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Abstract: We present the properties of fuzzy solutions of the nonlocal initial problems for fuzzy differential
equations under generalized Hukuhara differentiability (NIP for FIDES) by the point of view of Hausdorff metric
space, for example, existence, uniqueness, boundedness, ... and stability of solutions. The different types of
solutions NIP for FDEs are generated by the usage of two different concepts of fuzzy derivative in the formulation
of a differential problems. The examples are given to illustrate these results.
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1. Introduction

The fuzzy set was published in 1965 and later by Zadeh at the University of Berkeley, California - USA [1]. In
1970 Mamdani Queen Mary School, London - UK developed and applied fuzzy logic to control a steam engine
control instead of classical techniques. Also in the 70s of XX century, in Germany, Zimmermann fuzzy logic to the
problem of decision theory. Based on the theory of fuzzy numbers Tagaki early 1980s, Sugeno, Kendel A. and WJ
Byatt has in turn introduced the model equations under fuzzy form. In 1987, Kaleva [2] mapped introduce fuzzy, the

Hukuhara derivative for fuzzy sets, the fuzzy metric space E" most practical problems can be modeled as fuzzy
differential equations (FDES) (see [3-5]). In 90s and later, many mathematicians, for example: V. Lakshmikantham,
Nieto J.,... (see[6-11]), have given model Cauchy problem for differential equations and fuzzy theory.

The method of fuzzy mapping was initially introduced by Chang and Zadeh [12]. Later, Dubois and Prade [13]
presented a form of elementary fuzzy calculus based on the extension principle [14].Bede and Gal [15] suggested
two defnitions for the fuzzy derivative of fuzzy functions. The first method was based on H-difference notation and
was further investigated by Kaleva [2]. Several approaches were later proposed for FDEs and the existence of their
solutions (e.g. [12, 13, 16-18]). There are several approaches to the study of fuzzy differential equations. One
popular approach is based on H- differentiability. The approach based on H-derivative has the disadvantage that it
leads to solutions which have an increasing length of their support. For some references on fuzzy equations and
applications of fuzzy dynamics, we in [19], [20], [21], [22], [23], and other recent works such as the study of some
topological properties and structure of the solutions to the initial valued problem for fuzzy differential systems (see
[10], [24]). We know quite clearly that, in [2, 6-13, 16-18, 21-28] the authors have investigated the some properties
of solutions of the local initial - valued problems for fuzzy differential equations (LIP for FDES):

D, x(t) = f(t,x(t)), x(t,)=x,E" (1.1)

where the symbol DH denotes the classical Hukuhara derivative.

In [16] the authors have studied FDEs under strongly generalized differentiability of fuzzy-number-valued
functions. In this case the derivative exists and the solution of a fuzzy differential equation may have decreasing
length of the support, but the uniqueness is lost. Therefore, our point is that the generalization of the concept of H -
differentiability can be of great help in study of local initial problems (LIP) for fuzzy differential equations under
generalized Hukuhara differentiability (see [21], [23]).

In this paper, we present the structure of solutions for fuzzy nonlocal initial problems, that means the properties
of solutions of NIP for FDEs under generalized Hukuhara differentiability:

Dl x(t) = f(t,x(t)), t... 0 x(0) =x, +h(t,t,t,,....t,X()) € E" vt t, (1.2)

where the symbol DgH denotes the generalized Hukuhara derivative.
It's clear that the NIP (1.2) is very different of LIP (1.1).
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The paper is organized as follows: in section 2, we recall some basic concepts and notations which are useful in

next sections. In sections 3 we present the properties of set solutions X(t) E" to the nonlocal initial problem for

fuzzy differential equations under generalized Hukuhara differentiability (NIP for FDES). In sections 4 we present
the some examples for simulation of these problems. In the last section, we give the conclusion and
acknowledgements.

2. Preliminaries
Let KX ([X") denote the collection of all nonempty, compact and convex subsets of " . Given

ABC KCC(I{-_" ), the Hausdorff distance between A and B is defined as follows:
d,, (A, B) = max{sup inéc

acA be

a—b‘ , su inf‘a—b‘ ,
R" beaeA R”}

wherel .l o denotes usual the Euclidean norm in 7. It is known that (K [®"),d,,) is a complete metric

space and if the space (K_.(IX"),d,,) is equipped with the natural algebraic operations of addition and nonegative

scalar multiplication, i.e. for A,B < K__(LIR" and A € [JR
A+B={a+blacAbeB} MA ={ralaeAl,

then KCC([}';_“D becomes a semilinear metric space which can be embedded as a complete cone into a
corresponding Banach space.

Denote E" = {w : (2" — [0,1] such that wsatisfies (i) - (iv) below,

(i) isnormal, i.e. there exists Z, € [R"ch that 03(20) =1

(i) ois fuzzy convex, ie. (Az, +(1-2)z,) > min{e(z,),(z,)}, for any O0<A <land
z,z, e &7

(iii) @is upper semicontinuous;

(iv) [of = c{z eR" : &(z) > O}is compact, where cl denotes the closure in (I27,|[||). The element
o € E" is called a fuzzy number or fuzzy set.

Theset [o]" ={z € E™: o(2) > o, 0 < a0 < 1} is called the o - level set.

