E t t,    …  „    (1.2) 

where the symbol 
g

H
D denotes the generalized Hukuhara derivative. 

        It's clear that the NIP (1.2) is very different of LIP (1.1). 

  Abstract: We present the properties of fuzzy solutions of the nonlocal initial problems for fuzzy differential 

equations under generalized Hukuhara differentiability (NIP for FIDEs) by the point of view of Hausdorff metric 

space, for example, existence, uniqueness, boundedness, ...  and stability of solutions. The different types of 

solutions NIP for  FDEs are generated by the usage of two different concepts of fuzzy derivative in the formulation 

of a differential problems. The examples are given to illustrate these results. 

  Keywords: Hausdorff metric space; The  positive lyapunov - like function; Fuzzy differential equations under generalized 

hukuhara differentiability (FDEs); The nonlocal initial  problems (NIP). 
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The paper is organized as follows: in section 2, we recall some basic concepts and notations which are useful in 

next sections. In sections 3 we present the properties of set solutions 
nx(t) E to the nonlocal initial problem for 

fuzzy differential equations under generalized Hukuhara differentiability (NIP for FDEs). In sections 4 we present 

the some examples for simulation of these problems. In the last section, we give the conclusion and 

acknowledgements.  

 

2. Preliminaries 
Let              denote the collection of all nonempty, compact and convex subsets of       .     Given 

n

CC
A, B K ( ), the Hausdorff distance between A and B is defined as follows:   

max
n nH b B a Aa A R

b B
R

ad (A, B) {sup inf , supb inf }a b
 



  ,  

where
nR

.‖ ‖ denotes usual the Euclidean norm in 
n

. It is known that 
n

CC H
(K ( ), d )  is a complete metric 

space and if the space 
n

CC H
(K ( ), d ) is equipped with the natural algebraic operations of addition and nonegative 

scalar multiplication, i.e. for 
n

CC
A, B K ( ), and    :   

                A B a b | a A, b B , A a | a A ,          

then
n

CC
K ( ) becomes a semilinear metric space which can be embedded as a complete cone into a 

corresponding Banach space.  

       Denote 
n nE { : [0,1]    such that satisfies (i) - (iv)  below, 

(i)  is normal, i.e. there exists  
n

0
z  such that

0
(z ) 1;   

(ii)  is fuzzy convex, i.e. 
1 2 1 2

( z (1 )z ) min{ (z ), (z )}        , for any 0 1   and 

n

1 2
z , z ;  

(iii)  is upper semicontinuous;  

(iv) 
0 n[ ] cl{z : (z) 0}     is compact, where cl denotes the closure in 

n( ,| |·| |) . The element 

nE is called a fuzzy number or fuzzy set.  

      The set 
n[ ] {z : (z) , 0 1}         is called the  - level set.  

      For 
nE one has that 

n

cc
[ ] K ( )  for every [0,1].  

      For all 0 1 „ „ „ then we have 
0 

               . 

      For two fuzzy sets 
n

1 2
,   E , we denote 

1 2
 „  if and only if 

1 2

 

         .  

If 
n n ng :   is a function then according to Zadeh's extension principle we can extend  

n n ng : E E E  by the formula    
 

    
1 2

1 2 1 1 2 2
z g z ,z

g , z sup min z , z .


     It is well known that if 

g is continuous then 
n

1 2 1 2 1 2
[g( , )] g([ ] ,[ ] ), , E , [0,1].           Especially for addition and 

scalar multiplication in fuzzy number space we have:  

Define 
n n

0
H : E E [0, )   by the expression 

0 1 2 H 1 2
H [ , ] sup{d ([ ] ,[ ] ) : 0 1}          

is the distance between 
n

1 2
, E   , where 

H
d ([ ] ,[ ] )   is the Hausdorff distance between two set 

n

1 2 cc
[ ] ,[ ] K ( )   . It is easy to see 

0
H is a metric in 

nE . In fact 
n

0
(E , H ) is a complete space. Some 

properties of metric 
0

H are as follows 

0 1 3 2 3 0 1 2
H [ , ] H [ , ]         ;  

0 1 2 0 1 2
H [ , ] | | H [ , ]      ;  

0 1 2 0 1 3 0 3 2
H [ , ] D [ , ] H [ , ]         , 
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for every 
n

1 2 3
, , E    and  . Let us denote 

n nE  the zero element of 
nE as follows 

n
1 if z

(z)
0 if z

  
  

 

 

where 0 is the zero element of 
n

. 

Let 
nu, v E . The set 

nw E satisfying w u v  is known as the geometric difference of the set u and 

v and is denoted by the symbol  u-v .  

Let 
nx, y : [a, b] E be a fuzzy function, that means [x(t)] [x(t, ), x(t, )]    and  

[y(t)] [y(t, ), y(t, )], [0,1]     . We say that 

(i) scalar product x(t) exists if 
0

[ x(t)] k, k [x(t)] [x(t)] , t [t , T], [0,1]            ; 

(ii) fuzzy product z(t) x(t).y(t) exists if  

 z(t, ) min x(t, ).y(t, ), x(t, ).y(t, ), x(t, ).y(t, ), x(t, ).y(t, ) ;           

 z(t, ) max x(t, ).y(t, ), x(t, ).y(t, ), x(t, ).y(t, ), x(t, ).y(t, ) .           

       Let 
nx, y : [a, b] E be a fuzzy function, that means [x(t)] [x(t, ), x(t, )]    and  

[y(t)] [y(t, ), y(t, )], [0,1]     . We say that x(t) y(t) if and only if satisfies one of the 

followings: 

0
a) x(t, ) y(t, ), x(t, ) y(t, ), t [t , T], [0,1];       „  

0
b)[x(t)] [y(t)] , t [t , T], [0,1];      

0 0 0
c) H [x(t), ] H [y(t), ], t [t , T]   „

 

Let 
nx, y : [a, b] E be the fuzzy functions. We say that exist a geometric difference  Hukuhara between 

x(t) and y(t), if exist the fuzzy fuction z(t), such that: 

 

z(tx(t) ) x(t)y y(t) z(t)(t)    !

