
                Academic Journal of Applied Mathematical Sciences 

                                 ISSN(e): 2415-2188, ISSN(p): 2415-5225 
                                 Vol.  10, Issue. 1, pp: 1-6, 2024 

                       URL: https://arpgweb.com/journal/journal/17 
                         DOI:  https://doi.org/10.32861/ajams.101.1.6 

 
Academic Research Publishing  

Group 

 

 
 

 

1 

Original Research                                                                                                                                                   Open Access 

 

Asymptotic Series of the Associated Legendre Function with Respect to Seismic 

Surface Waves 
 

Mitsuru Yoshida 
Fortran Plan Office, 6-24-7 Yutaka-cho, Kasukabe-shi, Saitama-ken, 344-0066, Japan 
Email: ymit@mub.biglobe.ne.jp 

Article History 

Received: 26 February, 2024 

Revised: 13 April, 2024 

Accepted: 13 May, 2024 
Published: 18 May, 2024 

 

Copyright © 2024 ARPG  
& Author 
This work is licensed under 
the Creative Commons 
Attribution International 

 CC BY: Creative 

Commons Attribution License 
4.0 

 

Abstract 
The asymptotic series of the associated Legendre function is investigated for the angular degrees n=2-13 in the context of 

the amplitude and wavelength of seismic surface waves. The approximate formula for the associated Legendre function is 

used to determine the wavelength and phase velocity of free oscillations of the Earth and long-period surface waves. The 

approximate formula is derived from the first term of the asymptotic series and its error increases with decreasing n. In 

the present study, the effect of higher terms on the approximate formula is studied with respect to the amplitudes of  the 

1st term (a1), the 2nd term (a2), and the 3rd term (a3). For the colatitude angle θ of π/3≦θ≦2π/3, the amplitude 

ratios a2/a1 are approximately  3.5％-1.0％ for n=2-11 and are less than 1.0％ for n ≧ 12, while the amplitude ratios 

a3/a1 are approximately 0.4％ - 0.03％  for n=2-13. The effect of amplitudes of higher terms on the 1st term increases as 

the colatitude angle approaches the pole or the antipode. The wavelengths of the 1st term (λ1) , the 2nd term (λ2) , and 

the 3rd term (λ3) are in the sequence λ1 >λ2 >λ3. The wavelength ratiosλ2 /λ1 andλ3 >λ1 for n=2-13 are 

0.71%-0.93% and 0.55%-0.87%, respectively.  The relationship of the wavelengths between the different angular degrees 

may be expressed as λ n 
k 

 =λn-1
k+1

, where n and k are respectively the angular degree and the ordinal number of the 

asymptotic series. 

Keywords: Asymptotic series; Approximate formula; Associated legendre function; Seismic surface waves. 
 

 

1. Introduction 
In the spherical coordinate system, the equation of wave motion for free oscillation of the Earth for the 

colatitude component can be represented by the associated Legendre’s differential equation [1, 2]. The phase 

velocities of an Earth model were theoretically determined using the approximate formula for the associated 

Legendre function [3] and the theoretical phase velocities were compared with the observed ones [4]. For the study 

of seismic surface waves the approximate formula has been conventionally implemented for small and large angular 

degrees [5-8] with the threshold size of the angular degrees n ≧2 for the colatitude angle π/6≦θ≦5π/6 [9]. The 

approximate formula is derived from the first term of the  asymptotic series of the associated Legendre function for 

mathematical conditions n>>1 and n>>m [10]. The error of the approximate formula increases with decreasing n [3, 

11]. However, the characteristics of the higher terms of the asymptotic series have not been studied yet. Therefore, 

the accuracy of the approximate formula for small angular degrees is not mathematically elucidated. The present 

analysis aims to calculate the higher terms of the asymptotic series and to clarify the effect of the higher terms on the 

first term. 

