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Abstract: This paper evaluates the hedging effectiveness of the Malaysian crude palm oil futures market using
daily settlement prices over the periods from January 4, 2010 to August 30, 2017. Hedge ratios and the hedging
effectiveness are determined by employing four competing econometric models namely: the standard ordinary
least square (OLS) regression model, vector error correction model (VECM) and two variations of the
multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) models namely; diagonal-
VECH and diagonal-BEKK GARCH models. The first two models estimate constant hedge ratios while the
other two models estimate time varying hedge ratios. Hedging performance is evaluated and compared in terms
of in-sample (Jan 2010 — Dec 2016) and out-of sample periods (Jan 2017 — Aug 2017) of the four hedge ratio
models. The empirical results show that the MGARCH models particularly diagonal-BEKK GARCH model
performs better than the other three models indicating that this model fits better in designing hedging strategy.
The empirical finding suggests that the investors in crude palm oil markets in Malaysia can use CPO futures
contract as an effective instrument to minimize the risk.
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1. Introduction

Futures contract is defined as a legal agreement usually between two parties to buy or sell a particular
commodity or financial instrument at a predetermined price at a specified time in future. These contracts are
standardized to facilitate trading on a futures exchange and are settled daily. Some futures contracts particularly on
financial assets (stock or equity indices) are settled in cash, while futures contracts particularly on commodities (e.g.,
palm oil, soybean etc.) are settled in physical delivery. Almost all exchanges throughout the world, futures contracts
are available on different types of assets. Futures contract are used for different purposes depending on the goals of
the trader (loss minimizing or gaining profit). However, futures contract has become the most common derivatives
instruments of the investors for hedging the risk exposures that may arise from adverse price movements. The
effectiveness of futures contracts in managing risks is critical to the development of futures market. To design a
better strategy with futures contracts for hedging the risk exposures, it is important that the hedgers understand the
optimal hedge ratio in order to be able to find the right number of futures contract for minimizing the risk.

Usually it is not possible to eliminate or offset the risk exposure completely. Instead, the investors attempt to
neutralize the risk exposure by constructing the hedge in such a way so that it performs as close to perfect as
possible. The most important and beneficial aspect of the use of a futures contract is that it removes the uncertainty
of future price movements of the hedged item by locking in a price today. This also facilitates the hedging
companies or corporations to eliminate the ambiguity relating to their expenses and profits in the futures. Since
perfect hedge is almost impossible, it is important to choose a value for the hedge ratio defined as the ratio of the
size of the position taken in futures contract to the size of the total exposure (Hull, 2015). Since the risk is most
commonly measured as the volatility of portfolio returns, it is plausible to choose a hedge ratio that minimizes the
variance of the portfolio returns known as the minimum variance hedge ratio or optimal hedge ratio. Optimal hedge
ratio is determined as the ratio of the covariance between spot and futures return to the variance of futures return.
Once hedge is in place, its effectiveness can be evaluated. A hedge is considered to be effective if the changes in the
price of the hedging derivative instrument and the changes in the price of the hedged item roughly offset each other.

Like many other countries, Bursa Malaysia Derivatives (BMD) a subsidy of Bursa Malaysia Berhad also
provides platform for the investors offering trade on three different categories of derivatives products such as the
equity derivatives, financial derivatives and commodity derivatives. Derivatives market has been performing well
with increased hedging activities to manage risks arising from volatile commodity prices and global currencies. As
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far as the futures contracts are concerned, the crude palm oil futures (symbolized as FCPO) denominated in Ringgit
Malaysia (MYR), is the top performing futures contracts in the derivatives market of Bursa Malaysia. According to
Bursa Malaysia Annual Report of 2016, as at 31/12/2016, the number of total contracts traded on the Bursa Malaysia
Derivatives (BMD) exchange was 14.2 million in which CPO futures alone accounted for 11.4 million contracts.
This was about 80.3% of the total futures contracts traded on BMD. In terms of open interest, CPO futures accounted
for 83.7% of the total in the derivatives market at the same period.