 Let 
nx, y : [a, b] E be the fuzzy functions. We say that exist a general difference  Hukuhara between x(t) 

and y(t), if exist the fuzzy fuction z(t), such that: 

 

 

 

 

 

Let 
nx : [a, b] E be a fuzzy function, that means [x(t)] [x(t, ), x(t, )], [0,1]     . We say that 

a fuzzy function x is first type Hukuhara differentiable (classical Hukuhara differentiable) at 
0

t [a, b] if there 

exists an element 
n

H 0
D x(t ) E such that the limits exists 

                                                                                                                                                    (2.1) 

 

Here the limits are taken in the metric space 
n

0
(E , H ) and at boundary points we consider only the one-side 

derivatives.  

Let 
nx : [a, b] E and t (a, b) . We say that fuzzy function x is generalized Hukuhara differentable at t, 

if there exists 
g n

H
D x(t) E , such that either 

g1(H ) for all h > 0 sufficiently small, the H- differences,                   

exist and the limits (in the metric H
0

): 
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In this definition, case 
g1(H ) corresponds to the classic H-derivative, so this differentiability concept is a 

generalization of the Hukuhara derivative 
g n

H
D x(t) E and 

g

H
[D x(t)] [x (t, ), x (t, )].     In this paper we 

consider only the two first generalized H- differentiabilities. In the other cases, the derivative is trivial because it is 

reduced to a crisp element. 

 

3. Main Results 
3.1. The Existence and Uniqueness of Solutions to the NIP 
Definition 3.1 [Nonlocal initial problems for fuzzy differential equations] Let's conside the nonlocal initial 

problems for fuzzy differential equations (NIP for FDEs) under generalized Hukuhara differentiability: 

  g n

H 0 1 2 3 p p
D x(t) f(t, x(t)), t 0 x(0) x h(t , t , t , ..., t , x(·)) E t t,    …  „   (3.1) 

where
n nf, h : [0,T] E E  are fuzzy continuous multifunctions, fuzzy state set 

nx(t) ,E

n

1 2 p 0
t [0, T], 0 t t ... t T, x E       . The symbol 

1 2 3 p
h(t , t , t , ..., t , x(·)) is used in the sence 

that in the place of (·) , such that 
n

0 1 2 3 p
x(0) x h(t , t , t , ..., t , x(·)) E   plays as the nonlocal conditions 

and we can substitute only  elements of the set  1 2 p
t , t , ..., t .  

Definition 3.2 [Fuzzy solution] The fuzzy mapping set 
1 nx(t) C [[0,T],E ]  is said to be a solution of NIP for 

FDEs (3.1) on [0,T]  if it satisfies (3.1) with generalized Hukuhara derivative 
g n

H
D x(t) E by t and it is presented 

by: 

  
t

0 1 2 3 p

0

x(t) x h(t , t , t , ..., t , x(·)) f s, x s ds          (3.2) 

if  x is 
g1(H )  - differentiable, or 

  
t

0 1 2 3 p

0

x(t) x h(t , t , t , ..., t , x(·)) ( 1) f s, x s ds( )   !      (3.3) 
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if  x is 
g2(H )  - differentiable. 

A solution of the Hukuhara integral equations (3.2) (or (3.3)) is equivalent a solution of the NIP for FDEs  (3.1) 

on [0,T]. 

Assume that the fuzzy functions 
nf : 0, T E ,    

p n nh : [0,T] E E  satisfy the following 

hypotheses:  

 (hf) There exists a function 
1

c 0 such that:  

n n n

0 0
H [f(t, x(t)), ] c(1 H x(t), ), t [0, T], x(t) E      

 
„ ; 

(hh) There exists a constant M>0 such that: 
n n

0 1 2 3 p 1 2 p
H [h(t , t , t , ..., t , x(·)), ] M, 0 t t ... t T, x(·) E     „ „  . 

Theorem 3.1  Let
n

0
x E and

n

0 0 1
H [x , ] M „ with

1
M  . If  the f(t, x(t)) are   fuzzy continuous 

multifunctions and the nonlocal conditions
1 2 3 p

h(t , t , t , ..., t , x(·)) satisfy the hypotheses (hf) - (hh), then the 

nonlocal nitial problems  for  FDEs (3.1)  has the unique solution in
nE . Furthermore: 

Let the sequence
n

k 1 0 0
{x } : [t , t q] E


  given by 

  
t

k 1 0 1 2 3 p k k

0

x (t) x h(t , t , t , ..., t , x (·)) f s, x s ds


    ,     (3.4) 

is well-defined for any k = {0,1,2,..}. Then the problem (3.1) has a unique fuzzy solution which is
g1(H ) -  

differentiable on [0,T].  

Let the sequence
n

k 1 0 0
{x } : [t , t q] E


  given by 

  
t

k 1 0 1 2 3 p k k

0

x (t) x h(t , t , t , ..., t , x (·)) ( 1) f s, x s ds( )


   !     (3.5) 

is well-defined for any k = {0,1,2,..}. Then the NIP (3.1) has a unique fuzzy solution which is
g2(H ) -  differentiable 

on [0,T]. 

Proof: By inductive method, obtaining for 
0 0

t [t , t r]  ,we infer that the sequence 
k

x (t) is uniformly 

convergences  to  x(t).            

          

Lemma 3.1 Let x(t) fuzzy continuous multifunctions on the  level, such that 

x(t) x (t), x (t) , 0,1


           
       (3.6) 

 (i) If x (t) is
g1(H ) - differentiable then  g

H
D x(t) x (t), x (t)


    

 
 
 

;    (3.7) 

 (ii) If x (t) is
g2(H ) - differentiable then  g

H
D x(t) x (t), x (t)


    

 
 
 

.    (3.8) 

Proof: By definitions of 
g1(H ) and 

g2(H ) of the fuzzy continuous multifunctions on the   level.  

