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1. Introduction 
Angiogenesis is a morphogenic process whereby new blood vessels are induced to grow out of a pre-existing 

vasculature. It is also an important feature of various pathological processes such as wound healing and cancer 

progression. Angiogenesis is known to occur in three sequential steps [1]. First, the endothelial cells lining the 

vascular basal lamina (BL) (or basement membrane) degrade this membrane. Second, the endothelial cells migrate 

and proliferate (via mitosis) into the ECM. Finally, capillary loops form. Studies [2-7] show that the tumor releases 

certain chemical known as tumor angiogenesis factor (TAF). This stimulates the endothelial cells (EC) in 

neighboring capillaries to migrate toward the tumor. 

There have been many mathematical [8-11] describing and analyzing tumor angiogenesis mechanisms in one or 

more space dimensions. In our work we assume a capillary wall is located at an interval         on the   axis and a 

TAF source is located at a subinterval of the line     . We imagine the tumor vascularization problem as shown in 

Figure 1.  We rescale   by    
⁄  and y by 

 
  

⁄ , so that this rectangle becomes a unit square [12-14]. Therefore we 

now have           Basically, the problem consists of two parts; the dynamics on the y axis (1D problem over 

the capillary) and the dynamics in the unit square (2D problem in the ECM). We couple those two dynamics via 

some boundary conditions [13, 14]. In this paper we only present a mathematical analysis for EC density equation in 

ECM. The analysis for the first problem was done in Pamuk [12]. 

 
Figure-1. Extra cellular matrix 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

  

Abstract: This paper is an extension of the work done in [S. Pamuk, Qualitative Analysis of a Mathematical 

Model for Capillary Formation in Tumor Angiogenesis, Math. Models Methods Appl. Sci. 13 (1) (2003) 19-33] 

to a further 2D-mathematical analysis of a model for tumor angiogenesis in the absence of endothelial cell 

proliferation term. We actually obtain the long time dynamics of endothelial cells in the extra cellular matrix 

under some assumptions and using the results of a 1D-mathematical analysis. Also, the stability of the steady-

state solution is studied. Some figures obtained from the numerical results are presented. 

Keywords: Angiogenesis; Long-time dynamics; Steady-state solution; Mathematical analysis. 
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In Pamuk [12] a 1D - mathematical analysis has been presented for the endothelial cell (EC) equation (over the 

capillary) [15-17] with no proliferation term:  
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))                                          

The construction of this equation may be found in Davis [18] using the reinforced random work idea. Here     

is the EC diffusion coefficient over the capillary,          is the endothelial cell density,          is the 

enzyme density,          is the fibronectin density, a large highly adhesive glycoprotein particularly abundant in 

plasma, connective tissue matrices, and basement membranes [19], and          is the so called transition 

probability function. In Pamuk [12] the authors have shown that                          under the assumptions 

that enzyme and fibronectin densities are in quasi-steady state, i.e.,           and          are time 

independent. Here   is a positive constant. 

Biologically it means that as        endothelial cells tend to the transition probability  function of enzyme and 

fibronectin the EC diffusion coefficient over the capillary,          is the EC density,          is the enzyme 

density,          is the fibronection density, a large highly adhesive glycoprotein particularly abundant in plasma, 

connective tissue matrices, and basement membranes [19], and         is the transition probability function. In 

Pamuk [12] the authors have  shown that                       where        and        are in quasi-steady 

state, i.e. they are time independent. Here    is a positive constant. 

Biologically, it means that when     EC close to the transition probability function of enzyme and fibronection. 

In this paper we present a 2D - mathematical analysis for the dynamics of EC equation in the extra cellular matrix 

(ECM). We have the following equation for EC in two dimensions 
  

  
     (    (

 

       
))                                                                                

with the following initial and boundary conditions 
                                                                      

                                                                                         
                                                                                      
                                                                                                
                                                                                    

                            

 

Here    is the EC diffusion coefficient,            is the EC density,            is the enzyme density, 

           is the fibronection density,         is  the EC density over the capillary,         is the so called 

transition probability function, and  

   
 

  
                     

 

  
           

The second equation in eq. (2) (the boundary condition at     ) tells us that EC begin to enter into the ECM 

from the capillary initiating angiogenesis. 

The main aim of this paper is to determine mathematically the long-time tendency of endothelial cells governed 

by the eq. (1), and to show that there is a close agreement between the EC steady-state solution obtained analytically 

and the numerically calculated steady-state. 

