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1. Introduction 
The systems are called as an open systems if they exchange of mass, energy and information with the 

environment. The  open systems' study began in works of I. Prigogine [1-3]. The income of the negative entropy - 

"negentropy" into the system from outside leads to the lowering of the entropy of the system [4]. Schrödinger [5] 

showed that this phenomenon is basic in the development of living organisms. There are many sources of negentropy 

in the environment: sunlight [6], high structural proteins which  constitutes the food [5], etc. 

However, the mechanism of negentropy transformation into the information is not described until now. This 

article presents an attempt to improve this situation, based on the model system consisting of the one-dimensional 

ensemble of bi-stable cells connected with the nearest cell [7]. This approach is based on the works of   [8];[9]. 

 

2. The Basic Equations of the Model 
In Ref. Landauer [9]  suggested a model for the description of information processing in arbitrary systems. This 

model describes the switching cell in the form of an asymmetrical bi-stable potential well for the information degree 

of freedom (Fig. 1). He considered that process of the information handling goes in the isothermal conditions. This 

implies that all the other degrees of freedom besides from the informational one play the role of thermostat. In fact, 

this corresponds to the assumption of an infinite heat capacity of the switching cells [10]. 

 
Fig-1. Model of R. Landauer's switching cell. E – energy, X – information coordinate. 

 
According to Ref. Landauer [9], the statistical ensemble of cells is characterized by the numbers of the ensemble 

members  nA and nB in wells A and B, respectively. The behaviors of nA and nB are described by the balance 

equations [9].      

Abstract: This article is devoted to the description of the mechanism of the transformation of negative entropy 
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Here,  t – is the time,  T – is the thermostat temperature, ν- is the transition frequency between the ensemble 

members, U, UA   and UB – are the energies of the interwell barrier and the lowest energies in different wells, 

respectively. Difference Δ= ½(UA - UB ) represents a half of the energy dissipated during the switching process which 

is delivered by some controlling force. In the symmetric equilibrium state, which does not carry information UA = UB 

and nA  = nB. When switching which is accompanying the recording of the information is happened then UA ≠ UB and 

nA  ≠ nB. As a result of switching the system symmetric state relaxes to a new equilibrium distribution 
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as ~ exp(-λt) during time τ, where τ 
-1 

= λ,  with λ  being a characteristic value of the equations (1): 
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By simple transformations one can show [9], that: 
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where τ0 – has a sense of the information lifetime, and τ- is the switching time. 

In contrast to Ref. [9], where the consideration was performed in the isothermal approximation, the problem was 

solved in the adiabatic approximation in Ref. [10], which is closer to the conditions in which real computing devices 

operate. Therefore, the equations (1) were supplemented by the equation of entropy balance.  

Below, we take into account in the equations of the work [10], some adding which describe the information 

propagation in the z-direction. The initial equations are of the form: 
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Here, Т and сH  are the temperature and heat capacity of the cell, respectively, δ   – is the thermal  conductivity 

of the chain [4], c – is the velocity of the propagation of the information in  z-direction, and k – is the Boltzmann 

constant. The last equation (5) describes the transfer of the heat in our system, which we treat as a stationary 

incompressible fluid. This means that we consider that information transmission rate in the z direction being much 

larger than the velocity of possible mechanical displacements along z.  

The first term on the right-hand side of the last equation (5) describes the local temperature change due to the 

energy released due to switching of the cell. In essence, it takes into account the principle of Landauer [9], with the 

modification that we do not assume the isothermal conditions requiring complete removal of the heat from the cell.  

Using of the system (5) instead of an explicit description of the connection of adjacent cells, what leads to an 

infinite system of coupled discrete equations corresponds to the long-wave approximation. 

The system (5) is a system of coupled nonlinear equations which can be solved only numerically. Let us 

introduce new variables: 
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where Т0 – is the temperature of the chain far from the switching region; and value μ is the number of particles per 

cell. Equations (5) now looks as follows: 
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where D=B-A.  Equations (7) have a family of characteristics х = х0 – τ (х0 – is a constant), along which the value α 

+ β (or in dimension variables nA + nB) is conserved. Since through each point of the plane (x, τ) passes exactly one 

characteristic of that family, the value of I = α + β (the Riemann invariant) is a constant throughout said plane 

provided I(τ=0, x)=const=1. 