  

2. Associated Legendre Function  
The wave equation of the free oscillation of the Earth for the colatitudinal  component in the spherical 

coordinate system can be represented by the associated Legendre’s differential equations [5, 6, 10, 12, 13]:  
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where cosθ = x and Θ = y. For m≠0 the solutions are given by the associated Legendre functions Pn
m
(x) and 

Qn
m
(x)  [3, 6]: 

 Θ = Pn
m
(x) = (1 – x

2
)

m/2
 d

m
 Pn(x)/dx

m
                              (4) 

 Θ = Qn
m
(x) = (1 – x

2
)

m/2
 d

m
 Qn(x)/dx

m
 .                                                 (5) 

The first kind of the associated Legendre function Pn
m
(x) and the second  kind of the associated Legendre 

function Qn
m
(x)   give independent solutions for -1<x<1 [10].        

     The solutions of the free oscillations of the Earth have the following form [3, 14]: 

u = Un(r) Yn(θ,φ) e
iωt

 ,                                                                        (6) 

where r is the radius of the Earth, θ and φ are respectively the colatitude and azimuthal angles. ω is the 

angular frequency. Yn(θ,φ) represents a surface spherical function of degree n such that 

Yn(θ,φ) = Pn
m
(cosθ) e

imφ.                                                                 (7) 

The parameters n and m are the angular and azimuthal degrees, respectively. 

 

3. Asymptotic Series  
When n is very large [10], the associated Legendre function is represented as follows: 

Pn
m
(cosθ) = (2e

mπi
 /π3/2 

) cos ( mπ)Г(n+m+1)Σk=0
∞ {[Г(k+m+(1/2)) 

x Г(k-m+(1/2))/( k！Г(n+k+(3/2))(2sinθ)
k+(1/2)

 )] 

x cos[(n+k+(1/2))θ+ (2m-2k-1)π/4 ]} 

[ n+m ≠ negative integer, 2n≠-3, -5, -7, … ]                                     (8) 

In the above formula the right-hand series converges for π/6 <θ<5π/6, and the series provides an asymptotic 

expansion for ε≦θ≦π-ε; [ε>0]  if n and m  are real numbers with n>>m and n>>1.  In the present analysis 

mathematical conditions n≧2 and π/6≦θ≦5π/6 are assumed, as was considered in the study of the approximate 

formula [9].   

Equation  (8) represents that the wave number of the spherical waves is n+k+1/2; accordingly, the wavelength (

λ ) and phase velocity  (C) are determined from: 

λ = 2πa/(n+k+1/2),                                                                         (9) 

C =  λ/T =  2πa/[(n+k+1/2)T],                                                         (10) 

where a is the radius of the Earth (a=6371 km) and T is the eigenperiod. 

In the calculation of the higher terms of the asymptotic series, Eq. (8) was separated into two functions, W(n, m) 

and  Z(k, n, m):  

Pn
m
(cosθ) = W(n, m) Z(k, n, m)                                                           (11) 

W(n, m) = (2e 
mπi

/π3/2
) cos(mπ)Г(n+m+1)                                        (12) 

                 Z((k, n, m)  = Σk=0 
∞ [ Г(k+m+(1/2))Г(k-m+(1/2))/ 

                 x             (k! Г(n+k+(3/2)) (2sinθ)
k+(1/2)

 ) 

                 x             cos [(n+k+(1/2))θ + (2m-2k-1)π/4] }                          

= A1(k =0) + A2(k=1) +A3(k=2) + …                                                 (13) 

It is noted that the function W(n, m) depends only on the parameters n and m, while the function Z(k, n, m) 

depends on the parameters n, m, and k. From Eq. (13) we determine the coefficients of the 1st term (A1), the 2nd 

term (A2), and the 3rd term (A3). 

 

4. Coefficients of the Higher Terms  
4.1. Coefficient of the 1st Term (k=0) 

From Eq. (11), 

A1 = [ Г(0+m+(1/2))Г(0-m+(1/2))/(0!Г(n+0+(3/2))(2sinθ)0+(1/2)
)] 

x  cos[(n+0+(1/2))θ + (2m-2・0 -1)π/4].                            (14)   

We separate A1 into an amplitude term a1 and a phase angle term b1 as follows: 

A1(k=0) = a1・ b1                                                                              (15) 

a1 = Г(m+1/2)Г(-m+1/2)/(Г(n+(3/2))(2sinθ)
0+(1/2)

