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Abstract: The stochastic system is very importment in many aspacts. Wiener processes is a sort of importment
stochastic processes. Wiener square processes is a class of useful stochastic processes in practies,its study is very
value.In this paper,we study Wiener square processes using haar wavelet and wavelet transform.we study its some
properties and wavelet expansion. Index Wiener Integral processes is a class of useful stochastic processes in
practies, its study is very value.In this paper,we study it using haar wavelet and wavelet transform on [0,t].we study
its some properties and wavelet expansion.
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1. Introduction

Wiener processes are a sort of importment stochastic processes. Wiener square processes is a class of useful
stochastic processes in practies, its study is very value.

We will take wavelet and use them in a series expansion of signal or function. Wavelet has its energy
concentrated in time to give a tool for the analysis of transient, nonstationary, or time-varying phenomena. It still has
the oscillating wavelike characteristic but also has the ability to allow simultaneous time and frequency analysis with
a flexible mathematical foundation. We take wavelet and use them in a series expansion of signals or functions much
the same way a Fourier series the wave or sinusoid to represent a signal or function. In order to use the idea of
multiresolution, we will start by defining the scaling function and then define the wavelet in terms of it.

With the rapid development of computerized scientific instruments comes a wide variety of interesting problems
for data analysis and signal processing. In fields ranging from Extragalactic Astronomy to Molecular Spectroscopy
to Medical Imaging to computer vision, One must recover a signal, curve, image, spectrum, or density from
incomplete, indirect, and noisy data .Wavelets have contributed to this already intensely developed and rapidly
advancing field .

Wavelet analysis consists of a versatile collection of tools for the analysis and manipulation of signals such as
sound and images as well as more general digital data sets ,such as speech, electrocardiograms ,images .Wavelet
analysis is a remarkable tool for analyzing function of one or several variables that appear in mathematics or in
signal and image processing .With hindsight the wavelet transform can be viewed as diverse as mathematics ,physics
and electrical engineering . The basic idea is always to use a family of building blocks to represent the object at hand
in an efficient and insightful way, the building blocks themselves come in different sizes, and are suitable for
describing features with a resolution commensurate with their size .

There are two important aspects to wavelets, which we shall call “mathematical” and “algorithmical”
.Numerical algorithms using wavelet bases are similar to other transform methods in that vectors and operators are
expanded into a basis and the computations take place in the new system of coordinates .As with all transform
methods such as approach hopes to achieve that the computation is faster in the new system of coordinates than in
the original domain, wavelet based algorithms exhibit a number of new and important properties .Recently some
persons have studied wavelet problems of stochastic process or stochastic system ([1-18]).

2. Basic Definitions

Definition 1

Let X(t) =W?(t),t>0 )

W(t) is Wiener processes, we call X(t) is Wiener square processes.
We have

EW*(t) =DW (1)) + EW ()" =o't

Let s<t, we have
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R(s,t) = EX () X (s) = EW*(S)W*(1))
=EW*(s)W (1) -W (s) +W(s))*
= EW*(s)W () -W(s))* + EW*(s))

=o%so?(t—s)+30"s?

4 4.2 (2)
=o's(t—s)+30"s
Definition 2
Let {x(t),teR} is a stochastic processes on probability space (Q, g, P) ,we call
1 x—t
W(s, X) = = j X(t) (4—)dt @3)
SR S

is wavelet transform of x(t) . where,y is mather wavelet([11]).
Then, we have

W(s, x+7) _—j KO hat @
Definition 3
Let mather wavelety(x) is function:
1,0£x<1
2
1
w(X) = —L§£x<l (5)
0, other

we call y(x) is the Haar wavelet.
Then, we have
S
Lx—§£t<x
y(—)= . (6)
—Lx—sst<x—§

Lx+r—%£t<x+r
)= ¢ D
—Lx+r—sst<x+r—z

X+7-t
S

w(

3. Some Results about Density Degree
We have

R(z) = E[W(s, y)w(s, y +7)]
= E[Z I X(t)w(—)dt][ j X(t )y C———

— Elff, xxww O

y+2' t, )dtl]

— = JJ ExOxew( L tl)oltoltl
- Siz j . [0t (t—t)+ 3a4t12]y/(yT_t)

w(yf‘“)dtdti
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1 b y—t, y+7r-t
=S ottt ()

], 3o Dy )

