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1. Introduction 
Angiogenesis is known as the process through which new blood vessels form from pre-existing vessels. It is 

crucial to tumor growth, but it is not unique to that process: formation of a functional vascular network occurs during 

embryogenesis and later in growing tissues. Tumor-induced angiogenesis provides the crucial link between the 

avascular phase of solid tumor growth and the more harmful vascular phase. Understanding the mechanism by which 

various factors inhibit angiogenesis is critical to devising an effective therapeutic regimen. A tentative classification 

of these substances can be made on the basis of their inhibitory function, but the role of many newly-discovered 

inhibitors remains unknown  [1]. 

 

  

Our whole mathematical model is studied in [2, 3]. Here we just study the submodel of our model which 

consists of endothelial cell (tumor cell) and angiostatin (as inhibitor) equations only. 

Therefore we consider the following initial - boundary value problem: 
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N(x, y, 0) = 0 ( , )N x y ,  A(x, y, 0) = 0 ( , )A x y , (x, y) ∈ Ω.                         (1.4) 

where Ω = (0, l1) × (0, l2), N = N(x, y, t) is the endothelial cell density, A = A(x, y, t) is the angiostatin density, 

and CA = CA(x, y, t) is the active enzyme density,G is the growth fuction,H is the Heavyside fuction, n is the outer 

normal to ∂Ω, DN and DA are diffusion coefficients of endothelial cell and angiostatin, respectively, Q = Q(κ) is a 

function of the curvature κ such that Q(0) = 0, Q
′
(x) ≥ 0. Also, CA,0 and Fmin are some threshold values for active 

enzyme, CA, and fibronectin, F , respectively, [2, 3], θ, µ, λ, ν, and a0 are some positive constants, l1 and l2 are the 

capillary-tumor distance and the length of the capillary, respectively, and  T is some reference time for tumor 

progression. 

If we set 
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the dimensionless system becomes, on dropping the asterisks for algebraic convenience, 
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N(x, y, 0) = 0 ( , )N x y  ,  A(x, y, 0) = 0 ( , )A x y , (x, y) ∈ Ω.                         (1.8) 

 

In Tang and Song [4] the authors study the stability of the positive equilibrium, Turing instability, and the 

existence of Hopf and steady-state bifurcations for a predator-prey system with homogeneous Neumann boundary 

conditions. In Yang and Song [5] the Gierer-Meinhardt model without the saturating term is presented. By their 

linear stability analysis, the authors not only obtain the conditions ensuring the stability and Turing instability of the 

positive equilibrium but also get the parameter values where possible. They observe that Turing-Hopf and spatial 

resonance bifurcation can occur. Also, in [6, 7] the authors consider the Turing-Hopf bifurcation arising from the 

reaction-diffusion equations, and in [8, 9] the authors derive a necessary and sufficient condition for Turing 

instabilities to occur in two-component systems of reaction-diffusion equations with Neumann boundary conditions. 

In Pamuk and Gürbüz [10] the authors provide the stability analysis of the steady-state solution of a mathematical 

model in tumor angiogenesis whereas in Karaoglu and Merdan [11] Hopf bifurcation of a ratio - dependent predator-

prey model involving two discrete maturation time delays is studied. 

In the following section we obtain  the positive equilibrium points and the Turing instability of the system (1.5)-

(1.8). 

 

2. Stability and Turing Instability 

We take Q(κ) ≡ 1, CA > 1, F < 1, ( )A

N
G C

A
  for biological convenience, thus the system (1.5)-(1.8) becomes 

as follows: 
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We solve the following equations to find the positive equilibrium points of system (2.1)-(2.2). We set 
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Therefore the only positive equilibrium point is 
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where we assume 00, ( ) 0a          for biological purposes. 

First, we set 0N AD D   and 
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Then linearizing the system (2.1)-(2.2)  about the point 0 0( , )N A  , for | w |  small, we obtain 
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We now look for solution of (2.7) of the form 

                                                                                                                                                                                                                                                                                                                         
where   is so-called the eigenvalue. The steady state     is linearly stable if        since the perturbation 
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Second, we consider the full reaction-diffusion system (2.1)-(2.2) by writing 
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Let ( )kw r be the eigenfunction corresponding to the wavenumber k .  We now look for solutions ( , )tw r  of (2.10) 

of  the form 
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where the constants kb  are determined by  Fourier expansions of the initial conditions in terms of ( )kw r .  Writing 

(2.11) in (2.10) yields 
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We require nontrivial solutions for kw  so that 's  are determined by the roots of the characteristic polynomial 
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For the equilibrium solution to be unstable we require Re ( ) 0k   for some 0k  . This can happen if either the 

coefficient of   in (2.13) is negative, or if 
2( ) 0h k   for some 0k  . Since 0Tr J   from condition (2.9) and 
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Notice that if min 0h  , there is a bifurcation of system (2.1)-(2.2) at its equilibrium point 0 0( , )N A . 

Summary:  If one of the following conditions hold, then Turing instability occurs. 

(i) 0, det 0,N A N A A NTr J f g J f g f g       

(ii) A ND D , 
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3. Numerical Example 
 We solve the system (2.1)-(2.4) numerically with the parameter values

01, 0,9, 0,014, 3, 20.a         As our initial conditions we take 

12 4

0 0( , ) (cos cos ) , ( , ) (3 cos cos ) .N x y x y A x y x y       Figures (1)-(2) show the numerical solution 

of the zero diffusion case, 0N AD D  , whereas Figures (3)-(4) show the numerical solution of the non-zero 

diffusion case,
5 33,6 10 , 6,5 10N AD D     . Obviously, the condition (ii) above holds and therefore the 

system (2.1)-(2.4) is Turing unstable. 
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Figure-1. Graph of tumor cell ( , , )N x y t  and inhibitor A( , , )x y t  with 0N AD D   at 0,07t  . 

 

Figure-2. Graph of  tumor cell ( , , )N x y t  and inhibitor A( , , )x y t  with 0N AD D  , at 0,1t  . 

 

Figure-3. Graph of tumor cell ( , , )N x y t  and inhibitor A( , , )x y t  with
5 33,6 10 , 6,5 10N AD D     , at 0,07t  . 
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Figure-4. Graph of  tumor cell ( , , )N x y t  and inhibitor A( , , )x y t  with
5 33,6 10 , 6,5 10N AD D     , at 0,1t  . 

 

4. Conclusion and Results 
We have analyzed the  Turing instability of  the system (2.1)-(2.2), and determined  some necessary conditions 

((i)-(iii) above) for  Turing instability to occur. In the above example, the zero diffusion and nonzero diffusion cases 

look similar until 0,07t  (Fig.(1),(3)). After 0,07t   we get numerical difficulty for tumor cell equation 

because the Laplacian 
xx yyN N starts to become large in the magnitude (Fig. (4)) near boundary, which shows 

that the system is Turing instable after time 0,07t  . Biologically this means that when the inhibitor diffuses 

faster than the tumor cell, our sytem becomes Turing instable after small time. 
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