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1. Introduction 
The higher derivatives of motion are rarely discussed. In real life, we normally experience the effect not only of 

acceleration, but also of jerk and jounce. Mathematically, jerk is the third-order derivative of our position with 

respect to time, whereas jounce is the fourth-order derivative. The classic example is a riding roller coaster which 

involves different types of motion during its cycling rounds. The feeling of a sudden change in acceleration is 

normally termed jerk, while the jounce is related to how often one feels the change, as the ride moves upwards and 

downwards. 

The same applies also in economics to the standard macrodynamic framework that studies the trade-off between 

inflation and unemployment, namely the Phillips curve (Blanchard  et al., 2015). Normally, people expect inflation 

to increase as a result of an upward demand shift due to expansionary government policies. A high inflation rate 

today is likely to be followed by a high inflation rate tomorrow. But if the expected and the real inflation turn out to 

be equal, people do not expect a change in the level of inflation. As a result, the actual level of unemployment would 

fall short of its normal levels. Standard textbooks relate these movements around the natural (long run) equilibrium 

to an accelerating inflation rate. Indeed, as aggregate demand increases, more workers will be hired by firms in order 

to produce more output to meet the rising demand, and unemployment will decrease accordingly. However, due to 

the higher inflation, workers will claim for higher real wages to keep the pace of price change. This will diminish 

firms' profits and finally lead to a decrease in labor force employment. As a consequence, the rate of unemployment 

will move back to its natural rate, though inflation will be higher than its initial level. The wage-price spiral could 

emerge. Consequently, as pointed out by Lucas (1976) the attempt to decrease unemployment below its natural level 

will not produce any effect in real terms in the long run, unless policy changes are temporarily unanticipated, which 

leaves to the system only an accelerating level of inflation (Turnovsky, 2011). 

The aim of this paper is to reinterpret the accelerationist Phillips curve, by studying the effect of the higher-

order derivatives of acceleration. We show that a complex dynamic behavior emerges when dealing with a jerk and 

jounce displacement of price settings, whose simple unfolding leads to a three-dimensional vector field which 

generates a double-scroll chaotic attractor (Wang  et al., 2009). 

The paper develops as follows. The second Section derives the continuous-time variant of the Phillips curve, 

and the associated output gap, joint with its dynamic properties. The third Section shows the emergence of the 

double-scroll chaotic attractor, using the transformation of the higher order inflation derivatives in terms of the 

Arneodo system. A brief conclusion reassesses the main findings of the paper, and a subsequent Appendix provides 

all the necessary proofs. 

 

2. The Model 
Consider the continuous-time version of the standard New Keynesian model developed by Werning (2011), 

where Households maximize the following separable utility function in consumption, C, and labor force, N, with 

elasticity , and discounted at a rate  ,  
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Keywords: New Keynesian model; Phillips curve; Jerk and jounce variation; Double scroll attractor. 

http://arpgweb.com/index.php


International Journal of Economics and Financial Research, 2017, 3(11): 315-322 

 

316 

PCWNiBB

dte
N

C t













 

 





s.t.

1
logmax

0

1






 

 

under the budget constraint where P is the level of prices, W is the nominal wage, and B is the amount of bonds 

issued at the nominal interest rate, i. 

Define the inflation rate as 
P
P . Standard Keynes-Ramsey optimization rule provides the following growth 

rate of the economy 

  i
C

C
     (1) 

Assume now a competitive final goods producer that aggregates a continuum of intermediate inputs according to the 

following 
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with elasticity )1,0( , and where a continuum of monopolistically competitive intermediate goods firms indexed 

by  1,0j  produce according to 

jj Anty )(      (3) 

Being A the constant level of technology. 

Following Rotemberg (1982), Schmitt-Grohé and Uribe (2004), and Fernández-Villaverde  et al. (2014), we also 

assume that in presence of sticky prices, intermediate goods producers per period profits are 
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though they have to pay a quadratic price adjustment cost 
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where   is the degree of stickiness. 