— [ ot (P B

+ff, 20t Dy (T dua)

=1, +1,
Where

= Jf, oty e

1 a2, YL y+7-t
=3[ 2% Dy —duat,
Then,we have

i Y
=50 [_[y_s/ztdt

y+7 tldtl— y tdt y+r—s/2tldtl

y—s/2 y+7-8

y—s/2 y—s/2 y-s/2 y+7-5/2

_J-yfs tdt.[y+r—s/2tldt1 + J-yfs tdt y+7-S tldtl]
1

1, = 20ff,, b D]

e N M

S y-s/2 y+7-5/2 y+7-8

_ y—s/2 y—s/2 2 y—s/2 y+7-s/2 2
e e[ e ]

y+7-5/2 y+7-5

y+7-5/2 .
The same time, we have

We let o =1, through compute on above

Then, the zero density degree of W(s , y) is
R”(O)
7*R(0)
The average density degree of w(s, y) is
R(4) (0)
7*R?(0)

can be obtained.

can be obtain all.

4. Wavelet Expansion of System
In order to use the idea of multiresolution, we will start by defining the scaling function and then define the
wavelet in terms of it.

Let real function ¢ is standard orthogonal element of multiresolution analysis {Vj}j € Z (see [7]), then exist
h, €17, have

() =V23 p(2t k)
Let y(t) = V23 (-)*h, ,p(2t —K)

Then wavelet express of Y(t) in mean square is

y(t)=2 2> Clp(27°t—n)

_i , .
+>.22> dly(2't-n)
j<J nez
Where
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B _
Cl=22 IR x()p(27 't —n)dt

_i .
dj=272 jR Xy (277t —n)dt

Then have

[cick]=2 E H [x(®)x(s)]
p(2° lt—n)(p(2 s—m)dsdt

E[didy]=2 Zﬂ [x(©)x(s)]

w (21t —n)y (27 *s—m)dsdt
Where

(@t —m) = {1 m27 <t<(l/2+m)2!

L(A/2+m)27 <t <(l+m)2!

(8)
(25— n) = Ln2* <s<(@/2+n)2°" o
~1,1/2+n)2* <s<(l+n)2*

Use (8) and (10) ,we can obtain value of E [drfdr‘;

If we let normalized scaling function to have compact support over [0,1],then a solution is a scaling function that is a
simple rectangle function

(t) = 10<t<1 0
= 0, otherwise (10)

Now we consider function /(t) that exist compact support set on [—K,,K,],K;,k, >0, and exist enough large M,
have J.Rtml//(t)dt =00<m<M -1, then ¢ exist compact support set on [—K;K,] satisfy
k, +k, =k; +Kk,,k;,k, >0.
Let b(j,k)=<y(t),v; >

a(j k) =<y(t). ¢y >

Let J is a constant, then

3 i _
{22 o2’ x-k),k e Z} v {22 w(2't—k),k e Z} are a standard orthonormal basis of space L*(R),
j>J
then have

y(t)=22> a(J,K)p(2’t—K)

Kez

+3°322b(j, Ky (2't - K)

> Kez
Therefore, the self-correlation function of b( j, m)

R (j K;m,n) = E[b(j, m)b(k, n)]

j j [X(®)x(s)]w (2t —m)y (2% s —n)ditds (12)
And have also the self-correlation function of a( j, m)

R.(j,K;m,n)=E[a(j,m)a(k,n)]

(11)

7 ” [x(®)x(s)] (2t —m)p(2€s —n)dtds (13)
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Then ,we use (8) and (9) have

R,(j,k;m,m ek
itk _ =2 2 ”2tsw(215—n)1//(2ks—m)dtds
—2 2 HR E[X(t)X(s)} (2t - m)yw (2" s —n)dtds §
_i+k _
+2 2 HRZ2t2y/(215—n)1//(2"s—m)dtds
R.(j,k;m,n)
_itk )
=2 2 ”R E[X(t)X(s)kp(2't — m)p(2¥ s — n)dtds
RS ) _itk )
=2 2 ”thSgo(Z‘s—n)qo(st—m)dtds +2 2 HR 2t2p(2's — ) p(2%'s — m)dtds
We have
—M +m)27J +n)27%
R,(jkmm=2 2 [[ ™ tat[ ™ sds
(1/2+m)2° ] (1+n)27* (1+m)y271 (1/2+n)27* (1+m)27] (1+n)27k
_J.mzfi tdtj'(uzm)z*k sds _J-(uz+m)2*1 tdtj.nsz sds +-[(112+m)2’i tdtI(l/ZJrn)Z’k SdS]
(1/2+m)27} 2 (1+n)27k
Ik +m)27) +n)27X s 2t°dt -k
49 2 [j(l/f )2 2t2dt (1/j )2 ds .[mZ | J.(l/2+n)2
m2 n2 (1+m)27] 9 (U2+n)27*
—j 2t _[ 7 ds
W/2+m)27) n2