 

2. Model Analysis and Solution 
Eq. (1) can be written as 

  

  
   (                )                                                                                     

We take                           for some negative constants    and   . Then, clearly      and   
  . Therefore, eq. (3) becomes 

  

  
   (                   )                                                                                   

Also, since we are interested in the long time dynamics of the cells we may let                      . 

Thus the initial and boundary conditions given in eq. (2) become 
                                                                                                    

                                                                                       
                                                                                         
                                                                                               
                                                                                      

                                     

We now define a new variable           via 
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Thus we have  

                      
  
 

    
  
 

   
  
 

(  
     

 )                                                                  

and the initial-boundary value problem (4) - (5) become 
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We partition the solution into a “steady-state” and a “variable” portion [20]: 
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          ⏟      
        

                                                                                      

If we substitute this equation into the initial-boundary value problem (8) - (9), we have 
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We end up with two separate initial-boundary value problem                              
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First, we solve the system (12) by separation of variables by setting                . Then we have the 

following two boundary value problems  

                      

                                                        
  

 
                                                            

                     

                                                          
  

 
                                              

The solutions in the case     are (the cases     and      yield contradiction if     ) 

          (√    )       (√    )  

         (√    )      (√    )  
After using the boundary conditions the eigenvalues and the corresponding eigenfunctions are as follows  
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                   )                      

for some constants D and F.  

      Therefore, we have 
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If we now use the boundary condition at     which is given in eq.  (12) we obtain 
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Second we solve the non-homogenous boundary value problem (13) by first considering the associated 

homogeneous equation: 

                                                                                                                               

We solve it by separation of variables by letting                         We obtain the following two boundary 

value problems, namely 

                     

                                                    
  

 
                                                               

                   

                                                   
  

 
                                                                

where we let          Also, we have 

                                                                                                                                       

The eigenvalues and eigenfunctions in the case        are (the cases       and       yield contradiction 

if        ) 

       
   

  

      √              
    

  

     √                 

                                         
for some constants    and   . Then the solution          of the eq. (13) has the following series form 

          ∑                                                                                                

 

     

 

We now solve the non-homogenous part of eq. (13) by noting that 
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Third we substitute eq. (23) into the partial differential equation so that we obtain 

∑    
                                                                    

 

     

 

where we assume the function          has the following series form 
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Equating eqs. (25) and (26) gives the linear ordinary differential equation for the variable        

 

  
                              

whose solution is 
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for some arbitrary constants      
     At     it follows from eqs. (23) and (27) that  
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where  
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Therefore one has 
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Then the solution of eq. (13) becomes 
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Finally we have the series solution of the initial boundary value problem consisting of eqs. (4) and (5) as follows 
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where   and     are defined as above. 

 

3. Stability of the Steady-State Solution and Results 
It is clear to see that the transition probability function                    satisfies the eq. (4) with 

  

  
     

Therefore it is reasonable to call it the steady-state solution of the equation. In addition, after some tedious 

computations we get from eq. (31) that                           for some positive constant   , which proves 

that this steady-state is stable. As we have obtained in 1D case in Pamuk [12] we have shown in this paper (2D case) 

that as time increases endothelial cells tend to transition probability density function of enzyme and fibronectin. Fig. 

2 shows the transition probability function        with        and      , whereas Fig. 3.. shows the 

endothelial cell density obtained from the series solution eq. (31) by using only two terms. One gets much better 

approximation to          by adding new terms to the two-term expansion of the series and letting   increases. 

 

4. Conclusions 
In this paper we have provided a two - dimensional mathematical analysis of a model for tumor angiogenesis in 

the absence of endothelial cell proliferation term. The analysis is useful in the sense that we obtain the steady-state 

solution of the model by splitting the variable into steady-state and variable parts. Then we deal with an eigenvalue-

eigenfunction problem for a problem with non-homogenous boundary data, and the solution follows. We have also 

studied the stability of this steady-state, and confirm it by presenting some pictures. We do believe that this 2D 

mathematical analysis will give rise to a way of solving partial differential equations with forcing term and with non-

homogenous boundary data. 

Biologically speaking, a mathematical analysis has shown us that as time increases endothelial cells tend to 

transition probability density function of enzyme and fibronectin, which is the same result as in Pamuk [12]. 
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Figure-2. Transition Probability Function         with       and      . 

 
 

Figure-3.           with                                           
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