Hence, the optimal control problem of optimizing firms reads 
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whose solution implies the following planar system of differential equations 
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But since in a symmetric equilibrium Pp j  , then (7) reduces to 
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and with a bit of mathematical computations, we can easily derive  
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Since in equilibrium aggregate consumption must be equal to aggregate output, and therefore in growth rate terms 

 Y
Y

C
C 

, hence the equation for inflation in (9), i.e. the New Keynesian Phillips curve, can be also written as 
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where X measures the output gap from the natural value of income, and ri
X
X  


 is the standard IS curve 

equation. Notice from (10) that inflation increases, and the economy overheats, when future output gaps are high. 

Using the log-linearization Xx log , we close the model via the following three-dimensional system 

rix          (IS) 

x         (PC) 

xii x  
   (TR) 

where 

 )1)(1(  , and (TR) is the Taylor rule followed by the central bank (see Galí (2008); Carlin and Soskice 

(2009); Werning (2011)).
1
 

Substituting (TR) into (IS), we finally obtain 
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where x and   are the jump variables of the autonomous system. In equilibrium, ),(   xE , where 
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which implies also that, a zero inflation target is always associated to a close-to-zero output gap. 

Our aim is to prove that, in the vicinity of the optimal target, two cases can emerge, with completely different 

long-run dynamics. In particular, we show that: 1) if 1 , the equilibrium is unique, and according to the Taylor 

principle in TR, this means that i increases more than one-for-one with inflation rate,  ; 2) if 1 , the 

equilibrium is indeterminate, with periodic solutions that move the system dynamics off the saddle-path stable steady 

state. In the next section, this latter indeterminacy outcome will be further exploited to show the possibility of 

chaotic dynamics. 

 

3. The Double Scroll Chaotic Dynamics 
Consider the following linearization matrix associated with system (S) at the steady state, E

*
, that is: 
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Let the characteristic polynomial associated with J be 

  JJJI DetTrDet 2         (11) 

where I is the identity matrix, and 

 xxxx  JTr              (12a) 

  )1(Det   xxxxJ      (12b) 

are the Trace and Determinant of J, respectively. 

In order to check whether system (S) may exhibit a set of periodic trajectories, the following must hold. 

 

Proposition 1 If the autonomous system (S) has an equilibrium point E
*
 with a pair of complex conjugate 

eigenvalues, i 2,1 , associated with the Jacobian matrix, J, then the dynamic flow in the neighborhood of 

the equilibrium exhibits a repelling or attracting focus. 

 

 

                                                           
1Recall that i* is the real interest rate, and )(x   is the monetary policy sensitivity parameter, nonlinearly depending on the 

output gap (Gali, 2008). 
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Proof. Solving (11), we easily obtain that 2
Tr

2,1
 J , where  DetJTrJ 4)( 2  . Then, using (12a) and 

(12b), we have also that i 2,1 , where 
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2
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  xxxx , which is possible only if 1 , since  1,0 . The latter implies that 

indeterminacy of equilibrium emerges. Moreover, a topological change from determinacy to indeterminacy occurs 

when   is close to unity, at which DetJ vanishes, and the structure of eigenvalues collapses to a repeated solution 

 2,1 . 

The tools of global analysis can be finally useful to investigate the stability of the equilibrium, when we move 

off the small neighborhood of the steady state. More precisely, we will demonstrate that the economy described by 

system (S), in presence of an accelerating inflation, may exhibit chaotic fluctuations around the natural rate of 

unemployment. We prove this by showing the set of necessary conditions for the emergence of a double scroll 

attractor, and determine the regions in the parameter space which imply the existence of such chaotic dynamics. The 

demonstration is not trivial and requires several steps to be accomplished. 