(1+m)2°} 2 (1+n)27*

+| 2tdtf " ds]
(1/2+m)27) (Y2+n)2~

We obtain

. 1Ln2! <t<(n+1)2!
go(ZJt—n):{’n (n+1)

0, other
1,m2* <s<(m+1)2*

2s—m) =
ol ) {0,other

Then ,we have
_l+k _
R,(j,k;m,n) =2 2 ﬂRz tsp(2's —n)p(2"s —m)dtds
j+k

+2 2 j j . 2p(2's —n)p(2"s —m)dtds

5. Basic Definitions of Wiener Processes
Definition 1
Let

X (t) = j; e*dw(u),t > 0,a e R—{0}

W(u) is Wiener processes, we call X(t) is Index
Wiener Integral processes.
We have

R(s,t) = EX ()X (s)
= E[; e dw(u) '[;ea“’”’dw(u)

2

— O-_ (ea(s+t) _ ea(t—s))
2a

Let

o?=1
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Definition 2

Let {x(t), teR isa stochastic processes on probability space (Q, g, P) ,we call

WG, X)= = j x(t)lb(—)dt

is wavelet transform of x(t) . where,y is mather wavelet([11]).
Then, we have

X+7-—t

W(S, X +7) = j (O ( )dt
Definition 3
Let mather wavelety(x) is function:
l,OSx<1
2
1
v(X) = —L§£x<l (5)
0, other

we call y(x) is the Haar wavelet.
Then, we have

S
ILx——<t<x

X—t
'//(T)= s
-1 X—-s<t<x——
2
S
ILX+7—=<t<X+7
X+7—t
w( S )= q
—Lx+r—s£t<x+r—§
We have

R(r) = E[W(s, y)W(s, y +7)]
- €L [ xOw DAL [ xep i) S

— JJ ExOx yst)w(yf bt
:iz_” 2i(ea(tﬁt) _ea(tftl))w(y_—t)
s° JIR" 2a s

,r,,(yJ“;_tl)dtdt1

:_[J‘J'R2 palt+t) (y t) (y+T tl)dtdtl

I, Ziea““w(y‘t)w(y”‘tl)dtdti]
a S S
1,1,

:_[J'J'R2 ealt+t) (y t) (y+2' tl)dtdtl

Where Then,we have

atet). Y1 y+7—t
Iz=ijz£e<“>w< Sy —)dudt]
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= Elff, xOx@w Dy (R
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s e"’“dtj'y” e™dt,
2a52 y-s/2 y+7-8/2

y+7-5/2

(Y at at,
J-y—slze dt y+7-§ € dtl
_J’y s/2 atdtJ~ atldtl
y+7-5/2

—s/2 -
" Tetdtf’ et ]

y-s y+7-§
The same time, we have

ey (L (Rt

I, =

. = 2as R?

it j o e‘atldtl

y+7-5/2

- 2a52 [Iy-s/z

y y+r-s/2
—J' e"’“dtJ' e *udt,
y—-s/2 y+7-5

y-s/2 at y-s/2 _at
—j e’ dt e i,

y-s y+7-5/2

et et

+7-S

Then, the zero density degree of W(s, y) is
R”(O)
7*R(0)
The average density degree of w(s, y) is
R(4) (0)
7*R@(0)

can be obtained.

can be obtain all.
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We consider wavelet expansions of stochastics processes and show that for certain wavelets, the coefficients of
the expansion have negligible correlation for different scales. we can introduce a modification of the wavelets.

Certain nonstationary processes the wavelets may be chose to give uncorrelated coefficients.

In order to use the idea of multiresolution , we will start by defining the scaling function and then define the

wavelet in terms of it.