Theorem 3.2  If  the x(t), f(t,x(t))  are fuzzy continuous multifunctions on the  level and the nonlocalconditions

1 2 3 p
h(t , t , t , ..., t , x(·)) satisfy the hypotheses (hf), (hh) then the NIP for FDEs (3.1)  has the unique solution in

nE .  Furthermore: 

Let system ordinary differential equations: 

1

1

x (t) f (t, x (t), x (t))

x (t) f (t, x (t), x (t))

   

   

 




        (3.9) 

and system ordinary differential equations: 

1

1

x (t) f (t, x (t), x (t))

x (t) f (t, x (t), x (t))

   

   

 




        (3.10) 
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with the initial conditons
n

0 1 2 3 p
x(0) x h(t , t , t , ..., t , x(·)) E   have the unique solutions, then theproblem 

(3.1) has a unique fuzzy solution x(t) x (t), x (t)


       
(for each 0,1     ), which is generalized 

Hukuhara differentiable on [0,T]. 

Proof: Replacing the NIP for FDEs  (3.1) by two systems of ordinary differential equations (3.9) - (3.10) for the 

fuzzy continuous multifunctions on the   level, we have a unique fuzzy solution x(t) x (t), x (t)


   
  




(for each 0,1     )which is generalized Hukuhara differentiable on [0,T]. 

 

3.2.The Boundedness of Solutions to the NIP 

Definition 3.3 [The boundedness of solutions]  A fuzzy solution  
nx(t) E of  NIP for FDEs  (3.1) is called: 

(i) B- bounded if there exists positive constant K such that  
n

0
H [x(t), ] K „ for all t [0,T] . 

(ii) EB- bounded if there exists positive constant K such that 
n ( .t )

0
H [x(t), ] K.e [ , T], t 0  „   

Lemma 3.3 [The extension of Gronwall - Bellman inequality] Assume that the real functions

r(t) 0, a 0, b 0   on 0, T 
  satisfy

t

0

r(t) a b r(s)ds   then r(t) a.exp(bt) . 

Theorem 3.3  Let 
n

0
x E and

n

0 0 1
H [x , ] M „ with

1
M  . If  the fuzzy function f(t,x(t))  satisfies the 

hypotheses (hf) and the nonlocal conditions
1 2 3 p

h(t , t , t , ..., t , x(·)) satisfy the hypotheses (hh), then the  NIP for 

FDEs  (3.1) has the unique B- bounded  solution in
nE . 

Proof:  (a) Problems of existence and uniqueness are clear. 

(b)  Problem of (B)- bounded  are proved by integral expression (3.2) following  

    
t

n n

0 0 0 1 2 3 p k

0

H x t , H x h(t , t , t , ..., t , x (·)) f s, x s ds,
 

       
  

  . 

By assumptions (hf), by Lemma 3.1, and by hypotheses (hf) – (hh) we obtain  

    
t

n n n

0 0 0 0

0

H x t , H x , M l 1 H x s , ds         
    „  

 
t

n n

0 0 0

0

H x , M lt l H x s , ds      
   „  

Putting   n n

0 0 0
r(t) H x t , , a H x , M lT, b l         

  
and by Lemma 3.3, we  obtain 

     n n

0 0 0
r(t) H x t , H x , M lT) exp lT       

  
„  

Choosing    n

0 0
K H x , M lT) exp lT    

 
, we have 

n

0
t [0,T ]

sup H x(t), K, t [0, T]


   
 

„  and  

the proof of Theorem 3.3  is completed.          

              

Theorem 3.4. Assume that the positive Lyapunov - like function
nV C[ E , ]

 
  which satisfies the 

following conditions: 

(i)
0

| V(t, x(t)) V(t, x(t)) | L(H [x(t), x(t)])  whereL is bounded Lipschitz constant, for all 

n n n c

0 0
x(t), x(t) E , b t,H [x(t), ] V(t, x(t)) a t,H [x(t), ] ,(t, x) S (r)( ( )


       where  

b(.), a(t, .) are increasing functions; 

(ii)
0

1
D V(t, x(t)) lim sup V t , x(t) f(t, x(t))) V(t, x(t)) g(t, V(t, x(t))){ ( }







      


 ,  
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where 
2g C[ , ],g(t, 0) 0, t
 

    . 

a/  If 
0

g(t, V(t, x(t))) 0, t t   then fuzzy set solution 
nx(t) E of NIP for FDEs (3.1)  is (B). 

b/ If 
0

g(t, V(t, x(t))) 0, t t   or if
0

g(t, V(t, x(t))) V, t t      then fuzzy solution 
nx(t) E

of NIP for FDEs (3.1)  is (EB). 

Proof:  Setting the function m(t) V(t, x(t)) , we have 

 
0

1
D m(t) D V(t, x(t)) lim sup V t , x(t) f(t, x(t)) V(t, x(t)) g(t, V(t, x(t))),{ ( ) }



 



       


 

so D m(t) g(t,m(t))  ,  implies that 
0 0

m(t ) W .  

Since 
0 0

m(t) r(t , W , t) where 
0 0

r(t , W , t)  is maximal solution of scarlarequation 
dW

g(t, W)
dt

 , then 

0 0
V(t, x(t)) V(t , x ) .  

        Let 
0

0 r, t


    be given. Choose 
0

(t , )    such that 
0

a(t , ) b( )   . We claim that with this 

 then (B)- bounded solution. If not, there exists solution 
0 0

x(t) x(t , x , t) of the NIP for FDEs  (3.1) and 

t t
1 0
 such that 

n

0 1
H [u(t ), ]    and 

n

0 0 1
H [x(t), ] r, t t t      . 

Wherever 
n

0 0
H [x , ]  because 

0 0 0 1
V(t, x(t)) V(t , x ), t t t   ,  then 

n n

0 1 1 1 0 0 0 0 0 0
b( ) b(H [x(t ), ]) V(t , x(t )) V(t , x ) a(t ,H [x , ]) a(t , ) b( )            

this contradiction proves that the fuzzy set solution 
nx(t) E is B- bounded.   

          In the case, if g(t, V(t, x(t))) 0 (or D V(t, x(t)) V(t, x(t))   ) then we have 

0 0 0
V(t, x(t)) V(t , x ), t t   and  the fuzzy set solution is (B).  

        We need prove that 
n

0t
lim H [x(t), ] 0


  . We consider D V(t, x(t)) V(t, x(t))   then 

0
[ ( t t )]

0 0 0
V(t, x(t)) V(t , x ).e , t t .