 

3. Analysis of the Solutions 
For the numeric investigation of the system (7) we have constructed a difference scheme on the grid in the plane 

(x, τ). Due to the presence of the invariant I = α + β= 1 the first two equations (7) are reduced to a single equation 

for α, thus basic equations become as follows 
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For the construction of the difference scheme grid the Euler explicit scheme was used [11, 12]. A stability 

criterion for the problem with the initial data for the heat equation has the form С1 < 1, where 
2

1 /2 xτ δγδС  - is 

the Courant coefficient [11]; δτ  and δx – are the values of the grid steps in τ and  х, respectively. A stability criterion 

for the wave equation has the form С2 = δτ/δx < 1[12].  

Initial data α(x, τ=0) was specified in the form of a rectangular pulse of finite length l = x2 – x1 
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where L – is the size of the integration in х. Initial data χ(x, τ=0) was determined on the basis of equations (8). It 

follows from the first equation (8) that ))0,(ln(/)0,( xαAxχ τ  in the area where 0/  βхα , 

while ))0,(ln(/)0,( xαBxχ τ  in the area where 0/  αхα . These relationships help us to 

imagine the initial temperature distribution χ for a given initial profile α. Let us note that the behavior of )0,(хατ  

is unknown before a solution is obtained. Therefore it is necessary to assume a plausible behavior of  )0,(хατ  and 

compare calculated behavior of  )0,(хατ  with the assumed one in order to match them.  

Note that in the regions where α(x,0) varies quickly (fronts of the pulse, x = x1,2) the calculated values of 

temperature are negative, i.e. χF=χ(x=x1,2,0) < 0, which is characteristic for the non-equilibrium systems [4]. This 

value permits to assess the difference between initial distribution α (x, 0) and the equilibrium one. The solutions of 

the system (8) for the initial data (9) and the values χF > - 0.01 were presented in the article [7]. Below are the results 

of numerical investigation of the system (8) for the smaller values of χF. As it turned out  the behavior of solutions 

(8) in this case differs radically from that previously studied in Zayko [7]. 

Fig. 2 shows typical results of the calculations for the initial values (9) and χF = -0.07. They imply that the initial 

pulse (9) turns in two pulses of shorter duration and greater amplitude, which for some time propagate separately 

apart from each other and then are merging (Fig. 2, solid line). The temperature profile in accordance with the 

principle of Landauer and the second rule of thermodynamics seeks from the initial values to the temperature of 

environment according to the heat conduction equation (thin line in Fig. 2). 
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Fig-2. The results of the numerical calculations by the Eqs. (8) for the initial values (9). A = 0,1, B = 1,1. Bold solid line – α, thin solid line – χ. 

The abscissa dimensionless coordinate is mΔ: Δ=δх=М-1 (М=30, 0≤m≤M), δτ=0,02; γ = 0,02, μ = 1014 [7]; С1 = 0,72,  С2 = 0,6; L=1. 

 
a)                                                  b)         c) 

  
    d)                        e)                      f)  

a)-initial profile of α and χ;  
b) – e) – behavior of  α (left ordinate) and χ (right ordinate) after  n steps on τ: b) n=1, c) n=5, d) n=10, e) n=15;  

f)- comparison the assumed  initial values of χ (solid line) and calculated ones (dot-dash). 

 

Similar results were obtained by numerical analysis of equations (8) for the initial values in the step-like form 

(10) with χF = -0.1(Fig. 3). In this case one pulse occurs near the edge of step, which propagates ahead the edge and 

becomes broader. The value of the pulse in the maximum is of the same order of magnitude as in the previous case. 
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Fig-3. The same as in Fig. 3 for the initial values defined by Eqs.(10) 

       
a)                                             b)     c) 

   
 d)    e)      f)  
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4. Discussion. 
The origin of this phenomenon is connected with the bifurcation. To show this we linearize the equation (8). We 

represent the solution of the Eqs. (8) in the form α = α0 + α1 and χ = χ0 + χ1, where α1 << α0 and χ1 << χ0. 