FCPO has been in operation since October 1980 in the Kuala Lumpur Commaodity Exchange (KLCE). Since
then it has become the popular product as the top performing derivative contracts in Bursa Malaysia providing
market participants (e.g., crude palm oil producers, refiners, millers, exporters and importers) with a global price
benchmark for the crude palm oil market. KLCE in November 1998 merged with Malaysian Monetary Exchange
and become the Commaodity and Malaysian Monetary Exchange (COMMEX). Following the Asian financial crisis
in 1997, Malaysian derivatives went through restructuring and emerged in 2003 as a Bursa Malaysia Derivatives’
(BMD). Since then FCPO has been continuing its trading under the BMD. In 2009, CME (Chicago Mercantile
Exchange) took a 25% stake in BMD and in 2010, all BMD products were listed and traded on the CME operated
GLOBEX trading platform (The world’s leading electronic trading platform) which allows individual and
professional traders anywhere around the world to access all Bursa Malaysia Derivatives products including FCPO.
Via FCPO, global fund managers, commaodity trading advisers and proprietary traders can gain immediate exposure
to the commodity market. CPO futures is traded today at a number of derivatives exchanges around the world but
more popularly traded in BMD and CME. FCPO traded in BMD is available both in Ringgit Malaysia and USD-
denominated contracts. It is a cash settle or physically deliverable contract. The crude palm oil futures traded at
CME uses the CPO symbol and is available in USD denominated contracts. It is a cash-settled contract only and
does not involve physical delivery of the underlying crude palm oil.

CPO futures contract is traded as a tool primarily by the market participants/players in the edible oils and fats
industry (such as plantation companies, refineries, exporters and millers) to hedge and manage risk against the
unfavorable movement of crude oil price in the physical market. Speculators use crude palm oil futures to gain from
the price movement of the contract on the exchange. For each CPO futures, the contract size is equivalent to 25
metric tons of crude palm oil. The contract months are specified as the spot month and the next 5 succeeding months
followed by alternate months up to 24 months ahead.

Palm oil in the agricultural sector is an important contributor to Malaysian foreign exchange earnings. Malaysia
is currently the second largest palm oil producer in the world just next to its neighbor Indonesia. The major importers
of Malaysian CPO are India, China, The Netherlands, Pakistan, Turkey, The USA, Vietnam and the Philippines. In
2015, palm oil exports contributed RM40.12 billion (5.2%) to Malaysian total exports of RM 777.36 billion. In
2016, palm oil exports contribution increased to RM41.44 billion (5.3%) in the total export earnings of RM785.93
billion. As of January to July 2017, palm oil contributed RM26.84 bill (5.1%) to the total export earnings of
RM529.68 bill. This shows that palm oil revenue has economic significance for Malaysia. Like other agricultural
commodities, palm oil price is also subject to wide margin of price fluctuation due to various factors including
globalization, increased competition among the exporting countries, changes of climate leading to uncertainty in
futures production or supply, changes in other competing edible oils, currency exchange rates, demand from
importing countries, immigration policies and so on. The uncertainty of future palm oil price (higher/lower) has
serious risk exposure for both the owners and the user of this product. Introduction and development of crude palm
oil futures contracts is one of the efforts to minimize the risk exposure. To design a better hedging strategy with
futures contracts to control the risk exposures, it is important that the hedger understand the optimal hedge ratio in
order to be able to find the right number of futures contract (to buy/sell) for minimizing the risk. To what extent
hedging strategy is effective largely depends on determining the appropriate or optimal hedge ratio. With regards to
hedging approaches, they are basically three as highlighted in Sah and Pandey (2011) which are the traditional or
naive hedge (1:1) ratio, Beta hedge ratio and the minimum variance hedge ratio. Among the three, the minimum
variance hedge ratio strategy proposed by Johnson (1960) is used in the empirical studies of finance as the most
plausible or appropriate measure to determine optimal hedge ratio.

There exist a large number of studies in the literature estimating optimal hedge ratios and the hedging
effectiveness of futures contracts for equity, financial and commodity derivatives. In the literature, various distinct
approaches have been employed to estimate optimal hedge ratio. Simple ordinary least square (OLS) regression
approach was the most frequently adopted method to estimate optimal hedge ratio in the earlier studies which was
introduced by Ederington (1979) and Anderson and Danthine (1980). The slope coefficient of the OLS regression in
which changes in spot prices is regressed on changes in futures prices is known as the optimal hedge ratio. The other
recently used methods are error correction mechanism (ECM), univariate and multivariate GARCHSs. Hedge ratios
estimated by OLS and ECM methods are time invariant or static, while hedge ratios estimated by GARCHs are time
variant or dynamic.