For € E" one has that [o]* € K_ (I for every a € [0, 1].
B o 0
Forall O, a,, B,, 1then we have [(o] c [co] c [co] .

o o
For two fuzzy sets o, ®, € E", we denote ®,,, ®, ifand only if [031] (e [032] .
If g:R" x[R" —> ™ isa function then according to Zadeh's extension principle we can extend

g:E" xE" — E"by the formula g((;)l, 032)(2) = Sz.lp )min {col (21)’ o, (22)}. It is well known that if
z=9(2,,2,

g is continuous then [g(w, ®,)T" = g([o, I, [0,]), Vo, ®, € E", a [0, 1]. Especially for addition and
scalar multiplication in fuzzy number space we have:

Define H, : E" x E" — [0, o0) by the expression H [0, @,]= sup{d, ([o I, [0,]):0<a <1}
is the distance between ®,®, € E", where d,([o],[®]")is the Hausdorff distance between two set
[, T, [0,] = K_(R"). Itis easy to see H is a metric in E". In fact (E",H)is a complete space. Some
properties of metric H0 are as follows
H,[o, + o, o, + o,]=H [0, o,];
H Ao, Ao, ] A | H [0, o,];

H [0, 0,]< Do, o]+ H [0, o,],
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for every , ®,, 0, € E"and A € [ Let us denote 0" € E" the zero element of E" as follows

where O is the zero element of [ "

Let U,V € E". The set W e E" satisfying W = U + V is known as the geometric difference of the set u and
v and is denoted by the symbol u-v .

Let X Vy:[a,b]—>E"be a fuzzy function, that means [X(t)]" =[Xx(t, o), X(t, or)]and
y®)T =[y(t, o), ¥(t, &)], Vo € [0,1]. We say that

(i) scalar product AX(t)exists if [AX(1)]* = Ak, k € [X(1)] = Ax(1)[, vt e[t , T], @ €[0,1] ;

(ii) fuzzy product z(t) = X(t).y(t) exists if

2(t, &) = min {x(t, &).y(t, &), X(t, &) J(t, &), X(t, ). Y(t, &), X(t, @) Y(t, )}
2(t, &) = max {x(t, 00).y(t, o), X(t, 00).¥(t, o), X(t, 00).y(t, o), X(t, 00).5(t, 00)} .
Let X Y:[a,b]—>E"be a fuzzy function, that means [X(t)J" =[x(t, ), X(t, o)]and

YOI =[y(t, o), Y(t, )], Vo € [0,1]. We say that X(t) < y(t)if and only if satisfies one of the
followings:
a) X(t, o) > y(t, o), X(t, ), Y(t, &), Vt €[t , T] o € [0,1];

b)XMOI cy(OI', vt et Tl a €[01];
C) H,[x(1), 0], H,[y(t),0] vt t,, T]

Let X,V :[a,b] — E"be the fuzzy functions. We say that exist a geometric difference Hukuhara between
X(t) and y(t), if exist the fuzzy fuction z(t), such that:

x(©) 1 y(t) = 2(t) < x(t) = y(t) + (1)

Let X,y :[a,b] > E" be the fuzzy functions. We say that exist a general difference Hukuhara between x(t)
and y(t), if exist the fuzzy fuction z(t), such that:

(t) = v(t) = =z(t) [ ax(t)=y(t)+z(t) or

Xxit) = it =zlt) < - \ .

e VTR T b y(0) = x(8) + (<1)a(t)

Let X : [a,b]— E" be a fuzzy function, that means X(OT =[x(t, o), X(t, )], Vo € [0,1]. We say that

a fuzzy function x is first type Hukuhara differentiable (classical Hukuhara differentiable) at t_ < [a, b]if there

exists an element D_X(t ) € E" such that the limits exists

lim h7™(x(t, +h)@x(t,]) and lim h7'(x(t,) @ x(t, —h)) = Dix(t) (1)
h—l”

h—0"

Here the limits are taken in the metric space (E”, HO) and at boundary points we consider only the one-side
derivatives.

Let X :[a,b] — E"andt € (a,b). We say that fuzzy function x is generalized Hukuhara differentable at t,
if there exists DY, x(t) € E", such that either

Iy

(H9) for all h > 0 sufficiently small, the H- differences, };{t +h| 2 =x(t),x(t) 2 x(t-h). D;}:(ﬂ =E”

exist and the limits (in the metric H):
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:\:{t—h}E:\:['} }:{‘r:lifi}:{t-—hj
limH : fﬂ = J]mH .D;}:(Tj =0,
rh0 h B0 h
of

(H)for all h = 0 sufficiently small. the H- differences \[‘r:l S x(t+ h),x(t — h) 2 x(t). ]::1'g x(t) e E°
exist and the limits

x(t) 2 x(t +h) x|t —h)2=x(t)
lim H - JDix(t) | =lim H : ,DEx(t) [=0

h \;G —h . h \;u —h

1
L
—
=+

or
(H=*)for all h = 0 sufficiently small. the H- differences x(t+ h) @ x(t),x(t) @ x(t — h), Dix(t) € E”

exist and the limits

:{{t—h}f\:t }:{‘r—h}E}:ﬁ-]
lim H - Dox(t) | = lim H, - ,Dgx(t)[=0
B0 h ' b0t —h '
or

(H**)for all h = 0 sufficiently small. the H- differences x(t) @ x(t + h),x(t - h) D =(t), Dix(t) € E”
exist and the limits

x(t) @ x(t+h) x(t)© x(t — h)
hm H - ,Dx(t) |=ImH, ,DEx(t)| =0

h \,.l] —h h \.U h

In this definition, case (Hgl) corresponds to the classic H-derivative, so this differentiability concept is a

generalization of the Hukuhara derivative D}, X(t) € E"and [D},x(t)]* = [X'(t, &), X'(t, &)]. In this paper we

consider only the two first generalized H- differentiabilities. In the other cases, the derivative is trivial because it is
reduced to a crisp element.