 )                        (16) 

b1 = cos[(n+1/2)θ + (2m-1)π/4].                                                       (17) 

 

4.2. Coefficient of the 2nd Term (k=1) 
   From Eq. (13), 

A2 = [ Г(1+m+(1/2))Г(1-m+(1/2))/(1!Г(n+1+(3/2))(2sinθ)
1+(1/2)

)] 

x   cos[(n+1+(1/2))θ + (2m-2・1 -1)π/4].                                         (18) 

We separate A1 into an amplitude term a1 and a phase angle term b1 as follows: 

                     A2(k=1) = a2・ b2                                                              (19)  

                     a2 = Г(m+(3/2))Г(-m+(3/2))/(Г(n+(5/2))(2sinθ)
3/2)

 )    

= (m+(1/2))(-m+(1/2))/{(n+(3/2))(2sinθ)} ・a1                                  (20) 

b2 = cos[(n+(3/2))θ + (2m-3)π/4].                                                     (21) 
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4.3. Coefficient of the 3rd Term (k=2) 
   From Eq. (13), 

A3 = [ Г(2+m+(1/2))Г(2-m+(1/2))/(2!Г(n+2+(3/2))(2sinθ)
2+(1/2)

)] 

x  cos[(n+2+(1/2))θ + (2m-2・2 -1)π/4].                                             (22) 

We separate A3 into an amplitude term a3 and a phase angle term b3 as follows: 

A3(k=2) = a3・ b3                                                                                  (23) 

                     a3 = Г(m+(5/2))Г(-m+(5/2))/{2!Г(n+(7/2))(2sinθ)
5/2)

 }    

                           = {(m+(3/2))(m+(1/2))/{(-m+(3/2))(-m+(1/2))}/ 

                      x      {2!(n+(5/2)) (n+(3/2)) (2sinθ)
 2
 } ・ a1                                          (24) 

b3 = cos[(n+(5/2))θ+ (2m-5)π/4].                                                         (25) 

The amplitude terms a1, a2, and a3 are calculated for three Zones of the colatitude angle θ: 

Zone 1:      for π/3 ≦θ≦ 2π/3,                                                           (26) 

Zone 2:      for θ = π/4 or 3π/4,                                                            (27) 

Zone 3:      for θ = π/6 or 5π/6.                                                            (28) 

For  Zone 1, the variable s is defined as: 

s  = 1/sinθ = 1.154 ∼ 1.0 ≒ 1.0; s
2
 ≒ 1.0.                                              (29) 

For  Zone 2, the variable s is defined as: 

s  =  1/sinθ =  √2; s
2
 = 2.                                                                       (30) 

For  Zone 3, the variable s is defined as: 

 s  =  1/sinθ =  2; s
2
 = 4.                                                                          (31) 

 

5. Results 
In the calculation of amplitudes and phase angles of the higher terms of the asymptotic series, the parameter m= 

0 is assumed because the present analysis assumes a spherically symmetric Earth.  The calculated amplitudes and 

wavelengths of the 1st term, the 2nd term, and the 3rd term for small n (n=0-13) are shown in Table 1, Table 2, and 

Table 3. Although the calculations are done for n=0 and n=1, they are merely shown as a reference, because they do 

not satisfy the mathematical conditions of n≧2, as mentioned in Section 1. 

 
Table-1. Amplitudes of the higher terms of the asymptotic series. The amplitudes of the 1st term, the 2nd term, and the 3rd term are denoted by 

a1, a2, and a3, respectively. For the function W(n,m) see the text 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
p=2/π3/2 ,  q=2π1/2 /(2sinθ)1/2 ,  s=1/sinθ   

 
Table-2. Amplitude ratios a2/a1 and a3/a1 for Zone 1 (π/3≦θ≦2π/3), Zone 2 (θ=π/4 or 3π/4), and Zone 3 (θ=π/6 or 5π/6)       