Substituting this expansion into the Eqs.  (8) and neglecting terms of higher order of smallness, we obtain a system 

of linear differential equations with respect to α1 and  χ1. Perform integral Laplace transform [13] 
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(k – is a wave number) and similarly for χ1. The contour of integration in (11) should be traced to the right of all 

singular points ωs of α1(ω) in the complex plane ω, i.e. Re(ωs) < σ   [13]. Substituting (10) in the system of 

differential equations for α1(τ,х) and  χ1 (τ,х) we receive a system of linear algebraic equations for α1(ω) and  χ1 (ω). 

The condition for the solvability of it is the zero value of its determinant. Using this equation, we obtain the 

dependence k(ω. χ0) 
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The points of bifurcation χ0 = χ0B (8) are the branching points of k(ω,χ0), which coincide with zeroes of k(ω,χ0). 

Value of magnitude of ω in (12) we evaluate from the calculations as ~α
-1

(0,х)∙∂α(0,х)/∂τ. Calculations give the 

following values: for the pulse (9) χ0B ≈ -0,044÷-0,028 and for the step (10) χ0B ≈ -0,044÷-0,035. The difference 

stems due to the different places of the assessments. 

The observed phenomenon looks like the emergence of new bits of information in the system with the income of 

negentropy. Bifurcation leads to the doubling of the total number of bits in the system. 

This mechanism could explain the behavior of different biological systems, both at the cellular and molecular 

level. 

For finding of the solutions of the Eqs. (8) when setting the initial conditions χ(х, 0) for  χ we guided by the 

Landauer principle, linking a local decrease in the entropy and temperature with the place of localization of bits of 

information. Note, that in the Ref. [9], these issues are not addressed. 

If the income of the negentropy is continued further then doubling of the bits will be continued too as a result of 

the cascade of doubling  bifurcations (Feigenbaum cascade [14], Fig. 4), which under certain conditions leads to 

chaotic behavior of the system.  

 
Fig-4. Phase portrait of the solution of the Eqs. (8) for initial values of α(x,0) in the pulse form (9). 

  
Abscissa – α(nδτ, x); ordinate – αх(nδτ, x); n = 5. Left - χF = -0.01 > χB0 [7], right - χF = -0.07 < χB0, χB0 

– threshold of bifurcation. The first doubling bifurcation of the period of phase trajectory is seen. 

 

If so, the present model can be used in order to explain the mechanism of the variability so as the explanation of 

the mechanism of heredity earlier, which is one of the decisive factors of evolution, responsible for the adaptability 

of organisms to changing of environmental conditions. 

 

5. Conclusions 
This work is devoted to the consideration the mechanism of the transformation of negative entropy (negentropy) 

coming into the system from outside into information with the help of the model of one-dimensional chain of bi-

stable elements connected with each other along a certain direction. This phenomenon is connected with the 

bifurcation of doubling the bits of information in the system and occurs if a level of negative entropy exceeds a 

certain threshold. 

The information in the system is represented in the form of areas (fronts) with a sharp change of α(x, 0), i.e. 

inverse filling in asymmetric two-well structure. This is known as double data rate (DDR) coding of information 

[15]. Two types of initial profiles of α(x, 0) are investigated: in the step-like form and in the form of a single 

rectangular pulse. The first case corresponds to one bit, the second - to two bits which were initially prepared in the 

system. In both cases, if the negentropy which is measured by negative temperature in fronts' region exceeds in 
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absolute value the certain threshold the character of solutions sharply changes, i.e. the number of fronts, and 

consequently the number of the information bits is doubling in comparison with the original ones. 

Since this treatment does not rely on any specific ways of representing and processing information as well as not 

associated with a certain type of carriers of information, the results have a wide range of applications. As an 

example, point out copying of genetic information of DNA. Another example is the process of cell division - mitosis. 

In addition to these applications, the present model can be applied to describe the mechanism of variability.  

The results obtained in this article impose the doubt in truth of the assumption of the existence a special 

(biological) form of matter together with gaseous, liquid and solid ones, which is characterized for living organisms 

[16]. 
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