3. Main Results

3.1. The Existence and Uniqueness of Solutions to the NIP
Definition 3.1 [Nonlocal initial problems for fuzzy differential equations] Let's conside the nonlocal initial
problems for fuzzy differential equations (NIP for FDES) under generalized Hukuhara differentiability:

Dlx(t) = f(t,x(1), t... 0 x(0) =x, +h(t,t,t,....t,x()) €E" Vit (3.1)
wheref,h : [0, T]xE" — E"are fuzzy continuous multifunctions, fuzzy state set X(t) € E",

te[0TLO<t, <t, <. <t < T,x, € E". The symbol h(t ,t tp,x(-)) is used in the sence

1’ 72° 3’

that in the place of (-), such that x(0) = x, +h(t,,t tp,x(~)) € E" plays as the nonlocal conditions

172 3’
and we can substitute only elements of the set {tl, tz, - tp} .
Definition 3.2 [Fuzzy solution] The fuzzy mapping set X(t) € C'[[0, T], E"] is said to be a solution of NIP for
FDEs (3.1) on [0,T] if it satisfies (3.1) with generalized Hukuhara derivative D, X(t) € E" by tand it is presented

by:
t

X(1) = X, + h(t, tty, ot x()) + [£(sx(s))ds (3.2)
0

if xis (H9) - differentiable, or

X(8) = X, + h(ty, t t,t,X())E (—1)(jf(s,x(s))ds) (3.3)
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if xis (H%) - differentiable.

A solution of the Hukuhara integral equations (3.2) (or (3.3)) is equivalent a solution of the NIP for FDEs (3.1)
on [0,T].

Assume that the fuzzy functions f : [O,TJ cE™ 5> E" h:[0, TP xE" — E"satisfy the following

hypotheses:
(hf) There exists a function C, > Osuch that:

H,[f(t, X(1)),0"],, c(1+H, [x(t), e"]), vt [0, T]x(t) eE";
(hh) There exists a constant M>0 such that:
Hlh(t,, t, tg,.. t,x(1)),0"], M0 <t <t, <..<t,, T,x()eE"

n n . —_— .
Theorem 3.1 LetX, € E"andH [X,0"], M withM, eZ™. If thef(t,x(t))are  fuzzy continuous

multifunctions and the nonlocal conditionsh(tl,tz,t3, tp,x(-)) satisfy the hypotheses (hf) - (hh), then the

nonlocal nitial problems for FDEs (3.1) has the unigue solution in E" . Furthermore:
Let the sequence{X, ., } : [t,, t, + 9] — E" given by

(D) =x, +h(t,t,,t,,. tp,xk(-)) Jrj-f(s,xk (s))ds, (3.4)

is well-defined for any k = {0,1,2,..}. Then the problem (3.1) has a unique fuzzy solution which is(Hgl)-
differentiable on [0,T].

Let the sequence{X, ., } : [t,, t, + 9] — E" given by

X 1(1) = Xg +h(t et X, (D)2 (—1)(jf(s,xk(s))ds) (3.5)

is well-defined for any k = {0,1,2,..}. Then the NIP (3.1) has a unique fuzzy solution which is(ng) - differentiable
on [0, T].

Proof: By inductive method, obtaining for t [t ,t, +r]we infer that the sequence X, (t)is uniformly

0'"0
convergences to x(t).

Lemma 3.1 Let x(t) fuzzy continuous multifunctions on the oo — level, such that

[x(t)] = [g“(t),)‘(“(t)], Vo e[01] (3.6)
(i) 1 x () is (H®) - differentiable then [Dﬁix(t)T - [5’“(t),i'“(t)}; 3.7)
(ii) I x (t) is (H®) - differentiable then [Dng(t)T - [x’“(t),g’“(t)]. (3.8)

Proof: By definitions of (H%")and (H%) of the fuzzy continuous multifunctions on the o — level.
Theorem 3.2 If the x(t), f(t,x(t)) are fuzzy continuous multifunctions on the oo — level and the nonlocalconditions

h(t,t,,t.,. tp,x(-)) satisfy the hypotheses (hf), (hh) then the NIP for FDEs (3.1) has the unique solution in

E". Furthermore:
Let system ordinary differential equations:

X (1) =1t x"(1), x*(1))

o' a 3 (x (39)
XP(1) = AL x (1), X(1))
and system ordinary differential equations:
X7 (1) = (L x*(1), X*(1))
(3.10)

R = (X" (1), X))
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with the initial conditons x(0) = x, + h(tl,tz,tg,...,tp,x( *)) € E" have the unique solutions, then theproblem

(3.1) has a unique fuzzy solution[x(t)JOL =[§°‘(t),)_(°‘(t)](for each o EI:O,].]), which is generalized

Hukuhara differentiable on [0, T].
Proof: Replacing the NIP for FDEs (3.1) by two systems of ordinary differential equations (3.9) - (3.10) for the

fuzzy continuous multifunctions on the o —level, we have a unique fuzzy solution [X(t)]a = [ga(t), )_(“(t):|

(foreach o € [O, 1] ywhich is generalized Hukuhara differentiable on [0,T].

3.2.The Boundedness of Solutions to the NIP
Definition 3.3 [The boundedness of solutions] A fuzzy solution X(t) € E" of NIP for FDEs (3.1) is called:
(1) B-bounded if there exists positive constant K such that

H [x(t),0"], Kforall t [0, T].

