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1. Introduction 
Named after the Italian nobleman Count Jacopo Francesco Riccati (1676-1754), the RDEs find applications in 

random processes, optimal control and diffusion problem, Reid [1]. Besides its applications in engineering and 

science that today are considered classical, the RDE is also applied in financial mathematics Anderson and Moore 

[2], robust stabilization, stochastic realization theory, network synthesis and optimal control Riaz, et al. [3]. Also, 

according to Vahidi and Didgar [4], the RDE is an essential tool for modeling many physical situations such as 

spring mass systems, resistor-capacitor-induction circuits, bending of beams, chemical reactions, pendulum, the 

motion of rotating mass around body and so on. 

In this paper, we shall develop a NSFDM for the simulation of RDEs of the form, 
2'( ) ( ) ( ) ( ) ( ) ( )y t a t b t y t c t y t           (1) 

with initial conditions, 

0 0( )y t y             (2) 

where ( ), ( ), ( )a t b t c t  are continuous with ( ) 0c t   and 0 0,t y  are arbitrary constants for ( )y t  which is an 

unknown function. 

It is important to state that equation (1) must satisfy the existence and uniqueness theorem stated below. 

Theorem 1.1 Henrici [5] 

Let ( , )f t y  be defined and continuous for all points ( , )t y  in the region D  defined by ,a t b y    , 

a and b  finite, and let there exist a constant L  such that, for every , ,t y y
such that ( , ) ( , )t y and t y

are 

both in D ; 

 ( , ) ( , )f t y f t y L y y            (3) 

Then, if   is any given number, there exists a unique solution ( )y t  of the problem (1), where ( )y t  is continuous 

and differentiable for all ( , )t y in D . The requirement (3) is known as a Lipschitz condition and the constant L as a 

Lipschitz constant.  
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In recent years, to get reliable results with less effort, researchers have applied NSFDMs and obtained 

competitive results than those of the existing methods. These authors include, [6-8], [9, 10], Ibijola and Sunday [11], 

Sunday [12], [13, 14], among others. 

It is important to note that the general form of NSFDM can be written as, 

1 ( , )n ny F h y            (4) 

Definition 1.1 Anguelov and Lubuma [9] 

A finite difference scheme is called non-standard finite difference method, if at least one of the following 

conditions is met; 

i) in the discrete derivative, the traditional denominator is replaced by a non-negative function   such 

that,  
2( ) ( ), 0h h o h as h            (5) 

ii) non-linear terms that occur in the differential equation are approximated in a non-local way i.e. by a 

suitable functions of several points of the mesh. For example,
2 3 2

1 1 1 1 1, , ,n n n n n n n n ny y y y y y y y y y y       

We shall employ the following collection of rules set by Mickens [7] in developing NSFDM for RDEs. 

 The order of the discrete derivatives must be exactly equal to the order of the corresponding derivatives of 

the differential equation.  

 Denominator function for the discrete derivatives must be expressed in terms of more complicated function 

of the step-sizes than those conventionally used.  

 The non-linear terms must in general be modeled (approximated) non-locally on the computational grid or 

lattice in many different ways. The non-linear terms 
2 3,y y can be modeled as follows 

2

1n ny y y           (6) 

2 1( )
2

n n
n

y y
y y  

         (7) 

3 2

1n ny y y           (8) 

3 2 1( )
2

n n
n

y y
y y  
         (9) 

The particular form selected from equations (6) to (9) depends on the full discrete model. 

 Special solutions of the differential equations should also be accompanied by special discrete solutions of 

the finite-difference models. For instance, an ordinary differential equation for which the substitution, 

t t , leaves the equation invariant. If the discrete model does not also have this property, then 

numerical instabilities may occur. 

 The finite-difference equation should not have solutions that do not correspond exactly to the solution of the 

differential equations. 

For the purpose of this work, we shall assume that the function ( , )F h y  in (4) has continuous derivatives with 

respect to both variables for h >0,  y R  and that; 

(0, )
(0, ) , ( )

F y
F y y f y

h


 


         (10) 

It is necessary to note that consistency implies (10) if y  is the solution of the differential equation (1). 