A lot of previous studies such as Johnson (1960); Stein (1961); Ederington (1979); Floros and Vougas (2004);
Dimitris et al. (2008) to name a few have also given theoretical description of hedging strategies. Johnson (1960)
was the first who introduced minimum variance hedge ratio (MVVHR) or optimum hedge ratio (OHR) which is the
ratio of covariance between spot and futures return to the variance of futures return. This measure of hedge ratio is
widely used in determining the hedging effectiveness. The estimate of hedge ratio and its effectiveness for equity
futures (stock index futures) has been extensively investigated for different index futures contracts using different
models across the countries. Some of the frequently cited studies are: Myers (1991); (Floros and Vougas,
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2004;2006); Ahmed (2007); Degiannakis and Floros (2010); Gupta and Singh (2009); Bhaduri and Durai (2008),
Sah and Pandey (2011) and Ong et al. (2012). They used different models to estimate hedge ratios and their
effectiveness largely for equity futures.

The results derived from various methods by various studies indicate no consistency in determining the models
and the optimal hedge ratios. Many of the studies (e.g., Lee C. F. et al. (2009); Kumar et al. (2008); (Myers, 1991);
Park and Switzer (1995); Moschini and Myers (2002); (Floros and Vougas, 2004;2006); Choudhry (2004); Bhaduri
and Durai (2007); Lee H. T. and Jonathan (2007) and so on) concluded that the time-varying or dynamic hedging
model produce higher hedge ratios than the static hedging model. A few studies (e.g., Awang et al. (2014);
Butterworth and Phil (2001); Bhargava and Malhotra (2007); Lien (2005) etc.) found that static models performs
better than the dynamic hedge models. A recent study of Hsu et al. (2008) discovered that the time-varying copula-
based GARCH are more effective hedging models than the other models such as the OLS, CCC-GARCH and DCC-
GARCH.

As far as futures contracts in Malaysian derivatives market are concerned, there are few empirical studies
investigated the topic from different angles by employing various measures including the OLS, ECM and GARCHs
models. Studies of Go and Lau (2014); Ong et al. (2012); Zainudin and Shaharudin (2011); Awang et al. (2014)
and Ibrahim and Sundarasan (2010) are of the most relevant studies.

Go and Lau (2014) examined the hedging effectiveness of crude palm oil (CPO) futures market from January
1986 to December 2013 with eight hedging models including constant and time varying hedging models. They
divided the whole periods into three sub periods: world economic recession in 1986, Asian financial crisis in
1997/98 and global financial crisis in 2008/2009. They found that means of hedge ratios changed significantly over
the three sub-periods. On average, the high optimal hedge ratios are found during the Asian financial crisis. The OLS
hedge ratio is found to be similar to GARCH hedge ratios implying hedging effectiveness of CPO futures contract
based on OLS and GARCH strategies are very comparable during the Asian financial crisis. The study concluded
that the hedgers need to make adjustment in the hedging strategies in response to different movement in market
volatility.

Ong et al. (2012) evaluated hedging effectiveness of crude palm oil futures in Malaysia by employing OLS
method. They estimated hedge ratios for each month during 2009-2011. They found varied hedge ratios over months
ranging from maximum 66.77% in February 2009 to a minimum of 35.713% in June 2010. In terms of hedging
effectiveness, the values were found ranging from 19% to 53%. They pointed out that this low level of hedging
performance was due to stable crude palm oil spot price relative to crude palm futures price.

Awang et al. (2014) employed various hedge ratio estimation methods such as the conventional OLS, VECM,
EGARCH and bivariate GARCH to investigate the hedging effectiveness of stock index futures markets in Malaysia
and Singapore using daily settlement data from January 2000 to December 2010. Their study reported that the OLS
model performed most effectively in both index futures markets, followed by EGARCH. Based on the findings, they
concluded that OLS model serves as a better hedging model than other static and time-varying models in a direct
hedge using stock index futures. The literature review above shows that there is no unique technique or model that
can be considered as the best or superior model to estimate hedge ratios.

The present study applied four competing hedging models namely; the traditional OLS model, VECM model,
the diag-VECH GARCH model and the diag-BEKK GARCH model to estimate hedge ratios and the hedging
effectiveness for Malaysian crude palm oil futures markets. The study is structured as follows: In section 2, data
descriptions are given while section 3 provides an overview of models adopted for computing the hedge ratios.
Section 4 presents and analyses the empirical results followed by conclusions in section 5.