(i) EB- bounded if there exists positive constant K such that
n (-B.t)
H, [x(),0"], Ke™", vt €[0,T]

Lemma 3.3 [The extension of Gronwall - Bellman inequality] Assume that the real functions

t
r(t)>0,2>0,b>00n[0,T |satisfyr(t) <a+b j r(s)ds thenr(t) < a.exp(bt).
0

Theorem 33 Let X, € E"andH [x,0"], M withM, € L™ If the fuzzy function f(tx(t)) satisfies the
hypotheses (hf) and the nonlocal conditionsh(t,, t,, t.,..., t, x(-)) satisfy the hypotheses (hh), then the NIP for
FDEs (3.1) has the unique B- bounded solutionin E".

Proof: (a) Problems of existence and uniqueness are clear.
(b) Problem of (B)- bounded are proved by integral expression (3.2) following

— - t

H,| x(t).0" | = H, {xo Rttt t, X, () + [£(sx(s))ds, e”} .
- - 0

By assumptions (hf), by Lemma 3.1, and by hypotheses (hf) — (hh) we obtain

Hy | X(t),0" [ Hy[ %0, 0" [+ M+ |t£(1+ Ho[X(s). 0" ])ds

, Ho[xo,en_ +M+ 1t + Ij'Ho[x(s),e”}ds
N 0
Putting r(t) = H, [X (t), 9”],a =H, [XO, 6”] +M +1T,b =l and by Lemma 3.3, we obtain
r(t) = H, [x(t), e”},, (H0 [%,,0" [+ M+ |T))exp(|T)
Choosing K = (HO [XO,G”JJr M + IT))eXp(IT), we have sup H, [X(t),@"] » K.Vt e[0,T] and

t€[0,T]
the proof of Theorem 3.3 is completed.

Theorem 3.4. Assume that the positive Lyapunov - like functionVV € C[[R x E", @ |which satisfies the

following conditions:
()] V(t,x(t)) — V(t, X(t)) | < L(H [x(t), X(t)]) whereL is bounded Lipschitz constant, for all

X(t), X(t) € E", b(t, H,[x(t), "] < V(t, x(t)) <a(t,H [x(t),6"1),(t,X) € B_x S(r) where

b(.), a(t, .) are increasing functions;

(i) D*V(t, (1)) = lim sup 1{v(t + 1, x(t) + Tf(L, X(1))) — V(t X(1) } < a(t, V(L X(1))) .
10" T
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where g € C[R'_E] g(t,0) =0, Vvt R
al If g(t, V(t, x(t))) <0, vt >t then fuzzy set solution X(t) € E" of NIP for FDEs (3.1) is (B).

b/ 1f g(t, V(t, X(t))) <O, Vt >t orifg(t, V(t,X(t))) < —BV, Vt >t then fuzzy solution X(t) € E"
of NIP for FDEs (3.1) is (EB).
Proof: Setting the function m(t) = V(t, X(t)), we have

D*m(t) = D*V(t, x(t)) = lim sup 1{v(t + 1, x(t) + Tt X(1)) ) = V(t, x(1)) } < o(t, V(t, X(1))),
10" T
so D'm(t) < g(t,m(t)), implies that m(t ) <W,.
: : : : . dW
Since m(t) <r(t,, W,,t) where r(t,, W, t) is maximal solution of scarlarequation o = g(t, W), then
V(L x(t)) < V(t, %,).
Let 0 <& <r,t, €l _begiven Choose 8 = J(t,,€)such that a(t,, 5) < b(e). We claim that with this
d then (B)- bounded solution. If not, there exists solution X(t) = X(t, X, t) of the NIP for FDEs (3.1) and
t, >t suchthat H [u(t,),0"]=¢ and H [x(1),0"]<e<r t <t <t,.
Wherever H [X , 0"] < Sbecause V(t, X(t)) < V(t,,X,), t, <t <t then
b(e) = b(H [x(t,),0"]) < V(t,, x(t))) < V(t,,x,) <a(t,H[x,0"]) <a(t,,d) < b(e)
this contradiction proves that the fuzzy set solution X(t) € E" is B- bounded.

In the case, if g(t,V(t,x(t))) <O@r D "V(t,x(t)) <—BV(t,x(t))) then we have

V(t, x(t)) < V(t, X,), Vt >t and the fuzzy set solution is (B).
We need prove that tIim H,[x(t),6"1=0. we consider D"V(t,x(t)) <—-BV(t,x(t))then
V(t, x(1)) < V(t,, XO).e[fﬁ(tft")], vt>t,.If (BE) is not true,  given g, we  choose

a(t,o

T=T(t,¢,) =l|n (t,,9)
B b(ey)
b(H,[x(), 0"]) < V(t,x(t)) <a(t,,8).e ™ <b(e), vt =t +T

+ 1 then

this contradiction proves that the fuzzy set solution X(t) € E" is EB- bounded.

3.3. The Comparisons of Solutions to the NIPs
We consider nonlocal initial problems — NIP for two FDEs type (3.1):

Dl x(t) = f(t,x(t)), t... 0 x(0) =x, +h(t,t,t,,....t1,X()) € E" vt t, (3.11)
Dl x(t) = f(t,x(1)), t...0 x(0) =x, +h(t,t,t,,....t1,X()) € E" vt t,
(3.12)

where fj [0, T]<xE" — E"is fuzzy continuous multifunctions, fuzzy state set X(t),y(t) e E",

h:[0, TP x E" — E"is fuzzy continuous multifunctions and
te[0T]O<t, <t, <..<t <t<T,x €E"
p 0

The symbol h(t,,t

2,‘[3,...,tp,x(-)) is used in the sence that in the place of (-)we can substitute only

elements of the set {tl, | S tp},j =12.