 
   If (BE) is not true, given 

0
 ,we choose 

0

0 0

0

a(t , )1
T T(t , ) ln 1

b( )


   

 
then 

0
[ ( t t )]n

0 0 0
b(H [x(t), ]) V(t, x(t)) a(t , ).e b( ), t t T

 
          

this contradiction proves that the fuzzy set solution 
nx(t) E is EB- bounded.      

 

3.3. The Comparisons of Solutions to the NIPs 
We consider nonlocal initial problems – NIP for two FDEs type (3.1): 

  g n

H 1 0 1 2 3 p p
D x(t) f (t, x(t)), t 0 x(0) x h(t , t , t , ..., t , x(·)) E t t,    …  „   (3.11) 

  g n

H 2 0 1 2 3 p p
D x(t) f (t, x(t)), t 0 x(0) x h(t , t , t , ..., t , x(·)) E t t,    …  „   

 (3.12) 

where 
n n

j
f : [0, T] E E  is fuzzy continuous multifunctions, fuzzy state set 

nx(t), y(t) E , 

p n nh : [0, T] E E  is fuzzy continuous multifunctions  and 

t [0,T] n

1 2 p 0
0 t t ... t t T, x E        

The symbol 
1 2 3 p

h(t , t , t , ..., t , x(·)) is used in the sence that in the place of (·) we can substitute only 

elements of the set  1 2 p
t , t , ..., t , j 1,2 . 

 Theorem 3.5  Assume that,
0 0

H [x(0), y(0)]  and for
c(t, x) S (r)


  , the fuzyy mappings

j
f satisfy the 

following conditions: 
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0 0 0

t t t

0 1 2 0

t t t

H f (s, x(s)ds, f (s, y(s))ds L H [x(s), y(s)]ds
 
   
  
   whereL is bounded constant, for all

nx(t), y(t) E and t


 , then we have the following estimation: 

 0 0 0
H [x(t), y(t)] .exp[L (t t )]             (3.13) 

 

Proof:  Proof of the Theorem 3.5 by ussing the Gronwall- Bellman's Lemma for estimation of supper distance H
0

. 

             

3.4. The Global Existence and Uniqueness of Solutions to the NIP 
 Next, we shall establish the global existence and uniqueness of solutions to the NIP for FDEs (3.1).  

Theorem 3.6 Assume that the assumptions of Theorem3.4 hold. In addition, assume ellse the fuzzyfunction
n nf C( E ,E )  satisfy that H[f(t, x), f(t, y)] g(t,H [x, y])


 for

nx(t), y(t) E and w(t) 0 is only 

solution of 

   
dw

g t, w , w(0) 0
dt

           (3.14) 

for t 0 . Then the NIP for FDEs (3.1) has a unique solution on[0, ) for each
gjH , j 1,2 case. 

Proof: We prove that for the case of 
g2(H ) - differentiability, the proof of the other case is similar. Since 

nx(t), y(t) E aresolutions to the NIP for FDEs (3.1), we have: for h > 0, small enough, there exist the 

Hukuharadifference x(t h) x(t), y(t h) y(t) ! ! . Now for t  , setting      m t H x t  y t
0

, 
 

we have:  

           m t h  m t   H x t h  y t h   H x t  y t
0 0

, ,        
   

0
H [x(t h), x(t) ( 1)hf(t, x(t))]                  H x t   1 hf t x t  y t 1 hf t  y t  

0
, , ,     

 
 

0 0
H [(t h), x(t) ( 1)hf(t, x(t))] H [y(t) ( 1)hf(t, y(t)), y(t h)]       

      hH f t x t  f t y t
0

, , , 
 

 

from which we get  

0 0

m(t h) m(t) x(t h) x(t) y(t h) y(t)
H , f(t, x(t)) H f(t, y(t)),

h h h
[ ] [ ]   

 
 

! !

0
H [f(t, x(t)), f(t, y(t))]  

Taking liminf as h 0 yields  

  0 t
h 0

1
D m(t) lim inf m t h m(t) g(t, H [x, y]) g(t,| m | )

h






     
 

 

which together with the fact that 
0 0 0 0

H [ , ] x   and by  using Theorem 3.3 and Theorem 3.4 we obtain  

0 0 0 0
H [x(t), y(t)] r(t, t , x ), t t  . The proof is complete.       

        

Corollary 3.1.Under assumptions of Theorem3.4, if we suppose in addition that there exists L > 0 such that

0 0
H [f(t, x), f(t, y)] L.H [x, y] , then for t 0 the NIP for FDEs (3.1) has a unique solution on[0, ) . for 

each 
gjH , j 1,2 . 

 

3.5. The Stability Properties of Trivial Solutions to the NIP 

Assume that NIP for FDEs (3.1) has the trivial set solution v(t)  thatmeans
nf(t, v(t))   . Put 

n n

0
S(r) {u(t) E : H [u(t), ] r}    - neighbourhood of the zero set point. 
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Definition 3.4 [Stability of solutions by Lyapunov's mean] The trivial set solution 
n of NIP for FDEs (3.1) is 

said to be: 

(LS) stable by Lyapunov's mean if for each 0  and t > 0, there exists a (0, )     such that 
n

0 0
H [x , ]  

implies  
n

0
H [x(t), ]   for t 0 . 

(ALS) asymptotically stable by Lyapunov's mean if it is stable and 
n

0t
lim H [x(t), ] 0


  . 

(ELS) exponentially stable by Lyapunov's mean if  
n n

0 0 0
H [x(t), ] (H [x , ], 0) exp[ (t)], t 0      . 

where 
0

(H [.,.], 0) : [0,1]
 

   . 