2. Data Description

In this study, the daily settlement prices data are used which are obtained from Bursa Malaysia Derivative
(BMD) Berhad for the period from January 4, 2010 to August 29, 2017. This constitutes 1880 observations of
trading days. The whole sample data is divided in to two: in-sample and out-of-sample. In sample data comprises of
1718 trading day observations (Jan 2010 — Dec 2016), and the out-of-sample is 162 trading day observations (Jan
2017 — Aug 2017). Unlike other studies that used Malaysia Palm Oil Board (MPOB) provided data representing for
CPO spot price which are collected from various regional markets, this study used crude palm oil spot futures prices
of bursa Malaysia derivatives exchange as a proxy for spot crude palm oil price and the CPO settlement price for the
next two month contract as the CPO futures price. CPO price for the next two month contract is the most active
futures contract. CPO spot prices obtained from MPOB may not represent CPO spot prices appropriately due to
various reasons such as the market imperfections and the differences in the quality of the underlying commodity
(CPO) and hence the hedging information may be misled.

The choice of selecting CPO futures spot price as a proxy for CPO spot price is based on the previous studies
(Kumar et al., 2008). Furthermore, the CPO spot price data provided by MPOB were not matching with the futures
contract data provided by Bursa Malaysia Derivatives Berhad. A total of 23 days of observations were missing from
the MPOB provided CPO spot price due to either ‘no trade’ or ‘public holiday’ whereas in the case of FCPO futures
prices, a total of 1880 trading days were found excluding the public holidays. The data are transformed into natural
logarithmic form and then expressed into logarithmic return. Figure 2.1 shows the pattern of spot and futures prices
expressed in natural log while figure 2.2 shows the behavior of logarithmic returns of the prices. The return series in
figure 2.2 indicates the pattern of volatility clustering.
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Figure-2.1. Pattern of spot and futures prices of CPO in natural log
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Figure-2.2. Pattern of spot and futures prices of CPO in logarithmic returns
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2.1. Data Stationarity Test (Unit root test)
The standard unit root test is conducted by means of Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP)

tests. The test establishes that both spot and futures series at the levels are non-stationary, while their first differences
(returns) are stationary. The results are presented in table 2.1 below:

Table-2.1. Unit root test for stationarity

Variables | ADF PP Variable ADF PP

(level) Statistics | Statistics (First Difference) | Statistics Statistics
LS -1.6541 -1.7792 ALS -38.4216* | -38.4478*
LF -1.6725 -1.7917 ALF -39.2702* | -39.3281*

*denote significance at 1% level.

2.2. Cointegration Test

To ascertain whether there exists any cointegrating relationship between the two price series, Johansen (1991)
test procedure is applied in which there are two statistics: the trace statistics and the maximum eigenvalue statistic.
Both statistics in the Johansen’s test suggest that spot and futures prices are cointegrated, with one cointegration
relationship. Furthermore the cointegrating vector normalized on LS exhibits that the long run cointegrating
coefficient with respect to LF is statistically significant. The test results are presented in table 2.2 below:
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Table-2.2. Johansen cointegration test (Spot vs. Futures).

Hypothesis | Eigenvalue MRACE 95% C.V. AMAx 95% C.V.
None* 0.019290 35.93068 15.49471 33.44465 14.26460
At most 1 0.001447 2.486024 3.841466 2.486024 3.841466

Note: Both Trace and Max-eigenvalue tests indicate 1 cointegrating eqn. at the 5% level.
*denotes rejection of the hypothesis at the 5% level.

The corresponding unrestricted cointegrating vector normalized on LS is-

LS LF
1.000000 -1.060218
(0.03256)

Standard error in parentheses

3. Methodology for Computing Optimal Hedge Ratio

There are a humber of different econometric methods are available/proposed in the literature to compute the
optimal hedge ratios. In this paper, we have employed four different competing models to estimate hedge ratios. The
models are presented as bellow:

3.1. Ordinary Least Square (OLS) Model:
This method is a simple linear regression method which involves regression of change in spot price against the
change in future price as-

ASt =a+ ﬁAFt + U, Uy ~ N(O, 0-2) (1)

Where AS; = logS; — logS;—, and AF, = logF, — logF,_,. u, is the error term. A is the first difference operator.

os _ Cov(AS,AF)

2
F

and o are the standard deviations of AS and AF respectively. p is the coefficient of correlation between the two. The
OLS estimate hedge ratio (slope of the regression) is considered reasonable if the underlying assumptions u, has zero
mean, same variance, and are uncorrelated are fulfilled. But in reality there are substantial evidences in the financial
literature suggesting that as far as returns to financial series are concerned these assumptions are not compatible.
This method also fails to take into account the time varying nature of hedge ratios.