T C . .
Theorem 3.5 Assume that, H [X(0), y(0)] < & and for(t,x) €lE_ x S°(r), the fuzyy mappings fJ. satisfy the

following conditions:
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t t t
H, Ifl(s, x(s)ds,jfz(s,y(s))ds SLT]I H,[X(s), y(s)HswhereL is bounded constant, for all
t0 tO t0

X(t),y(t) e E"andt € I | then we have the following estimation:

H (1), Y(D] < (8, + 7). exp[Ln(t — t,)] (3.13)
Proof: Proof of the Theorem 3.5 by ussing the Gronwall- Bellman's Lemma for estimation of supper distance H0 .

3.4. The Global Existence and Uniqueness of Solutions to the NIP
Next, we shall establish the global existence and uniqueness of solutions to the NIP for FDEs (3.1).
Theorem 3.6 Assume that the assumptions of Theorem3.4 hold. In addition, assume ellse the fuzzyfunction

f e C(E™xE",E") satisfy that H[f(t, x), f(t, y)]1< g(t, H_[x, y]) for x(t), y(t) € E"andw(t) = Ois only
solution of

?j_\iv = g(t,w), w(0) =0 (3.14)

for t > 0. Then the NIP for FDEs (3.1) has a unique solution on[O, oo) for each ng, j =1, 2 case.
Proof: We prove that for the case of (ng)— differentiability, the proof of the other case is similar. Since

X(t), y(t) € E"aresolutions to the NIP for FDEs (3.1), we have: for h > 0, small enough, there exist the
Hukuharadifference X(t —h) = x(t), y(t —h) = y(t). Now for t € &7, setting m(t) =H, [X (t), y(t)}

we have:

m(t—h) —m(t) = H, [x(t—h), y(t—h)} - H, [x(t), y(t)}

< H[X(t — h), X(t) + (~D)hf(t, x(t))] + Ho[x(t) + (<2)he (6 x (1)), y () + (-2 e (¢ y(t))}
< H [(t —h), x(t) + (=Dhf(t, x(t))]+ H [y(t) + (-Dhf(t, y(1)), y(t — h)]

+ hHO[f (x(1)), f(t’y(t)ﬂ

from which we get

m(t — hg —m(t) < HO[X(t - h_)hf X(t) it X(t))]+ Ho[f(t, y(), y(t — h_)hf y(t)]

+H [f(t, x(1)), f(t, y(t))]
Taking liminfas h — O yields

D m(t) = lim inf%[m (t-h)- m(t)] <ot Hx yD =gt m,|)

h—0*

which together with the fact that HO[(pO, \po] < X,and by using Theorem 3.3 and Theorem 3.4 we obtain
H, [x(t), y(t)]<r(t, t,x,), t =1, .Theproofiscomplete.

Corollary 3.1.Under assumptions of Theorem3.4, if we suppose in addition that there exists L > 0 such that
H,[f(t, x), f(t,y)]1 < LH_[X, y], then fort > Othe NIP for FDEs (3.1) has a unique solution on [0, o) . for

each HY, j=12.

3.5. The Stability Properties of Trivial Solutions to the NIP
Assume that NIP for FDEs (3.1) has the trivial set solutionV(t) thatmeansf(t,v(t)) =0". Put

S(r) ={u(t) € E" : H [u(t), 6"] < r} - neighbourhood of the zero set point.
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Definition 3.4 [Stability of solutions by Lyapunov's mean] The trivial set solution 0" of NIP for FDEs (3.1) is
said to be:

(LS) stable by Lyapunov's mean if for each & > Oand t > 0, there exists a & = &(0, €) such that H [x,,0"]< &
implies H_[x(t),0"]<efort > 0.
(ALS) asymptotically stable by Lyapunov's mean if it is stable and lim H [x(t),0"]=0.
t—+o0

(ELS) exponentially stable by Lyapunov's mean if H [x(t),6"]< B(H [X,, 0"], 0)exp[-a(t)],t > 0.
where B(H,[.,.]1.0) : [0, 1]x E_— I _
Theorem 3.7 Assume that the positive Lyapunov - like functionV e C[ x E", 2 Jwhich satisfies the
following conditions:

)| V(t,x(t) — V(t, X(t)) [< LH [X(t), X(t)]where L is bounded Lipschizt constant, for all

X(t),X(t) eE"and t e L
i) b(H,[x(t),6"]) < V(t,x(t)) <a(t,H [x(t), 0"]) for(t, X) e R x S(r) whereb(.),a(t,.) are
increassing functions; i

iy D*V(t, x(t)) = lim sup 1{v(t + 1, x(t) + Tt X(1))) — V(t, X(1) } < o(t, V(t, X(1)))
10" T

whereg € C[[R., ] g(t,0) = Ofor all x(t) € E"andt e (R, _

a/ 1fg(t, V(t, X)) < 0, Vt > Othen a trivial set solution of NIP for FDEs (3.1) is (LS).
b/ 1f g(t, V(t, x(t))) <0, vt > 0 (or if g(t, V(t,x(t))) < —BV, Vt > Othen atrivial set solution of NIP
for FDEs (\ref{eq3.1}) is (ALS).