 Zone 1 Zone 2 Zone 3 

ｎ a2/a1     a3/a1 a2/a1     a3/a1 a2/a1     a3/a1 

0 0.08333   0.01923 0.11785   0.03846 0.16666   0.07692 

1 0.05         0.00806 0.07071   0.01612 0.10          0.03224 

2 0.03571   0.00446 0.05050   0.00892 0.07142   0.01784 

3 0.02777   0.00284 0.03927   0.00568 0.05554   0.01136 

4 0.02272   0.00196 0.03213   0.00392 0.04544   0.00784 

5 0.01923   0.00144 0.02719   0.00288 0.03846   0.00576 

6 0.01666   0.00110 0.02356   0.00220 0.03332   0.00440 

7 0.01470   0.00087 0.02078   0.00174 0.02940   0.00348 

8 0.01315   0.00070 0.01859   0.00140 0.02630   0.00280 

9 0.01190   0.00058 0.01682   0.00116 0.02380   0.00232 

n W(n, m) a1 a2          a3 

0 p • 0! q s • a1/12 s
2
 • a1/52 

1 p • 1! q • 2/3!! s • a1/20 s
2
 • a1/124 

2 p • 2! q • 2
2
/5!! s • a1/28 s

2
 • a1/224 

3 p • 3! q • 2
3
/7!! s • a1/36 s

2
 • a1/352 

4 p • 4! q • 2
4
/9!! s • a1/44 s

2
 • a1/508 

5 p • 5! q • 2
5
/11!! s • a1/52 s

2
 • a1/693 

6 p • 6!  q • 2
6
/13!! s • a1/60 s

2
 • a1/907 

7 p • 7! q • 2
7
/15!! s • a1/68 s

2
 • a1/1,148 

8 p • 8! q • 2
8
/17!! s • a1/76 s

2
 • a1/1,419 

9 p • 9! q • 2
9
/19!! s • a1/84 s

2
 • a1/1,717 

10 p • 10! q • 2
10

/21!! s • a1/92 s
2
 • a1/2,044 

11 p • 11! q • 2
11

/23!! s • a1/100 s
2
 • a1/2,400 

12 p • 12! q • 2
12

/25!! s • a1/108 s
2
 • a1/2,784 

13 p • 13! q • 2
13

/27!! s • a1/116 s
2
 • a1/3,196 
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10 0.01086   0.00049 0.01535   0.00098 0.02172   0.00196 

11 0.01         0.00041 0.01414   0.00082 0.02         0.00164 

12 0.00926   0.00036 0.01309   0.00072 0.01852   0.00144 

13 0.00862   0.00031 0.01219   0.00062 0.01724   0.00124 

 
Table-3. Wavelengths of the higher terms of the asymptotic series. The wavelengths of the 1st term, the 2nd term, and the 3rd term are denoted 

by λ1, λ2, and λ3 

n λ1 (km) λ2 ((km) λ3 ((km) λ2 /λ1  λ3 /λ1 

0 80,060 26,686 16,012 0.33332 0.2 

1 26,686 16,012 11,437 0.60001 0.42857 

2 16,012 11,437 8,895 0.71427 0.55552 

3 11,437 8,895 7,278 0.77773 0.63635 

4 8,895 7,278 6,158 0.81821 0.69229 

5 7,278 6,158 5,337 0.84611 0.73330 

6 6,158 5,337 4,709 0.86667 0.76469 

7 5,337 4,709 4,214 0.88239 0.78958 

8 4,709 4,214 3,812 0.89488 0.80951 

9 4,214 3,812 3,481 0.90460 0.82605 

10 3,812 3,481 3,202 0.91316 0.83997 

11 3,481 3,202 2,965 0.91985 0.85176 

12 3,202 2,965 2,761 0.92598 0.86227 

13 2,965 2,761 2,583 0.93119 0.87116 

 

6. Discussion  
The function  W(n, m) expressed by Eq. (12) shows that it is proportional to the factorial of the angular degree n 

and increases monotonously with increasing n (Table 1). The function  Z(k, n, m) expressed by Eq. (13) shows that 

the amplitudes of the 1st term a1, the 2nd term a2, and the 3rd term a3 expressed by Eq. (16),  Eq. (20), and Eq. (24), 

respectively, depend on 1/(sinθ)
1/2

, 1/(sinθ)
3/2 

,  and   1/(sinθ)
5/2 

, respectively. These amplitude terms decrease 

monotonously with increasing n, forming the sequence  a1>a2>a3 (Table 1). The ratios a2/a1 and a3/a1 decrease 

with increasing n for Zone 1, Zone 2, and Zone 3 (Table 2). As mentioned in Section 1, the approximate formula is 

derived from the 1st term of the asymptotic series. Considering the above amplitude sequence, the approximate 

formula may be mostly influenced by the 2nd term. 