The coefficient 8 is the optimal hedge ratio which can also be calculated as h*= p , Where a5

O_F O

3.2. Cointegration and Error Correction Mechanism (ECM) Approach: Vector Error

Correction Model (VECM)

Error correction model is applied when the underlying series are cointegrated. Sometimes two or more time
series have the common stochastic trend. With such trends they can move together so closely over the long run
which can refer to as the long run equilibrium relationship between the series. In the short run, however there may be
disequilibrium which is treated as the error term. This error term can be used to correct the short run disequilibrium.
According to Engle and Granger (1987) who popularized this error correction term stated that if two series are
cointegrated, then the relationship between them can be expressed by ECM. The time series that appear to share a
common stochastic trend are said to be cointegrated. Financial time series often exhibit such a common stochastic
trend. Cointegration and ECM approach can be implemented by applying different test methods. In this study we
employed Johansen (1991) test method to test the cointegration. If the level series of spot and the futures price are
non-stationary and integrated of order one I1(1), then the VECM can be applied to estimate hedge ratio. The VECM
specification is expressed as follows:

k k
ASt =Qg t+ ZIBSiASt—l + Z 5Fj AI:t—i + ﬂs Zt—l + Hst

i=1 i=1 (2)
k k

AF =ap + Zﬂpi AF 4 + z OgiASi + Ap L4 + U
i1 i1

Where, Z,; =S, ; —dF_; is called the error correction term, ¢ is the cointegrating coefficient, As and i¢ are

adjustment parameters. Optimal hedge is estimated as the ratio of covariance of residuals of spot and futures return
and variance of residual of futures retrieved from VECM as-
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OSF
h*=—% ®)
OF
Where,

covariance (i, U ) = Osg

variance (uy) = o¢”

variance( zg,) = o'

3.3. The Multivariate GARCH (p, q) Model

GARCH model is the generalization of the ARCH model initially introduced by Bollerslev (1986). It is capable
of capturing volatility clustering effect which can be found in most of the financial and macroeconomic return time
series. A return time series with some periods of high volatility and some periods of low volatility is said to exhibit
volatility clustering. In the face of such structure of return time series or the ARCH-effect that the return data series
possesses, the estimation of hedge ratio and the hedging effectiveness may not be appropriate. GARCH model can
take care of ARCH effects in the residuals.

Multivariate GARCH model is the generalization of univariate GARCH of Bollerslev (1986). The most
straightforward generalized multivariate GARCH is the vech GARCH proposed by Bollerslev and Wooldridge
(1988). The vech GARCH model has been further generalized and applied in financial econometrics. The simplest
and possible lowest dimensional multivariate GARCH model is a bivariate GARCH (BGARCH). Some of the
popular and successfully applied versions of the bivariate GARCH models are the diagonal-vech GARCH (Diag-
VECH GARCH), the diagonal-BEKK GARCH (Diag-BEKK GARCH), Constant Conditional Correlation GARCH
(CCC-GARCH) and Dynamic Conditional Correlation GARCH (DCC-GARCH) models. The univariate GARCH of
Bollerslev (1986) and the multivariate GARCH are very similar in spirit except that in addition to variance
equations, the multivariate GARCH also specifies the covariance equations. This study employed two versions of
MGARCH namely: the diag-VECH GARCH and the diag-BEKK GARCH models.

3.3.1. The diag-VECH GARCH (1, 1) Model

The diagonal VECH GARCH is the restricted version of the general VECH model. The common specification of
the general VECH GARCH model (initially due to Bollerslev and Wooldridge (1988)) for a lowest-dimensional
system of two-assets (N = 2) is written as-

vech (H) = C + Avech (& 16 ) + B vech (Hiy), &Iy ~ N(O.Hy)

Where H; is a 2 x 2 conditional variance-covariance matrix, & is a 2 x 1 error vector, | is the information set at

time t-1, C is a 3 x 1 parameter vector, A and B are 3 x 3 parameter matrices. The elements in the vech model vech
(Hy) = hy are written out as-

2
hy 1y C11 a7 a;; a3 by b, big gy
2
he =| oot |=|Cor |+ @21 Qpy A3 |Up +1 by by by3 |y
hyoy C31 dz; QAzp QAzz ||UU; bsy  bg, bgg | hys |,
t—1

Where h;; represent the conditional variances at time period t of the two-asset return series (i = 1, 2), and hj; (i
# ]) represent the conditional covariances between the asset returns. The general vech model is an unrestricted
model. The representation of the general vech model although very general and flexible, it has two disadvantages.
Firstly, it has serious computational difficulties as the number of assets in the model increases. For example, in the
case of the lowest-dimensional system (with N = 2) and p = q = 1, the vech model requires to estimate 21 parameters
and the number of parameters to be estimated increased sharply along with the increase of the number of assets in
the model. For N =3 and p =g = 1, the number of parameters to be estimated is 78 and so on. Second disadvantage is
that only a sufficient condition for the positive definiteness of the matrix H; is known.