Proof: Setting the function m(t) =V (t, X(t)) , we have

D*m(t) = D*V(t,x(t)) = lim sup 1{v(t + 1, x(t) + (L, X(1))) ) - V(t, X(1) } < o(t, V(L X(1))).
1—0" T

soD'm(t) < g(t, m(t)) implies that m(0) <W,. Since m(t) < r(0, W,, t) where r(0, W, t)is maximal

w
solution of scarlarequation dd_t = g(t, W), then V(t, x(t)) < V(0,x,).
Let 0<e<r,0el] begiven Choosea & = 5(0, €)such that a(0, 5) < b(e) . We claim that with this &

then (LS) holds. If not, there is exists X(t) = X(0,X,,t) of NIP (3.1) and t, > Osuchthat H [x(t,),0"]=¢

01
andH [X(t),0"]< e <r 0 <t <t Wherenever H [x,.0"]1<3, because
V(t, x(1)) <V(0,x,),0 <t <t then
b(e) = b(H,[x(t,),0"]) < V(t, x(t,)) <V(0,x,) <a(0,H[x,6"]) <a(0,3) < b(e),
this contradiction proves that (LS) holds.

In the case, if Q(t,V(t,x(t))) <O@r D"V(t,x(t)) <-—BV(t,X(t))) then we have
V(t, x(t)) < V(0,%x,), vt > 0and the trivial set solution is (LS). We need prove that
tIim H,[x(t),0"]=0

We consider D*V/(t, X(t)) < —BV(t, x(t)) then V(t, x(t)) < V(O, XO).e[_B(t)], vt > 0.

a(0,90)
b(e

+1 then

1
If (ALS) is not holded, given €, we choose T =T(0,¢ ) = E In
0
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b(H, [X(t), ") < V(t,x(t)) <a(0,8).e"* M <b(e), vt > T,
this contradiction proves that (ALS) holds.

Theorem 3.8: Assume that the positive Lyapunov - like function V€ CJ[lJ ;-*;_ "0 _3;_ tisfies thefollowings:

()] V(t, x(1)) — V(t, x(1)) |< L.H,[X(t), x(t)]) where L is bounded Lipschizt constant, for all
X(t),X(t) eE"and t e & _;

(i) In (1), A, (1), A, (1), p, g > O where A (t) increassing function such that

A (OH [X(1),0"F < V(t, x(t)) < A (t)H [x(t),0"T ;

(ii)) D*V(t, x(t)) < —AH [X(t),0"F + K™, vt >0, x(t) eE" , {6"};

(iv) o> mf{

tell, [7\, (t)]llq}
V) V(t, x(t)) = [V(t, x(1) ]9, ye* wheres, K, 1,7, 8 > 0,
then a trivial set solution of NIP for FDEs (3.1) is (ELS).

Definition 3.5 [ Stability of solutions] The trivial fuzzy solution of the NIP for FDEs (3.1) is said to be:
(S1)] equi-stable of for each & > Oand t > Othere exists a & = &(t, €) such that H [X, 0"]< & implies

n .
H [x(1),0"]<efort > t ;
(S2) uniformly stable, if the $\delta$ in (S1) is independent of t ;
(S3) quasi-equi-asymptotically stable, if for each & > 0,t | > Othereexista T = T(t,,€)and 5 = 5,(t,) such
n - - n .
that H [X,,0"] < & implies H [X(t),0"]<g VvVt >t +T;

(S4) quasi-uniformly asymptotically stable, if 80 = 60(t0) and T in (S3) are independent of tO;

(S5) equi-asymptotically stable, if (S1) and (S3) hold simultaneously;
(S6) uniformly asymptotically stable, if (S2) and (S4) hold simultaneously;

(S7) exponentially asymptotically stable, if H [X(t),0"]< B(H [x,, 0"],0)exp[-y.t)],t >0
where B(H,[.,.1.0) : [0, 1]xR_—> & .

Remark 3.1: According to the Definition 3.4 and Definition 3.5, we have:

(S1) < (LS).

(S6) < (ALS).

(S7) < (ELS).

(S6) or (ALS) = (S3).

(S6) or (ALS) = (S4).

We have to prove (S2) and (S6).

Theorem 3.9: Assume that the positive Lyapunov - like function V € C[1 It _:", 0 I _ tisfies the followings:
() | V(t, x(1)) — V(t, x(1)) |< L.H,[X(t), X(t) Jwhere L is bounded Lipschitz constant, for allt & [T

i) b(H, [x(t),6"]) < V(t, x(1)) <a(t,H [x(t),0"]), for (t,X(t)) €R_ x S(r) where
b(.),a(t,.) are increasing functions;
(i) D*V(t, (1)) = lim sup T{V(t + 7 x(t) + <t x(8)) + DLOTE, x(B)) + MOXDT) = V(t, x(1)
10" T

< g(t, V(t, u(t)))
whereg € CJIE_xE | (1],9(t,0) =0, vX(t) € E"and t € [ _ Further more

al 1f g(t, V(t, X(t))) < 0,Vt >t then (S2) holds.
b/ Ifg(t, V(t, x(1))) < 0,Vt > t_(orifg(t, V(t, x(t))) < —c(H [X(t),6"]), Vt >t ) then (S6) holds.
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Proof: The condition (iii) with &/ ( or b/) guarantees that V/(t, X(t))) < V(0,X(t,))), vVt > t,.
al Let Ve >0,Vt >t . Choose &= (g such that a(t,,8) <b(e) and H [x(t,),0"]< 3, implies that
H,[X(t), 0" ] < & that means (S2) holds.