Following Bella  et al. (2013), the first step is to put system (S) in a form that resembles the nonlinear Arneodo 

system, which describes a family of three-dimensional autonomous differential equations of the following jerk 

function 

0)(21   g      (13) 

whose global structure is topologically equivalent to the original system (S), and where )(g  is a third-degree 

polynomial. Moreover, assuming that the price variation is  px 
1 , then price acceleration is 

  pxx 12 . Continuation of price derivatives over time provides a price jerk (i.e., an acceleration in 

inflation) given by   pxx 23 , and finally a jerk in inflation (i.e., a jounce in price) at   px3 . With 

these derivatives in hand, equation (14) can be put in the following three-dimensional hypernormal form  
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which in embryo contains several bifurcation singularities, and very rich associated dynamics, including the 

emergence of a complex chaotic attractor, crucially depending on the unfolding parameters TrJ1 , 2 , 

and DetJ3 , provided that )2(1 xs xxxxx    is the term resulting from a second-order Taylor expansion in 

the equations of system S (see, (Gamero  et al., 1999)). 

Interestingly, both the size and sign of s1 provide very useful economic insights. In detail, s1 represents the 

second order derivative of x  with respect to x, which can be interpreted as a measure of the acceleration of speed 

adjustment of the output gap from its natural steady state level. Basically, this also suggests that, a negative sign of s1 

would imply an increase in magnitude in the output gap, which also translates in an accelerating inflation rate to 

adjust the economy after the output shock, as suggested by the standard assumptions of the New Keynesian model. 

Hence, if we slowly start applying a force in terms, for example, of an expansionary public spending, this may 

produce a small jerk on the inflation rate, and perhaps even a jounce, as we continuously apply more force on public 

budget to lower the unemployment rate (an increase the output gap) below its natural rate. 

For the purpose of our paper, this means that only when 01 s , and the standard non-accelerating inflation rate 

of unemployment (i.e., NAIRU) assumptions are confirmed, the double-scroll chaotic scenario is likely to emerge. 

We are able to show these differences numerically in the following example. 

Example 1: Let )0,0(),(   xE . Assume the hump-shaped function 2

2x

e


 , which is continuous in all 

its derivatives and equal to unity at zero output gap, 1)0(  . Consider also from Proposition 1 that, when 0

, both 
2

Tr
2,1

J  and 134   , whereas 01 s . If we deviate from the zero inflation equilibrium, an output gap is 

produced. Without any loss of generality, assume in fact 001.0 ri , as in nowadays modern economies, set 

also a small social discount rate, 002.0 , namely agents are more willing to anticipate future consumption. It 

follows consequently that )02.0,019.0(),(  x , that is to say: an increase in inflation of 2%, due to an active 

public policy will increase the output gap of around the same amount. But this also would imply a jerk/jounce 

adjustment of inflation towards the equilibrium, i.e. 007.01 s . Since 008.0  and 0 , the structure of 

eigenvalues is still in the zone of topological change, then, the hyperbolic fixed point of S starts to exhibit a double 

scroll scenario (see Fig. 1). 
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Fig-1. The double scroll attractor 

 
 

It appears finally that the two-dimensional equilibrium manifold scrolls around a one-dimensional unstable 

branch, giving rise to the complicated transition from a stable/unstable Hopf bifurcating cycles towards the double 

scroll chaotic dynamics. 

 

4. Conclusions 
This paper innovates the literature regarding the dynamics in a continuous Phillips curve, by showing that a 

double scroll strange attractor emerges if higher order derivatives in the inflation rate are computed, giving rise to an 

Arneodo system of differential equations. In details, standard textbooks relate these movements around the natural 

(long run) equilibrium to an accelerating inflation rate. Indeed, as aggregate demand increases, more workers will be 

hired by firms in order to produce more output to meet the rising demand, and unemployment will decrease 

accordingly. However, due to the higher inflation, workers will claim for higher real wages to keep the pace of price 

change. This will diminish firms' profits and finally lead to a decrease in labor force employment. As a consequence, 

the rate of unemployment will move back to its natural rate, though inflation will be higher than its initial level. The 

wage-price spiral could emerge. Hence, the attempt to decrease unemployment below its natural level will produce 

economic effect in real terms only if an accelerating level of inflation is accepted, although this might trap the 

economy in a chaotic scenario. 