Theorem 3.7  Assume that the positive Lyapunov - like function
nV C[ E , ]

 
  which satisfies the 

following conditions: 

i) 
0

| V(t, x(t)) V(t, x(t)) | L.H [x(t), x(t)]  where L is bounded Lipschizt constant, for all

nx(t), x(t) E and t


 ; 

ii) 
n n

0 0
b H [x(t), ] V(t, x(t)) a t, H [x(t), ]( ) ( )    for(t, x) S(r)


  where b(.), a(t,.) are 

increassing functions; 

iii) 
0

1
D V(t, x(t)) lim sup V t , x(t) f(t, x(t))) V(t, x(t)) g(t, V(t, x(t))){ ( }







      


 

where
2g C[ , ],g(t, 0) 0


  for all
nx(t) E and t


 . 

a/  If g(t, V(t, x)) 0, t 0   then a trivial set solution of NIP for FDEs (3.1) is (LS). 

b/  If g(t, V(t, x(t))) 0, t 0   (or if g(t, V(t, x(t))) V, t 0    then atrivial set solution of  NIP 

for FDEs  (\ref{eq3.1}) is (ALS). 

Proof: Setting the function      m t  V t  x t, , we have 

 
0

1
D m(t) D V(t, x(t)) lim sup V t , x(t) f(t, x(t))) V(t, x(t)) g(t, V(t, x(t))),{ ( ) }



 



       


 

so D m(t) g(t,m(t))  implies that 
0

m(0) W . Since 
0

m(t) r(0, W , t) where 
0

r(0, W , t) is maximal 

solution of scarlarequation 
dW

g(t, W)
dt

 , then 
0

V(t, x(t)) V(0, x ) . 

Let 0 r, 0


    be given. Choose a (0, )    such that a(0, ) b( )   . We claim that with this 

then (LS) holds. If not, there is exists 
0

x(t) x(0, x , t)  of NIP (3.1) and t  
1

0 such that 
n

0 1
H [x(t ), ]  

and
n

0 1
H [x(t), ] r, 0 t t      .Wherenever 

n

0 0
H [x , ]   , because 

0 1
V(t, x(t)) V(0, x ), 0 t t   then  

n n

0 1 1 1 0 0 0
b( ) b(H [x(t ), ]) V(t , x(t )) V(0, x ) a(0,H [x , ]) a(0, ) b( )           , 

this contradiction proves that (LS) holds. 

              In the case, if g(t, V(t, x(t))) 0 (or D V(t, x(t)) V(t, x(t))   ) then we have 

0
V(t, x(t)) V(0, x ), t 0   and  the trivial set solution is (LS). We need prove that 

n

0t
lim H [x(t), ] 0


   

           We consider D V(t, x(t)) V(t, x(t))   then 
[ ( t )]

0
V(t, x(t)) V(0, x ).e , t 0.    

If (ALS) is not holded, given 
0
 , we choose 

0

0

1 a(0, )
T T(0, ) ln 1

b( )


   

 
  then  
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n [ (t )]

0
b(H [x(t), ]) V(t, x(t)) a(0, ).e b( ), t T        , 

this contradiction proves that (ALS) holds.          

 

Theorem 3.8:  Assume that the positive Lyapunov - like function
nV C[ E , ]

 
  satisfies thefollowings: 

(i)
0

| V(t, x(t)) V(t, x(t)) | L.H [x(t), x(t)])  where L is bounded Lipschizt constant, for all

nx(t), x(t) E and t


 ; 

(ii)
1 2 3
(t), (t), (t), p, q 0    where

1
(t) increassing function such that 

n p n q

1 0 2 0
(t)H [x(t), ] V(t, x(t)) (t)H [x(t), ]      ; 

(iii)
n s ( t ) n n

3 0
D V(t, x(t)) H [x(t), ] K.e , t 0, x(t) E { }        ‚ ; 

(iv) 3

l/ qt
2

(t)
inf 0

[ (t)]
{ }





  


; 

(v) 
l/ q tV(t, x(t)) [V(t, x(t))] e „ where s,K, l, , 0   , 

then a trivial set solution of  NIP for FDEs (3.1) is (ELS).  

 

Definition 3.5 [ Stability of solutions] The trivial fuzzy solution of  the NIP for FDEs  (3.1)  is said to be: 

(S1)]  equi-stable of for each 0  and 
0

t 0 there exists a 
0

(t , )    such that 
n

0 0
H [x , ]     implies  

n

0
H [x(t), ]   for

0
t t ;  

(S2) uniformly stable, if the $\delta$ in (S1) is independent of 
0

t ;  

(S3) quasi-equi-asymptotically stable, if for each 
0

0,t 0   there exist a 
0

T T(t , )  and 
0 0 0

(t )    such 

that 
n

0 0 0
H [x , ]   implies  

n

0 0
H [x(t), ] , t t T      ;  

(S4)  quasi-uniformly asymptotically stable, if 
0 0 0

(t )   and T in (S3) are independent of  
0

t ; 

(S5)  equi-asymptotically stable, if (S1) and (S3) hold simultaneously; 

(S6)  uniformly asymptotically stable, if (S2) and (S4) hold simultaneously; 

(S7) exponentially asymptotically stable, if 
n n

0 0 0
H [x(t), ] (H [x , ], 0) exp[ .t)], t 0       

where 
0

(H [.,.], 0) : [0,1]
 

    . 

Remark 3.1: According to the Definition 3.4  and  Definition 3.5, we have: 

 (S1)   (LS).  

 (S6)  (ALS). 

 (S7)  (ELS). 

(S6) or (ALS)   (S3). 

(S6) or (ALS)   (S4).  

We have to prove (S2) and (S6).  