To reduce these disadvantages of the general vech model, Bollerslev and Wooldridge (1988) proposed a
restriction on the conditional variance-covariance matrix to the form in which the coefficient matrices A and B are
assumed to be diagonal. In this case the number of parameters to be estimated is reduced to 9 from 21 for two assets
case. Furthermore, the necessary and sufficient conditions for the definiteness of H, are also obtained. This restricted
version of the vech model is known as the diagonal vech model. In a simple bivariate (For N=2and p=q=1)
diagonal vech GARCH model, there are three conditional equations, one for each conditional variance and one for
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the conditional covariance. The conditional variances and the covariance equations of the diagonal VECH GARCH
are presented as follows:

h]_ :Lt Cl al 1 0 0 U12 bl 1 O O hl 1
h22,t C3 O O a33 u22 1 O O b33 h22 t—1

Or

2
hit =C +apUu" L +bhge g

N1t =Co+apsUy qUp 3 +D0a0:h00¢ @)
2
Ny =C3+agay” , +033:hn0 4

Where, hy; and hyy, are the conditional variances of the errors ug; and uy; and hy,; is the covariance between the

errors uy and uy . The time varying hedge ratio for each time period t is calculated as follows:

h
h = —2t ©)

h22,t

3.3.2. The diag-BEKK GARCH (1, 1) Model

Baba et al. (1990) proposed a parameterization of the general vech GARCH equations that ensures the positive
definiteness of the covariance matrix H, and also allows to estimate low-dimensional multivariate GARCH systems
with less computational difficulties. The BEKK parameterization for a symmetric GARCH is written as-

Hf = CC’ + A’Et—lft—l’A + B’Hf—lB

Where, A and B are 2 x 2 matrices of parameters (for a 2-asset case) and C is triangular. To make the model
parsimonious in estimating the numbers of parameters, BEKK model assumes that the coefficient matrices A and B
are diagonal. The number of parameters to be estimated (with p = g =1, N = 2) in this model is reduced to 7. H is
the conditional variance-covariance matrix at time t, &, is the disturbance vector. The diag-BEKK GARCH (1, 1)

with N=2, 4 = diag(a,1,a,,), and B = diag(b; b,,) is expressed as-

CTa, 0 1 [s2 & a 0
= hll,t h_l2,t _CC + 11 &1 12 2 11
hy e hyyt 0 A2 | | &6 & |40 Ayp
0 0
N b1 H, L by 4

or

2 2 2 2
1 =Cc11+a%11e 1 +b by
2 2 2 2
hop ¢ =C%22 +@%226," 1 1 +b 22055 4 (6)

hot =188t 16241 01100 Mo

Where hyy, and hyy, are the conditional variances of the errors e, and &, respectively and h,y, is the covariance

between the errors &;; and ;.. In the BEKK parameterization, there are also three conditional equations, one for each
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conditional variance and one for the conditional covariance. Each equation is a GARCH (1, 1). BEKK model does
not impose cross equation restrictions and is parsimonious in estimating the number of parameters for a low
dimensional case. The time varying hedge ratio for each time period t is calculated in the same way as the diag-
VECH-GARCH as follows:

h
h, = 12,t )

h22,t

3.3.3. Measure of Hedging Effectiveness

The hedging effectiveness is defined as the proportion of the variance that is eliminated by hedging (Hull,
2015). In other words, the effectiveness of the minimum variance hedge can be determined by examining the
percentage reduction in the variance of the return of the hedged portfolio using the measure (Ederington, 1979) as-

Hedge effectiveness (HE) = %&‘;T(h) X100 (8)
Where,
Var(u) = 62§
Var(h) = 62S + h?0%F — 2hoge 9)

Var(u) and Var(h) are the variances of unhedged and hedged positions respectively, h is the minimum variance
hedge ratio and osr is the covariance between the spot and futures price change. Hedging effectiveness of the four
hedging models are evaluated by using this measure for full sample, in-sample and out-of-sample data.

4. Empirical Results

4.1. In-Sample Hedge Ratios and Hedging Effectiveness
In this section, the results particularly the optimal hedge ratios and the measure of their effectiveness for in-
sample data computed from different models as described in section 3 are presented.