Let real function ¢ is standard orthogonal element of multiresolution analysis {Vj}j e Z (see [7]), then exist

h, el?, have

o(t) =2 p(2t—k)
Let (1) =2 (-1)*h, ,p(2t - k)

Then wavelet express of Y(t) in mean square is

y(t)=22> Clp(2°t-n)

+22%Zdn"w(2"'t—n)

j<J neZ

o _
Where, CJ =2 2 jR x()p(27 't —n)dt

_i .
di=2 ZL XDy (2 't —n)dt

Then have
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E[c)cr ]
_ivk _
=2 7] L E[XOx(S)p(2 't -n)p(2 s ~ m)dsdt
E[dJdy |

zz'jizk j j E[x(©)x(s) (27 t —n)y (27 s —m)dsdt

1,m27 <t<(1/2+m)2!

2't—-m _ 8
v = { ~1,@A/2+m)27 <t <1+ m)2”! ©

Where

) L,n2*<s<@/2+n)2*
w(2's—n)= 9)
~1,1/2+n)2*  <s<(1+n)2°*

Use (8) and (10) , we can obtain value of E [drfdr':1

If we let normalized scaling function to have compact support over [0,1],then a solution is a scaling function
that is a simple rectangle function

1,0<t<1
o(t) = ) (10) Now we consider function y/(t) that exist compact support set on
0, otherwise
[k, K,]1,k,, K, >0, and exist enough large M, have J.Rtml//(t)dt =0,0<m<M —1, then @ exist compact
support set on [—Kj, K, ] satisfy K, +K, =k; +K,,K;,k, =0.
Let b(j,k)=<y(t),v; >
a(J,k)=<y(®). 4 >

Let J is a constant, then

3 i
{22 o2’ x-k),k e Z} v {22 w(2't—k),k e Z} are a standard orthonormal basis of space L*(R),

23
then have
J
y(t)=22>"a(J,K)p(2’t—K)
}j(eZ (11)
£ 3 2%b(j, K)p (2t - K)
j>J Kez

Therefore, the self-correlation function of b( j, m)
R (j K;m,n) = E[b(j,m)b(k, )]

j j [X(®)x(s)]w (2t —m)y (2% s —n)ditds (12)
And have also the self-correlation function of a( j, m)
_i+K _
R,(j, K;m,n) = E[a(j,m)a(k,n)] =2 2 ﬂR E[x(®)x(s)]@(2't —m)g(2¥s —n)dtds
(13)
Then , we use (8) and (9) have
R,(J.k;m,n) itk _
ek =2 2 I - ey (21s — )y (2" s — m)dtds

=2 2 jj E[X()X(s)l (2"t — m)y (2"s —n)dtds

+2T j j Ly (s —n)y(2s—m)dtds
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R, (], k;m,n)
_itk )
=2 2 ”R E[x(0)x(s)lp(2't —m)ep(2“s —n)dtds
ik | ik .
=2 2 [[ ep(2ls—n)p(2"s—m)dtds +2 2 [[ e Ip(2)s—n)p(2"s—m)dtds
We have

i (1/2+m)27 (1+n)27*
R, (j,k;m,n) —I } eatdtJ' e®ds y »
) m2-) (1/2+n)2 (1+m)2 at (1+n)2 as
_ Z_sz[ W2+m2’) et W22 egs  (@mzl o e@amz +.[(1/2+m)2'j € dtj.(l/2+n)2'k eds]
- m2- i n2k _J. - e dtJ‘ B e dS
(1/2+m)27 ] n27x
(1/2+m)27} at (1+n)27k as
+2—%[ .[(112+m)2"’eat dt I(1/2+n)2'k 6 s _.[mZ’j € dt.[a/zm)zke ds
m2} n2-k (1+m)27 at (U/2+n)27k as
— .[ e dtj ) e “ds
(/2+m)271 n2-k
(1+m)2°} @n)2
wf et e ds]
(/2+m)27) (1/2+n)2
We obtain
. 1,n2! <t<(n+1)2!
p(2't—n)= (n+3)
0, other
1,m2¢ <s<(m+1)2"
¢(2k S— m) — ( )
0, other
Then, we have
_itk )
R.(j,k;mn)=2 2 _URZ e2™9p(2's —n)p(2" s —m)dtds
_itk
t— j k
—2 2 j ij e 9p(2)s —N)p(2" s — m)dtds
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