Theorem 1.2 Anguelov and Lubuma [10] 

 

The finite difference scheme (4) is stable with respect to monotone dependence on initial value, if 

( , )
0, ,

F h y
y R h

y


 


>0        (11) 

 

2. Construction of Non-Standard Finite Difference Method for Riccati 

Differential Equations 

We shall construct a NSFDM for RDEs of the form (1). This is achieved by representing the nonlinear term 
2y  in 

equation (1) as follows, 

1
1( ) ( ) ( )n n

n n n

y y
a t b t y c t y y

h





           (12) 

That is, the nonlinear term 
2y  in equation (1) is approximated by 1n ny y  . From equation (12), 



 Academic Journal of Applied Mathematical Sciences, 2017, 3(7): 62-68 

 

64 

1 1( ) ( ) ( )n n n n ny c t hy y a t h y b t hy              

Thus, 

 
 1

( ) 1 ( )

1 ( )

n

n

n

a t h b t h y
y

c t hy


 



          (13) 

It is important to note that 1ny   is the value of the solution at ( 1)t hn  time step, ny  is the value of the solution at 

t hn  time step and h  is the time stepping parameter. Equation (13) is a NSFDM (with trivial denominator) capable 

of solving RDEs of the form (1). 

A more efficient method can be developed by replacing the denominator h  in (13) with a denominator function 

( )h  so that ( ) 0 0h as h   . This nontrivial denominator helps in maintaining the positivity and stability 

of the solution. For the problems of the form (1), we approximate the denominator h  as, 

( ) 1 hh e              (14) 

Substituting (14) in (13), we get 

   

 
1

( ) 1 1 ( ) 1

1 ( ) 1

h h

n

n h

n

a t e b t e y
y

c t e y

 

 

    
 

  
 

       (15) 

Equation (15) is the NSFDM (with nontrivial denominator) capable of solving RDEs of the form (1). The nontrivial 

denominator function introduced in (15) helps in overcoming the unstable behavior of the NSFDM (with trivial 

denominator) in (13). 

 

3. Results: Implementation of the NSFDM on RDEs 
The NSFDM derived shall be used to simulate some RDEs to test its reliability and efficiency. The following 

notations shall be used in the Tables below: 

ERR= Absolute error in NSFDM 

Eval t =Evaluation time per seconds 

EYH-Absolute error in Yang, et al. [15] 

EFA-Absolute error in File and Aga [16] 

ENB-Absolute error in Naeem, et al. [17] 

 

Problem 3.1: 

Consider the Riccati differential equation,     
2'( ) 1 ( )y t y t            (16) 

with initial conditions, 

  (0) 0y                                                                                               (17) 

The exact solution to the problem is 

 

2

2

1
( )

1

t

t

e
y t

e





           (18) 

Source: Yang et. al. [15] 

 

Applying equation (12) on (16), we get 

1
11

( )

n n
n n

y y
y y

h





            (19) 

Substituting equation (14) in (19) gives, 

 1

1

1 1

h

n
n h

n

e y
y

e y



 

 


 
          (20) 

Equation (20) is the NSFDM for the RDE in (16). On the application of equation (20) on (16), we obtain the 

numerical and graphical results presented in Table 3.1 and Figure 3.1 respectively. 
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             Table-3.1. Showing the result for problem 3.1 

  t                Exact Solution                       NSFDM                      ERR                   EYH            Eval t  

0.1000    0.0996679946249558    0.0996679946249558    0.000000e+000    4.1401e-07     0.1259     

0.2000    0.1973753202249040    0.1973753202249040    0.000000e+000    6.0186e-07     0.1277    

0.3000    0.2913126124515909    0.2913126124515909    0.000000e+000    7.3747e-07     0.1294    

0.4000    0.3799489622552250    0.3799489622552250    0.000000e+000    1.7322e-07     0.1311    

0.5000    0.4621171572600099    0.4621171572600099    0.000000e+000    6.8524e-07     0.1328    

0.6000    0.5370495669980354    0.5370495669980354    0.000000e+000    7.9810e-07     0.1453     

0.7000    0.6043677771171637    0.6043677771171637    0.000000e+000    9.2621e-07     0.1470    

0.8000    0.6640367702678491    0.6640367702678491    0.000000e+000    2.8318e-07     0.1487    

0.9000    0.7162978701990247    0.7162978701990247    0.000000e+000    6.6469e-07     0.1504    

1.0000    0.7615941559557652    0.7615941559557652    0.000000e+000    7.2660e-07     0.1521 

 

Figure-3.1. Graphical Results for Problem 3.1 

 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 3.2  
Consider the Riccati differential equation,  

    
2'( ) 1 2 ( ) ( )y t y t y t            (21) 

with the initial conditions, 

 (0) 0y              (22) 

The exact solution is given by, 

 
1 2 1

( ) 1 2 tanh 2 log
2 2 1

y t t
  

        

       (23) 