4.1.1. The OLS estimates

Table 4.1 below presents the results derived from OLS regression (eqn. 1). The slope coefficients f is 0.85551
which represents as the optimal hedge ratio. It is statistically highly significant and less than unity. The R-squared
value is 0.7161 indicating a reasonably good fit model. R-squared value measures the hedging effectiveness of the
OLS model. It means hedge ratio obtained from OLS regression provides approximately 72% reduction in the
variance of the position.

Table-4.1. OLS estimate results

Coefficient | Std. error t-statistic Prob. R?
a 0.0000438 | 0.00017746 | 0.246577 0.8053 0.7160521
B 0.8555145 | 0.01308951 | 65.76352 0.0000 '

The OLS model however did not pass residual diagnostic test for ‘no serial correlation’ and
‘Heteroscedasticity’. In other words, the model exhibits the presence of serial correlation and Heteroscedasticity in
the residuals.

4.1.2. VECM Estimates

Since the spot and futures prices are cointegrated, VECM is used to estimate hedge ratio using equation 3. The
calculated hedge ratio is 0.85927. The corresponding hedging effectiveness (HE) is 73.03% computed by using
equation 8. Both are higher than the optimal hedge ratio and the hedging effectiveness estimated from OLS
indicating that VECM performs better than the OLS model.
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Table-4.2. Optimal hedge ratio and its effectiveness derived from VECM

Values

Covariance (Us, M) = ose 0.0001592403
Variance (W) = o’ 0.0001853199
Variance () = o’ 0.0001873584
Hedge ratio (h*) = gselo’s 0.859272569
Var (h) = variance of the hedged position 0.0000505276
Var (u) = variance of the unhedged position 0.0001901699
Hedging effectiveness (HE) 0.73031563

4.1.3. Bivariate GARCH (1, 1) Estimates

Table 4.3 presents the estimated hedge ratios and their effectiveness derived from the BGARCH models (4 & 6).
The estimated parameters of the BGARCH models are all both plausible and statistically significant (in order to save
space parameter estimates results are not presented here but available on request). The average or mean hedge ratios
estimated from BGARCH models are higher than both the OLS and VECM estimate hedge ratios. The diag-BEKK
GARCH provides higher values than the diag-VECH GARCH. It is to be noted here that the BGARCH computes
dynamic hedge ratios which are more realistic than the constant hedge ratios computed by the OLS and the VECM
models. Mean hedge ratios and the hedging effectiveness obtained from bivariate GARCH (Diag-VECH and Diag-
BEKK) models are as follows:

Table-4.3. The BGARCH (1, 1) estimates

Diag-VECH GARCH (1, 1) | Diag-BEKK GARCH (1, 1)
Mean (h*) 0.859309745 0.861363116
Minimum (h*) 0.129354678 0.135981459
Maximum (h*) 1.202116456 1.180344000
Var(u) = unhedged position 0.000190170 0.000190170
Var(h) = hedged position 0.000049268 0.000049226
Hedge effectiveness (HE) 0.758370958 0.761008217

From the table 4.3 above, it can be seen that both in terms of hedge ratios and the hedging effectiveness, diag-
BEKK GARCH model performs better than the diag-VECH GARCH model. The average/mean hedge values
estimated from diag-VECH and diag-BEKK GARCH models are 0.85931 and 0.86136 respectively. The
corresponding hedge effectiveness measures are 75.84% and 76.10% respectively. However, there is a wide
variation in the hedge ratios across the periods for both models suggesting that the hedgers need to rebalance their
hedge positions in futures contracts time to time in order to remain protected from risk exposure.

Figure 4.3 & 4.4 exhibit time varying hedge ratios derived from the BGARCH (1, 1) models. The optimal hedge
ratio series obtained from the BGARCH models appear to be stationary when a unit root test is conducted by ADF
test. In both cases, the null hypothesis (hedge ratio contains unit root) was strongly rejected by the data (ADF test
statistics: -11.0082 for diag-VECH and -12.78207 for diag-BEKK) at 1% critical value which is -3.433957. These
show that hedge ratios are stable.

311



International Journal of Economics and Financial Research, 2017, 3(11): 303-314

Figure-4.3. & 4.4. Time-varying hedge ratios estimated from BGARCH (1, 1) models.
Time-Varying Hedge Ratio: Diag-VECH GARCH
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Table 4.4 below presents the estimated optimal hedge ratios and their effectiveness derived from different
models to compare their relative performance within sample. The comparison shows that the optimal hedge ratios
estimated by BGARCH (1, 1) models are higher than the constant hedge ratio models and also provide greater
variance reduction. Between the BGARCH (1, 1) models, however, diag-BEKK GARCH appears to be better both in
terms of hedge ratios and in reducing variance. Low hedge ratio underestimates the number of futures contract a
trader should long or short to hedge the spot price exposure.