 

6.1. Characteristics of the Amplitude Terms 
   The amplitude ratios a2/a1 (Table 2) are: 

       For Zone 1,      for n=2-11, approximately  3.5% - 1.0&%, 

                               for n ≧12,    approximately         < 1.0%, 

       For Zone 2,      for n=2-13, approximately   5.0% – 1.2%, 

       For Zone 3,      for n=2-13, approximately   7.1% - 1.7%. 

   The amplitude ratios a3/a1 (Table 2) are: 

      For Zone 1,      for n=2-13, approximately  0.44% - 0.03%, 

      For Zone 2,      for n=2-13, approximately   0.89% – 0.06%, 

      For Zone 3,      for n=2-3,   approximately   1.7% - 1.1%. 

                              for n=4-13, approximately   0.7% - 0.1%. 

          These results are summarized as follows: 

(A)  The amplitude ratios of both a2/a1 and a3/a1 increase in the following order: 

                                for Zone 1 < for Zone 2 < for Zone 3. 

(B) The effect of the 2nd term on the 1st term is strong, when the colatitude angle θ approaches the pole and   

the antipode. 

    (C)  The effect of the 2nd term on the 1st term is less than 1.0% for n≧12 for only Zone 1. 

    (D)  For the amplitude ratio a3/a1, the effect of the 3rd term on the 1st term is: 

        (d-1)  extremely weaker than that for the ratio a2/a1, 

        (d-2) less than 1.0% for n=2-13, for three Zones except for n=2-3 for Zone 3. 

 

6.2. Characteristics of the Phase Angle Terms 
   The wavenumbers of the travelling waves for the 1st term, the 2nd term, and the 3rd term of the asymptotic 

series are determined from Eq. (17), Eq. (21), and Eq. (25), respectively. The wavelengths of the 1st termλ1, the 

2nd term λ2, and the 3rd term are calculated by the use of Eq. (9) (Table 3).  The wavelength characteristics are 

summarized as follows: 

(A) The wavelengths decrease in the order λ1 > λ2 > λ3. 

(B) The wavelength ratiosλ2 /λ1 are approximately 0.71%-0.77% for n=2-3 , 0.81%-0.89%  for n=4-8, and 

0.90%-0.93% for n=9-13. 
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(C) The wavelength ratiosλ3 /λ1 are approximately 0.55% for n=2, 0.63%-0.69%  for n=3-4, and 0.73%-

0.78% for n=5-7, and 0.80%-0.87% for n=8-13. 

(D) The wavelength of 8895 km ofλ1 for n=4 corresponds to that ofλ2 for n=3 

      and to that ofλ3 for n=2. 

     (E)  The relationship of the wavelengths shown  between different angular degrees  

           n=4, n=3, and n=2 is recapitulated through angular degrees (n=2-13) such that 

               λn
k
 = λn-1

k+1
                                                                            (32) 

where n is the angular degree and k is the ordinal number of the higher terms of the asymptotic series. 

Equations (6) and (11) show that the travelling waves of higher terms for the angular degree n have the same 

eigenperiod. Therefore,  

λ1 / C1 =λ2 / C2 =λ3 / C3 = T                                                            (33) 

where C1, C2, and C3 are the phase velocities of the 1st term, the 2nd term, and the 3rd term, respectively. 

Considering the characteristic (A) and (33): 

     (F) The phase velocities are in the sequence:  

C1 > C2 > C3.                                                                                          (34) 

The characteristic (F) shows that the travelling waves of higher terms have a series of wavelets with slower 

phase velocities and smaller amplitudes than those of the 1st term for three Zones (Table 2). 