Theorem 3.9: Assume that the positive Lyapunov - like function
nV C[ E , ]

 
  satisfies the followings: 

(i) 
0

| V(t, x(t)) V(t, x(t)) | L.H [x(t), x(t)]  where L is bounded Lipschitz constant, for all t


 ; 

(ii) 
n n

0 0
b H [x(t), ] V(t, x(t)) a t, H [x(t), ]( ) ( )    , for (t, x(t)) S(r)


  where 

b(.), a(t,.) are increasing functions;  

(iii)
0

1
D V(t, x(t)) lim sup V t , x(t) f(t, x(t)) [ (t)f(t, x(t)) (t)x(t)] V(t, x(t)){ ( ) }







          


 

g(t, V(t, u(t)))  

where
ng C[ , ], g(t, 0) 0, x(t) E

 
     and t


 . Further more 

a/  If 
0

g(t, V(t, x(t))) 0, t t   then (S2) holds. 

b/  If
0

g(t, V(t, x(t))) 0, t t   (or if
n

0 0
g(t, V(t, x(t))) c(H [x(t), ]), t t     ) then (S6) holds. 
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Proof: The condition (iii) with a/ ( or b/) guarantees that 
0 0

V(t, x(t))) V(0, x(t ))), t t .    

a/ Let 
0

0, t t    . Choose ( )    ,such that 
0

a(t , ) b( )   and 
n

0 0
H [x(t ), ]   , implies that 

n

0
H [x(t), ]   that means (S2) holds. 

     If it is not true, then 
0

0, ( )      and 
0

a(t , ) b( )   such that 
0 0

x(t) x(t , x , t) is a set solution 

of (3.1), which satisfies  
n

0 0
H [x(t), ]   . On the other hand, we have 

n n

0 0 0

n n

0 0 0 0 0 0 0 0

b( ) b( ) b H [x(t), ] b H [x(t), ] V(t, x(t))

V(t , x ) a t ,(H [x(t ), ] a t , H [x(t ), ] a(0, ) b( )

( ) ( )

( ( )

        

        
 

This contradiction proves  (S2). 

b/ If 
n

0 0
g(t, V(t, x(t))) c(H [x(t), ]), t t     we have (S2), that means 

n

0 0 0
0, ( ), t t : H [x(t ), ]         implies that 

n

0 0
H [x(t), ] , t t .      

Suppose that (S6)  doesn't hold, that means 
0

0

0

a(t , )
0, ( ) , T 1

c.


          


 

such that 
n

0 0 0
H [x(t), ] , t [t , T].     Since 

n

0 0
g(t, V(t, x(t))) c(H [x(t), ]), t t       then 

0

t

n

0 0 0 0

t

V(t, x(t)) V(t , x(t )) c H [x(t), ]dt, t [t , T ]     Implies

0 0
0 V(T, x(T)) a(t , ) c. .T 0      This contradiction proves (S6).     

 

4. Illustrations 
4.1 Example 

We have an example for the change of oxygen concentration in water by classical equations: 

    0
x t Kx(t), x 0 x , t 0,100               (4.1) 

where, x (t)-  oxygen levels of concentration by mg / liter; K- Solubility coefficient under certain cut, usually taken 

0.038mg/day; x (0) - oxygen concentration  - local initial condition. 

        In [24] the authors repeat (4.1) by the model of  LIP for FDEs: 

   H
D x t Kx (t), x 0 [90 ,110 ], t 0,100

 
                (4.2) 

where x (t) [x (t), x (t)]
  

  . 

        Indeed, measurements of the levels x (t) is fuzzy, that means x (t) [x (t), x (t)]
  

  because it depends on 

many factors: humidity, wind, traffic flow and accuracy of measuring equipment: commonly used measurement 

time is 100 days.  

       Let us consider example (4.2) by the following nonlocal initial problem for the fuzzy differential equation (NIP 

for FDEs): 

 g

H
D x t Kx(t)            (4.3) 

  p2 p

1 1 1
x 0 x (0) x (20) x (40) ... x (t )

2 2 2
   

          (4.4) 

 p
t t, x 0 [ 1 ,1 ], [0,1], t 0, T


                  (4.5) 

x (T) -   a final concentration oxygen levels achieved 0.625mg / liter. 

Case 1.  Suppose that x(t) in initial problem for level fuzzy differential equation (4.3) with nonlocal conditions (4.4) 

- (4.5) is first type Hukuhara differentiable 
g1(H ) . Because  x is 

g1(H )
 

- differentiable, then 

  
t

p p2 p

0

1 1 1
x(t) x (0) x (20) x (40) ... x (t ) f s, x s ds, t t

2 2 2
   

        .  (4.6) 

On the other hands, by Lemma 3.2,  we get 
1 1 1

[x (t)] K[(x (t)),(x (t))]      that means: 
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1 1

1 1

x (t) Kx (t)

x (t) Kx (t)

 

 

   

  

 

         We have the fuzzy solution of nonlocal initial problem - NIP (4.3) - (4.5) under first type of Hukuhara 

differentiable 
g1(H ) : 

Kt Kt[x(t)] [x (0)e , x (0)e ]     . Finally, we have a solution that is 
g1(H ) - 

differentiable  
Kt

p p2 p

1 1 1
x(t) [x (0) x (20) x (40) ... x (t )]e , t t

2 2 2



   
         (4.7) 

  p p2 p

1 1 1
x 0 x (0) x (20) x (40) ... x (t ), t t

2 2 2
   

       , 

 x 0 [ 1 ,1 ], [0,1], t 0, T


           ,  x(T) = 0.625mg/liter. 

Case 2.  Suppose that x(t) in nonlocal initial - value problem for level fuzzy differential equation (4.3) - (4.3) is 

second type Hukuhara differentiable 
g2(H ) . Because  x is 

g2(H ) - differentiable, then 

  
t

0 1 2 3 p

0

x(t) x h(t , t , t , ..., t , x(·)) ( 1) f s, x s ds( )   ! , that means 

  
t

p p2 p

0

1 1 1
x(t) x (0) x (20) x (40) ... x (t ) ( 1) f s, x s ds , t t

2 2 2
( )

   
       !  (4.8) 

  p p2 p

1 1 1
x 0 x (0) x (20) x (40) ... x (t ), t t

2 2 2
   

       , 

 x 0 [ 1 ,1 ], [0,1], t 0, T ,


           x(T) = 0.325mg/liter. 

Therefore we have the fuzzy solution of nonlocal initial problem - NIP (4.3) - (4.5) under second type of Hukuhara 

differentiable 
g2(H )  

2
[x (t)] [ K( 1 )x(0)cost, K(1 )x(0)sint], x(0) [x(0), x(0)]          ,  (4.9) 

   p p2 p

1 1 1
x 0 x (0) x (20) x (40) ... x (t ), t t , x 0 [ 1 ,1 ], [0,1], t 0, T

2 2 2
    

                    

Remark 4.1:  The fuzzy solution of nonlocal initial problem - NIP (4.3) - (4.5) exists in only case 1, that means 

solution in form (4.7) because the change of oxygen concentration in water is increased with time. 