Table 4.4. Summary of optimal hedge ratios and the hedging effectiveness (HE) estimated by different models

Models Optimal hedge Variances of | Variance

ratio (h*) returns, 6y reduction (HE)
Un-hedged 0 0.000190170 -
OLS 0.85551 0.000053998 71.61%
VECM 0.85927 0.000050528 73.03%
BGARCH (Diag-VECH ) 0.85931 0.000049268 75.84%
BGARCH (Diag-BEKK) 0.86136 0.000049226 76.10%

The results in estimating hedge ratios by using spot futures price as a proxy for spot palm oil price show
significant improvement over the past studies (e.g., Go and Lau (2014); Ong et al. (2012); (Awang et al., 2014)
etc.) on FCPO conducted in Malaysia signifying that the crude palm oil futures market in Malaysia provides a
reasonably higher level of hedging efficiency.

5. Out-of-the Sample Hedging Performance

Hedging effectiveness is also evaluated for out-of-sample periods which is said to be more reliable measure to
evaluate effectiveness of the hedge ratios. This is due to the fact of the concern of the investors about the futures
performance. For out-of-sample test, 162 trading days observations of the sample (January 3, 2017 to August 30,
2017) are used. Hedge ratios estimated for the periods (January 4, 2010 to December 30, 2016) are used to evaluate
the out-of-the sample or post sample hedging performance. The results of the out-of-sample (post-sample) periods
performance are reported in table 5.1.
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Table-5.1. Out-of-sample comparisons of hedging effectiveness of different models

Models Variances of portfolio returns, ¢’ Variance reduction
Un-hedged 0.0001414371 -

OLS 0.0000366378 74.10%

VECM 0.0000355538 73.83%

BGARCH (Diag-VECH) 0.0000359869 74.35%

BGARCH (Diag-BEKK) 0.0000366412 74.58%

The out-of sample test results presented in table 5.1 clearly show that the time varying hedge ratios estimated by
BGARCH (1, 1) models perform better than the constant hedge ratios estimated by OLS and the VECM in reducing
the risk. Both in sample and post sample data produce consistent results that the dynamic hedging models are
preferable in hedging performance than the constant hedging models. These results are consistent with many other
papers such as: Park and Switzer (1995); Yang and Allen (2004); Choudhry (2004); Floros and Vougas (2006);
Bhaduri and Durai (2008); Kumar et al. (2008). However, the preference of dynamic hedging models over the
constant hedge models are to some extent depends on investors risk preferences (Myers, 1991) and the trade-off
between the cost (transactions) and the benefit in risk reduction (Park and Switzer, 1995). Use of GARCH method
requires the investors to adjust their position time to time which involves transaction costs. If the investors are
extremely risk-averse and the rebalancing of the position is not too frequent, then the use of GARCH models may be
the preferable strategy to hedge the risk.

6. Conclusion

This study evaluates hedging effectiveness of crude palm oil futures contracts traded on Bursa Derivatives
Malaysia (BMD) berhad. Three different competing econometric models (OLS, VECM and Bivariate GARCH
models) are employed to estimate the hedge ratios and their effectiveness. Hedging effectiveness of different models
is evaluated for in sample periods (January 4, 2010 to December 30, 2016) that consist of 1718 trading day
observations and the out-of-sample periods (January 3, 2017 to August 30, 2017) that consist of 162 trading day
observations. The study found that bivariate GARCH (1, 1) models perform better both in terms of producing larger
hedge ratios and reducing of larger proportion of the risk than the other hedge models employed in this study. The
results are consistent for both in sample and the out-of-sample periods. The empirical findings suggest that bivariate
GARCH (particularly diag-BEKK GARCH) model can be used as a better model to construct hedging strategy in
Malaysian crude palm oil futures market. Furthermore the GARCH model is also better known as able of capture the
conditional variances between the change in spot price and the futures prices. Overall from the results it can be
concluded that the CPO futures contract in Malaysia is reasonably a good derivative instrument to hedge the risk
associated in the spot price fluctuation of the crude palm oil. In other words, it provides reasonably a good level of
hedging effectiveness and the bivariate GARCH can be utilized as a potentially superior to the constant hedge
models to construct hedging strategy. Further research may be conducted by using different futures (e.g., futures 1,
futures 2 and so on) contracts to compare their relative effectiveness and also based on data frequency (e.g., weekly
or monthly data).
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