 

6.3. Seismic Surface Waves on the Angular Distance  
   When seismic surface waves travel the pole and antipode, the waves have a phase advance of π/2 due to a 

polar phase shift [3]. Normal mode studies of long-period surface waves and free oscillation of the Earth including 

the pole and antipode have been conducted by several authors [15-21].  

   Systematic fluctuations of fundamental spheroidal mode eigenfrequency measurement are shown as a function 

of angular degree, which depend on the angular distance [20]. In their examples the fluctuations are observed for 

different epicentral distances, with the periodicity as predicted by Dahlen’s tan (kΔ-π/4) term (2 forΔ= close to 90

˚, approximately corresponding to Zone 1; 4 for Δ= close to 45˚ or 135˚, corresponding to Zone 2; 8 forΔclose to 

21˚ …, approximately corresponding to Zone 3), where Δ  is  the epicentral distance and k=n+1/2. The 

wavenumber k=n+1/2 corresponds to the one expressed in the phase angle term b1 of the 1st term (Eq. (17)). 

Multiplet amplitude anomalies and frequency shifts on an aspherical earth model are studied using an asymptotic 

method [16]. In this study the multiplet amplitude perturbations near the antipode are represented using several 

methods, in which a singularity at the source antipode caustic is included.  

The multiplet amplitude anomalies and frequency shifts are considered to be highly influenced by lateral 

heterogeneous structures in the neighborhood of the source station great circle path [15-17, 19-21]. 

 

7. Conclusion 
Higher terms of the asymptotic series of the associated Legendre function for small angular degrees (n=2-13) 

were calculated separating the asymptotic series into the amplitude terms and the phase angle terms. The calculation 

was carried out for three colatitude angles of Zone 1 (π/3≦θ≦2π/3), Zone 2 (θ=π/4 or 3π/4) , and Zone 3 (θ

=π/6 or 5π/6). Higher terms of the amplitudes of the 1st term (a1), the 2nd term (a2), and the 3rd term (a3) are 

characterized as follows: 

     (C-1) All the amplitude terms decrease with increasing n. 

     (C-2) The amplitude terms are in the sequence: a1>a2>a3. 

     (C-3) The amplitude ratios of both a2/a1 and a3/a1 are in the following sequence:   for Zone 1 < for Zone 2 < 

for Zone 3. 

     (C-4) The amplitude ratios a2/a1 for Zone 1 are approximately 3.5%-1.0% for n=2-11, and  < 1.0% for n>12.  

   The wavelengths λ1, λ2, and λ3, which are calculated from the phase angle terms of the 1st term (b1), the 

2nd term (b2), and the 3rd term (b3), respectively,  are characterized as follows: 

     (C-5) The wavelengths are in the sequence: λ1>λ2>λ3. 

     (C-6) The wavelength ratiosλ2/λ1 are 0.71%-0.93% for n=2-13.  

     (C-7) The wavelength ratiosλ3/λ1 are 0.55%-0.87% for n=2-13.  

     (C-8) The relationship of the wavelengths between different angular degrees is expressed as λn
k
 = λn-1

k+1
 , 

where n and k are respectively the angular degree and the ordinal number of the asymptotic terms. 

     (C-9) The phase velocities C1, C2, and C3 determined from the 1st term (b1), the 2nd term (b2), and the 3rd 

term (b3), respectively, by the use of Eq. (33), are in the sequence: C1 > C2 > C3. 

From the conclusion above, it is possible to conjecture the following: for n=2, the amplitudes of the 2nd terms 

are 3.5%, 5.0%,  and 7.1% of those of the 1st terms for Zone 1, Zone 2, and Zone 3, respectively, while the phase 

velocities of the 2nd terms are 71% of those of the 1st terms for the three Zones. For n=11, the amplitudes of the 2nd 

terms are 1.0%, 1.4%, and 2.0% of those of the 1st terms for Zone 1, Zone 2, and Zone 3, respectively, while the 

phase velocities of the 2nd terms are 91% of the 1st terms for the three Zones. For n≧12, the amplitude of the 2nd 

term is less than 1.0% of that of the 1st term for Zone 1. 
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