      We have this numerical simulation solution, when K = 0.038, 0.5   

0
x(0) 0.5; 0.5 x (0)       

20K 20K

0.5 0
x (20) x (0)e 0.5; 0.5 e        

20K

1

1
x(0) 0.5; 0.5 0.5; 0.5 e x (0)

2

              

40K 40K

0.5 1
x (40) x(0)e x (0)e    

0.5 0.5 22

1 1
x(0) 0.5; 0.5 x (20) x (40) x (0)

2 2
         

60K 60K

0.5 2 2
x (60) x (0)e x (0)e    

0.5 0.5 0.5 0.5 32 3

1 1 1
x(0) x (0) x (20) x (40) x (60) x (0)

2 2 2
     ...... 

0.5 0.5 0.5 0.5 0.52 3 5

1 1 1 1
x(80) x (0) x (20) x (40) x (60) x (80)

2 2 2 2
      

x(T)=0.625mg/liter  

       We have this numerical simulation solution, when K= 0.038, 0.5  shown in Fig.1, and when   

K = 0.038, 0.75  that shown in Fig.2 
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Fig-1. Solution of Example (4.3) - (4.5) in the case 1 when 0.5   

 
 

Fig-2.Solution of Example (4.3) - (4.5) in the case 1 when 0.75  . 

 
       We have this numerical simulation solution, when K = 0.038, 0.5  that shown in Fig.3, and when when K 

= 0.038, 0.75  shown in Fig.4(in 3D). 

 

Fig-3.Solution of Example (4.3) - (4.5) in the case 1 when 0.5   

 
 

 

 

Fig-4. Solution of Example (4.3) - (4.5) in the case 1 when 0.75  . 

 
 

4.2 Example 
We have an example for the change of chemical toxic concentrations in the air, that depends continuously on 

each measurement point. Let us consider example (4.1) by the following nonlocal initial problem for the fuzzy 

differential equation (NIP for FDEs): 
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 g

H
D x t x(t) 

          
(4.10) 

     

  p p2 p

1 1 1
x 0 x (0) x (10) x (20) ... x (t ), t t

2 2 2
   

     
    

(4.11) 

     

 x 0 [ 1 ,1 ], [0,1], t 0, T


           ,  with  = 0.0025 mg/day, x(T)= 0.005 mg/
3m  (4.12) 

Because 
1x(t) E is - level fuzzy such that according Lemma 3.2: 

g

H
[D x(t)] [x (t), x (t)],

   and by 

two types of Hukuhara derivative 
g1(H ) and 

g2(H ) ,then the level fuzzy differential equation (4.10) is similar the 

followings:  

Case 1.  Suppose that x(t) in nonlocal initial problem - NIP (4.10) - (4.12)  is first type of Hukuhara differentiable 
g1(H ) ,by Lemma 3.2, we get 

1 1 1
[x (t)] [(x (t)) ,(x (t)) ],         that means: 

 1 1

1 1

x (t) x (t)

x (t) x (t)

 

 

   

  

 

We have the fuzzy solution of nonlocal initial problem - NIP (4.10) - (4.12) under first type of 

Hukuharadifferentiable 
g1(H ) : 

t t

1
[x (t)] [( 1 )e , (1 )e ]         

  p p2 p

1 1 1
x 0 x (0) x (10) x (20) ... x (t ), t t

2 2 2
   

       

  3 3x 0 [ 1 ,1 ], [0,1], t 0,T , 0.012mg / m , x(T) 0.005mg / m


              

Case 2. Suppose that x(t) in nonlocal initial problem - NIP (4.10) - (4.12) is second type of Hukuhara differentiable 

g2(H ) , and by Lemma 3.2, we get   2 2

2 2

x (t) x (t)

x (t) x (t)

 

 

   

  

 

Therefore we have the fuzzy solution of nonlocal initial problem - NIP (4.10) - (4.13) under second type of 

Hukuharadifferentiable 
g2(H ) : 

 [x(t)] [ ( 1 )x(0)cost, (1 )x(0)sint], x 0 [x(0), x(0)],              (4.13) 

  p p2 p

1 1 1
x 0 x (0) x (10) x (20) ... x (t ), t t

2 2 2
   

      ,    (4.14) 

  3x 0 [ 1 ,1 ], [0,1], t 0,T , 0.0025mg / day, x(T) 0.005mg / m .


              

Remark 4.2:  The fuzzy solution of nonlocal initial problem - NIP (4.10) - (4.12) exists in only case 2, that means 

solution in form (4.13) - (4.14)  because the change of oxygen concentration in the air is descreased with time T = 

04 days. 

We have this numerical simulation solution, when 0.0025mg / day, 0.25    that shown in Fig.5and 

when when  T= 4 days, 0.0025mg / day, 0.25    shown in Fig.6 

 

Fig-5.Solution of Example (4.10) - (4.12) in the case 2 when 0.25   
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Fig-6.Solution of Example (4.10) - (4.12) in the case 2 when 0.50   

 
We have this numerical simulation solution, when  = 0.0025 mg/day, 0.25   that shown in Fig.7and when 

when  T= 4 days,  = 0.0025 mg/day, 0.50  shown in Fig.8(in 3D). 

 

Fig-7.  Solution of Example (4.10) - (4.12) in the case 2 when 0.25   

 
 

Fig-8. Solution of Example (4.10) - (4.12) in the case 2 when 0.50  . 

 
 

 

5. Conclusion 

In this work, the existence, uniqueness, boundedness and stability by mapping of fuzzy solutions 
nx(t) E

of the nonlocal initial problems (NIP) for fuzzy differential equations were investigated by the supper distance 

between fuzzy sets. To illustrate this NIP we consider two examples of water-soluble oxyzen volume and 

concentration of harmful substances in the air. Similarly, these two examples, we can examine the problem of 

moisture in the air, the concentration of drug in the human being, etc...  

 

6. Acknowledgements 
The author is very grateful to the anoymous referees for their careful reading and many valuable remarks which 

improved the presentation of the paper.  