Source: File and Aga [16] 

Applying equation (12) on (21), we get 

1
11 2

( )

n n
n n n

y y
y y y

h





            (24) 

Substituting equation (14) in (24) gives, 

   
 1

1 1 2 1

1 1

h h

n

n h

n

e e y
y

e y

 

 

   
 
 

        (25) 

Equation (25) is the NSFDM for the RDE in (21). On the application of equation (25) on (21), we obtain the 

numerical and graphical results presented in Table 3.2 and Figure 3.2 respectively. 
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     Table-3.2. Showing the result for problem 3.2 

  t               Exact Solution                    NSFDM                      ERR                    EFA         Eval t  

0.1000    0.1102951969169624    0.1102951969169624    0.000000e+000     2.2551e-06     0.2436    

0.2000    0.2419767996211093    0.2419767996211093    0.000000e+000     4.7763e-06     0.2454    

0.3000    0.3951048486603785    0.3951048486603785    0.000000e+000     7.3083e-06     0.2472    

0.4000    0.5678121662929389    0.5678121662929389    0.000000e+000     9.5635e-06     0.2490    

0.5000    0.7560143934313761    0.7560143934313761    0.000000e+000     1.1301e-05     0.2508    

0.6000    0.9535662164719235    0.9535662164719235    0.000000e+000     1.1301e-05     0.2526    

0.7000    1.1529489669796242    1.1529489669796242    0.000000e+000     1.2408e-05     0.2545    

0.8000    1.3463636553683762    1.3463636553683762    0.000000e+000     1.2940e-05     0.2565    

0.9000    1.5269113132806256    1.5269113132806256    0.000000e+000     1.3100e-05     0.2584    

1.0000    1.6894983915943840    1.6894983915943840    0.000000e+000     1.3245e-05     0.2602   

  
Figure-3.2. Graphical Results for Problem 3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 3.3 
Consider the Riccati differential equation, 

2'( ) 10 3 ( ) ( )y t y t y t            (26) 

whose initial conditions are, 

 (0) 0y              (27) 

The exact solution is given by, 

 

7

7

14
( ) 2

5 2

t

t

e
y t

e
  


          (28) 

Source: Naeem, et al. [17] 

Applying equation (12) on (26), we get 

1
110 3

( )

n n
n n n

y y
y y y

h





            (29) 

Substituting equation (14) in (29) gives, 

   
 1

10 1 3 1 1

1 1

h h

n

n h

n

e e y
y

e y

 

 

    
 

 
       (30) 

Equation (30) is the NSFDM for the RDE in (26). On the application of equation (30) on (26), we obtain the 

numerical and graphical results presented in Table 3.3 and Figure 3.3 respectively. 
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       Table-3.3. Showing the result for problem 3.3 

  t            Exact Solution                  NSFDM                        ERR                     ENB              Eval t  

0.1000    1.1229599550199856    1.1229599550199856    0.000000e+000    
61.5 10       0.0321       

0.2000    2.3303636672393440    2.3303636672393440    0.000000e+000    
63.2 10       0.0493    

0.3000    3.3592985913921902    3.3592985913921902    0.000000e+000    
78.0 10       0.0667    

0.4000    4.0762561998939519    4.0762561998939519    0.000000e+000    
63.2 10       0.1056    

0.5000    4.5086402379423145    4.5086402379423145    0.000000e+000    
63.7 10       0.1229    

0.6000    4.7470598637518648    4.7470598637518648    0.000000e+000    
79.7 10       0.1419    

0.7000    4.8720664654895440    4.8720664654895440    0.000000e+000    
61.0 10        0.1594    

0.8000    4.9358801511182619    4.9358801511182619    0.000000e+000    
78.5 10       0.1766    

0.9000    4.9680115179081801    4.9680115179081801    0.000000e+000    
72.1 10       0.1939    

1.0000    4.9840783622386367    4.9840783622386367    0.000000e+000    
61.4 10       0.2985    

 
Figure-3.3. Graphical Results for Problem 3.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 
Conclusively, it is important to note that there are different ways of constructing the NSFDM for the solution of 

differential equations. In fact, according to Paridar [18], the construction of NSFDMs is not always straight forward 

and there are no general criteria for doing so. 

It is clear from the results (numerical and graphical) generated above, that the NSFDM is a reliable and efficient 

method for the simulation of RDEs of the form (1). The results also show that the approximate solutions (obtained 

using the NSFDM) converges closely to the exact solutions. The evaluation time per seconds obtained were very 

small, showing that the method derived generates results very fast.  
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