If it is not true, then V& > 0, 3¢ (8) > Sand a(t,, 6) < b(e) such that X(t) = X(t,, X, t) is a set solution
of (3.1), which satisfies H [X(t),0"]> & . On the other hand, we have
b(3) < b(e,) = b(H,[x(t),6"]) < b(H,[x(t), 0"]) < V(t, x(t)) <

<V(t, x,) <alt, (H,[x(t,), 0" < a(t,, H [x(t,), 6"]) = a(0,8) < b(d)
This contradiction proves (S2).
b/ 1f g(t, V(t, X(t))) < —c(H, [x(t), 0"]), vt >t we have (S2), that means
Ve > 0,38(g), vt >t  H [X(t,),0"]< 3 impliesthat H [x(t),0"]<¢e Vt >t
a(t ,d)
Suppose that (S6) doesn't hold, that means V3 > 0,3g(3) =, > 8, 3T =1+ —>—
c.e
0

such that H [x(t),0"]> ¢, Vt €[t , T].Since g(t, V(t, x(t))) < —c(H[x(t),0"]), vt >t then
V(t, x(t)) < V(t,, x(t,)) - Cj. H [x(), 0" [t, vt e [t,, T]implies

0 < V(T,x(T)) <a(t,,d) —ce,.T < 0This contradiction proves (S6).

4. lllustrations

4.1 Example
We have an example for the change of oxygen concentration in water by classical equations:
X'(t) = =Kx(t), x(0) = x,, t €[0,100] (4.1)

where, x (t)- oxygen levels of concentration by mg / liter; K- Solubility coefficient under certain cut, usually taken
0.038mg/day; x (0) - oxygen concentration - local initial condition.
In [24] the authors repeat (4.1) by the model of LIP for FDEs:

DX, (t) = —Kx, (), x(0) =[20 + 0,110 — o] t & [o, 100] 4.2)

where X _(t) =[x _(t),X_(t)].
Indeed, measurements of the levels x (t) is fuzzy, that means X _(t) =[x (t),X_(t)] because it depends on

many factors: humidity, wind, traffic flow and accuracy of measuring equipment: commonly used measurement
time is 100 days.

Let us consider example (4.2) by the following nonlocal initial problem for the fuzzy differential equation (NIP
for FDEs):

DX (t) = —Kx(t) 43)
0) = x_(0) + = x_(20) + = x_(40 Ly (t

x( )—xa()+§xa( )+2—2xa( )+...+2—pxa( ) (4.4)

vt <tx, (0)=[-1+ol-a}aec[0l]te[0T] (45)

x (T) - a final concentration oxygen levels achieved 0.625mg / liter.

Case 1. Suppose that x(t) in initial problem for level fuzzy differential equation (4.3) with nonlocal conditions (4.4)
- (45) is first type Hukuhara differentiable (H®'). Because x is (H®) - differentiable, then
t) = 0 1 20 L 40 L t tf ds, vt >t 4.6

x()—xa()+§xa( )+§xa( )+...+2—pxu( p)+£ (s,x(s)) sVt>t . (4.6)

On the other hands, by Lemma 3.2, we get [X ()] = —K[(x] (1)), (X; (t))] that means:
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ro _ o
Xl (t) - _K)_(]_ (t)
X(t) =-KXx{(t)
We have the fuzzy solution of nonlocal initial problem - NIP (4.3) - (4.5) under first type of Hukuhara
differentiable (H®): [x(1)T =[x*(0)e ™, x*(0)e ™' ]. Finally, we have a solution that is (H%)-

differentiable ~ x(t) =[x _(0) + %XQ(ZO) + Zizxa(40) +...+ Zipxa(tp)]e“, Vi>t 4.7)

1 1 1
x(o) =x_(0) + EXQ(ZO) + 2—2xa(40) TR Z—pxa(tp), vt <t,

X, (O) =[-1+o,1l-a]a€[01]t e [O, T] , X(T) = 0.625mg/liter.
Case 2. Suppose that x(t) in nonlocal initial - value problem for level fuzzy differential equation (4.3) - (4.3) is
second type Hukuhara differentiable (H%) . Because x is (H) - differentiable, then

X(t) =x, + h(tl,tz,t3,...,tp,x(-)) I (-1) (jf(s,x(s))ds) , that means
x(t) = x_(0) + %xa(m) + Zizxa(40) bt Zipxa(tp) I (-1 (If (sx(s))ds) vt >, @8

1 1 1
x(0) =x,(0) + 5 X0+ %, (40) 4 DX (1), VE > 8

X, (O) =[-1+a,1l-a}a e€[01],t e [0, T], x(T) = 0.325mg/liter.
Therefore we have the fuzzy solution of nonlocal initial problem - NIP (4.3) - (4.5) under second type of Hukuhara
differentiable (H%)

[X,(O = [-K(-1 + o)x(0)cost, — K(1 — a)x(0)sint], x(0) = [x(0), X(0)], (4.9)
1 1 1

x(o) =x_(0) +§xa(20) +2—2xa(40) .. +2—pxu(tp),w >tX, (o) =[-l+al-o)aec[0l]te [o,T]

Remark 4.1: The fuzzy solution of nonlocal initial problem - NIP (4.3) - (4.5) exists in only case 1, that means

solution in form (4.7) because the change of oxygen concentration in water is increased with time.
We have this numerical simulation solution, when K = 0.038, o = 0.5

x(0) = [—0.5; +0.5] =X,(0)
X,5(20) = X, (0)e ™ =[-0.5,+0.5 |e ™"
X(0) = -0.5,+0.5 | + %[—0.5; +0.5 e = x,(0)
X,5(40) = X(0)e ** = x,(0)e "
_ 1 1 ~
X(0) = | -0.5+0.5 |+ Ex0_5(20) s X, 5(40) = x,(0)
X,5(60) = x,(0)e™® =x,(0)e™*"
x(0) = X, ,(0) + %xo_s(zo) ' Z%Xo.s(‘lo) ' Z%XO.S(GO) = %,(0) ..