 

References 
[1] Zadeh, L. A., 1965. "Fuzzy sets." J. Information and Control, vol. 8, pp. 338-353.  

[2] Kaleva, O., 1987. "Fuzzy differential equations." Fuzzy Sets and Systems, vol. 24, pp. 301-317.  

[3] Agarwal, R. P. O., Regan, D., and Lakshmikantham, V., 2005. "Viability theory and fuzzy differential 

equations." Fuzzy Sets and Systems, vol. 151, pp. 536-580.  



Academic Journal of Applied Mathematical Sciences, 2016, 2(8): 77-92 

 

92 

[4] Allahviranloo, T., Abbasbandy, S., Sedaghatfar, O., and Darabi, P., 2012. "A new method for solving fuzzy 

integro-differential equation under generalized differentiability." Neural Computing and Applications, vol. 

21, pp. 191-196.  

[5] Allahviranloo, T. and Salahshour, S., 2010. "A new approach for solving first order fuzzy differential 

equation, Information Processing and Management of Uncertainty in Knowledge-Based Systems." 

Applications Communications in Computer and Information Science, vol. 81, pp. 522-531.  

[6] Lakshmikantham, V. and Mohapatra, 2003. Theory of fuzzy differential equations and inclusions. London: 

Taylor  Francis. 

[7] Lakshmikantham, V. and Leela, S., 2001. "Fuzzy differential systems and the new concept of stability." J. 

Nonlinear Dynamics and Systems Theory, vol. 1, pp. 111-119.  

[8] Lodwick, W. A. and Oberguggenberger, M. B. S., 2013. "Fuzzy differential equations." J. Fuzzy Sets and 

System, vol. 11, pp. 1-2.  

[9] Lupulescu, V., 2009. "On a class of fuzzy functional differential equations." J. Fuzzy Sets and Systems, vol. 

160, pp. 1547-1562.  

[10] Nieto, J. J., Khastan, A., and Ivaz, K., 2009. "Numerical solution of fuzzy differential equations under 

generalized differentiability." Nonlinear Analysis: Hybrid Systems, vol. 3, pp. 700-707.  

[11] Nieto, J. J., 1999. "The Cauchy problem for continuous fuzzy differential equations." Fuzzy Sets and 

Systems, vol. 102, pp. 259-262.  

[12] Chang, S. S. and Zadeh, L., 1972. "On fuzzy mapping and control, IEEE Transactions on System." Man 

and Cybernetics, vol. 2, pp. 30-34.  

[13] Dubois, D. and Prade, H., 1982. "Towards fuzzy differential calculus." Fuzzy Sets and Systems, vol. 8, pp. 

225-233.  

[14] Barros, L. C., Bassanezi, R. C., and Tonelli, P. A., 2000. "Fuzzy modeling in population dynamics." 

Ecological Modeling, vol. 128, pp. 27-33.  

[15] Bede, B. and Gal, S. G., 2005. "Generalizations of the differentiability of fuzzy-number-valued functions 

with applications to fuzzy differential equations." Fuzzy Sets and Systems, vol. 151, pp. 581-599.  

[16] Bede, B. and Stefanini, L., 2012. "Generalized differentiability of fuzzy-valued functions." Fuzzy Sets and 

Systems, Available: http://dx.doi.org/10.1016/j.fss.2012.10.003 

[17] Buckley, J. J. and Feuring, T., 2000. "Fuzzy differential equations." Fuzzy Sets and Systems, vol. 110, pp. 

43-54.  

[18] Chalco-Cano, Y. and Roman-Flores, H., 2008. "On new solutions of fuzzy differential equations." Chaos 

Solitons Fractals, vol. 38, pp. 112-119.  

[19] An, T. V., Hoa, N. V., and Phu, N. D., 2013. "Global existence of solutions  for interval-valued integro-

differential equations  under generalized H-differentiability." J. Advances in Difference Equations, p. 217.  

[20] An, T. V., Phu, N. D., and Hoa, N. V., 2014. "A note on solutions of interval-valued Volterra integral 

equations." J. of Integral Equation \& applications, \textbf, vol. 26, pp. 1-14.  

[21] Hoa, N. V. and Phu, N. D., 2014. "Fuzzy functional integro - differential equations under generalized H-

differentiability." Journal of Intelligent and Fuzzy Systems, vol. 26, pp. 2073-2085.  

[22] Phu, N. D., An, T. V., Hoa, N. V., and Hien, N. T., 2014. "Interval-valued functional differential equations 

under dissipative conditions." Advances in Difference Equations, p. 198.  

[23] Vu, H., Hoa, N. V., and Phu, N. D., 2014. "The local existence of solutions  for random fuzzy  integro-

differential equations  under generalized H-differentiability." Journal of Intelligent and Fuzzy Systems, vol. 

26, pp. 2701-2717.  

[24] Plotnikov, A. V. and Skripnik, N. V., 2009. "Differential Equations with Set and Fuzzy Set - valued in 

Right hand side: Asymptotic Methods." Odessa- Ukraine (In Russian), p. 192.  

[25] Bede, B., Rudas, I. J., and Bencsik, A. L., 2007. "First order linear fuzzy differential equations under 

generalized differentiability." Information Sciences, vol. 177, pp. 1648-1662.  

[26] Jowers, L. J., Buckle, J. J., and Reilly, K. D., 2007. "Simulating continuous fuzzy systems." Information 

Sciences, vol. 177, pp. 436-448.  

[27] Khezerloo, S., Allahviranloo, T., Ghasemi, S. H., Salahshour, S., Khezerloo, M., and Kiasary, M. K., 2010. 

"Expansion method for solving fuzzy fredholm-volterra integral equations, information processing and 

management of uncertainty in knowledge-based systems." Applications Communications in Computer and 

Information Science, vol. 81, pp. 501-511.  

[28] Mizukoshi, M. T., Barros, L. C., Chalco-Cano, Y., Roman-Flores, H., and Bassanezi, R. C., 2007. "Fuzzy 

differential equations and the extension principle." Information Sciences, vol. 177, pp. 3627-3635.  

 

http://dx.doi.org/10.1016/j.fss.2012.10.003