 

Appendix 
Consider the continuous-time version of the standard New Keynesian model developed by Werning (2011), 

where Households maximize the following separable utility function in consumption, C, and labor force, N, with 

elasticity  , and discounted at a rate  ,  
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under the budget constraint where P is the level of prices, W is the nominal wage, and B is the amount of bonds 

issued at the nominal interest rate, i. 

The problem can be solved via the current value Hamiltonian function 
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with the following necessary first order conditions 
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     (A.2a) 

WN      (A.2b) 

i    (A.2c) 

where   is the costate variable, namely the shadow-price of bonds issued to the market. 

Define the inflation rate as 
P

P . Then, using (A.2a) and (A.2c), the growth rate of the economy, 
C

C , is 
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  i      (A.3) 

Assume now a competitive final goods producer that aggregates a continuum of intermediate inputs according to the 
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with elasticity )1,0( . 

As it is standard in the literature, cost minimization assures the following demand for intermediate good j  
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given the aggregate price structure 
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Assume also a continuum of monopolistically competitive intermediate goods producers  1,0j . 

Let production uses labor only to simplify the analysis. Then, we have also 
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Being A the constant level of technology. 

In presence of sticky prices, intermediate goods producers per period profits are 
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that is explicitly, by substituting (A.4) and (A.5),  

Y
A

W
p

P

p
j

j






















     (A.9) 

though they have to pay a quadratic price adjustment cost 
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where   is the degree of stickiness. 

Hence, the optimal control problem of optimizing firms reads 
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whose solution implies the maximization of the following current value Hamiltonian function 
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and therefore 
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But since in a symmetric equilibrium Pp j  , then (A.13a) and (A.13b) reduce to 
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Time derivative of (A.13c) reads 
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Substituting (A.14) into (A.13d), we easily derive  
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Since in equilibrium aggregate consumption must be equal to aggregate output, 
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P
WCN 

 and 
A

WP
1



 , thus 





 














1
1

1
AC      (A.17) 

which in growth rate terms implies that 
Y

Y

C

C 
, and thus by (A.3)  

  i
Y

Y
     (A.18) 

 

Hence, the equation for inflation in (A.15) becomes 









 













 1

1

1

AP

W
     (A.19) 

 

Similarly, if we define the natural output as 
nY , and the natural real interest rate as  ir , then 

 r
Y

Y
n

n
         

and also 

A

W
P

n
n

1




      

where 
nn PW /  is the natural wage rate. 

Define the output gap as YYX n / . Hence 

ri
Y

Y

Y

Y

X

X
n

n

 


     (A.20) 

which is the standard IS curve. 

Then, we can derive a new version of (A.15), in terms of output gap, 





 




nn

nn

PW

PWPW

/

//1
     (A.21) 

but since we know that 
P
WCN 

,and that market clearing implies YC   and AYN / , then 

















 1

1

/

/
X

Y

Y

PW

PW
nnn

     (A.22) 

hence, substituting (A.22) into (A.21), we derive the relation between inflation and the output gap 

  



  


  1

1 1X      (A.23) 

 

Put together (A.20) and (A.23) to obtain the system 

ri
X

X
 


               (A.24a) 

  



  


  1

1 1X     (A.24b) 

joint with the Taylor rule followed by the central bank 

Xii x log  
       (A.25) 

to close the model. 

Using the log-linearization by defining 
nYYXx logloglog  , we can therefore approximate the following 

series 
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1)1(11
)1(1 

 xeX
x




      (A.26) 

Using (A.26), the system in (A.24a), (A.24b) and (A.25) becomes 

 

 

rix           (A.27a) 

x          (A.27b) 

xii x  
     (A.27c) 

 

where 





)1)(1( 
  (see Galí (2008); Werning (2011)). 

Substituting (A.27c) into (A.27a), we finally obtain 

x

xrix x







 



 )1(
     (S) 

where x  and   are the jump variables of the autonomous system. 
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