1 1 1 1
X(80) = x,.(0) + EXO_S(ZO) + 2—2xo_5(40) + 2—3xo_5(60) + 2—5x0.5(80)
X(T)=0.625mg/liter
We have this numerical simulation solution, when K= 0.038, o. = 0.5 shown in Fig.1, and when
K =0.038, oo = 0.75 that shown in Fig.2
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Fig-1. Solution of Example (4.3) - (4.5) in the case 1 when o = 0.5
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Fig-2.Solution of Example (4.3) - (4.5) in the case 1 when o = 0.75.
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We have this numerical simulation solution, when K = 0.038, oo = 0.5that shown in Fig.3, and when when K
=0.038, oo = 0.75 shown in Fig.4(in 3D).

Fig-3.Solution of Example (4.3) - (4.5) in the case 1 when oo = 0.5

o

0.5

-0.5)

Fig-4. Solution of Example (4.3) - (4.5) in the case 1 when o = 0.75.
A X(t)

4.2 Example

We have an example for the change of chemical toxic concentrations in the air, that depends continuously on

each measurement point. Let us consider example (4.1) by the following nonlocal initial problem for the fuzzy
differential equation (NIP for FDES):
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DX (t) = —yx(t) (4.10)
1 1 1
x(0) =x,(0) - 5%.10) - 2—2xa(20) — Z—pxa(tp), t, <t (4.11)

X (O) —[l+ol-alac[0l]te [0, T] , with y = 0.0025 mg/day, x(T)=0.005mg/m?®  (4.12)

Because X(t) € E*iso- level fuzzy such that according Lemma 3.2: [DYx()T* =[x “(t), X"*(1)], and by

two types of Hukuhara derivative (H®")and (H) then the level fuzzy differential equation (4.10) is similar the

followings:
Case 1. Suppose that x(t) in nonlocal initial problem - NIP (4.10) - (4.12) is first type of Hukuhara differentiable

(H®") by Lemma 3.2, we get X.(OT = —v(x] (1), (X](t))'], that means:

X (1) =-yxi(t)

X() = -1x; ()
We have the fuzzy solution of nonlocal initial problem - NIP (4.10) - (4.12) under first type of
Hukuharadifferentiable (H%"): X OF =[(-1+ a)e ™, (1-o)e™]

1 1 1

x(0) =x,(0) —Exa(lo) —2—2xa(20) —. —2—pxa(tp),tp <t
X,(0)=[-1+al-0}ae[01te[0T |y =0012mg/ m*x(T) = 0.005mg/ m’
Case 2. Suppose that x(t) in nonlocal initial problem - NIP (4.10) - (4.12) is second type of Hukuhara differentiable
Xy (1) =—yX3(t)
X, (1) =—yx;(t)
Therefore we have the fuzzy solution of nonlocal initial problem - NIP (4.10) - (4.13) under second type of
Hukuharadifferentiable (H%):

(H%), and by Lemma 3.2, we get {

X(OT = [-y(=1 + o)x(0)cost, — v(1 — c)X(0)sint], X (o) = [x(0), X(0)], (4.13)
1 1 1
x(0) =x,(0) - 5%.10) - 2—2xa(20) — Z—pxa(tp), t, <t, (4.14)

x,(0)=[-1+al-0}ae[01t e[0T |y=00025mg/ day,x(T) =0.005mg/ m"

Remark 4.2: The fuzzy solution of nonlocal initial problem - NIP (4.10) - (4.12) exists in only case 2, that means
solution in form (4.13) - (4.14) because the change of oxygen concentration in the air is descreased with time T =
04 days.

We have this numerical simulation solution, when y = 0.0025mg/ day, o = 0.25that shown in Fig.5and

when when T=4 days, v = 0.0025mg/ day, a. = 0.25 shown in Fig.6

Fig-5.Solution of Example (4.10) - (4.12) in the case 2 when o = 0.25
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Fig-6.Solution of Example (4.10) - (4.12) in the case 2 when o, = 0.50
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We have this numerical simulation solution, when y = 0.0025 mg/day, oo = 0.25 that shown in Fig.7and when
when T=4 days, y=0.0025 mg/day, o = 0.50 shown in Fig.8(in 3D).

Fig-7. Solution of Example (4.10) - (4.12) in the case 2 when o = 0.25
S X(t)

Fig-8. Solution of Example (4.10) - (4.12) in the case 2 when oo = 0.50.
x(t)

5. Conclusion

In this work, the existence, uniqueness, boundedness and stability by mapping of fuzzy solutions x(t) € E"
of the nonlocal initial problems (NIP) for fuzzy differential equations were investigated by the supper distance
between fuzzy sets. To illustrate this NIP we consider two examples of water-soluble oxyzen volume and
concentration of harmful substances in the air. Similarly, these two examples, we can examine the problem of
moisture in the air, the concentration of drug in the human being, etc...
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