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Abstract 
The mathematical expressions of the asymptotic series expansion of  the associated Legendre function, which  have been 

widely  described in the mathematical  literature, are here shown to be classifiable into two types according to their 

manner of  expression. The Type-A mathematical expressions are represented by the first three higher terms of the 

asymptotic series, while the Type-B expressions are represented by the infinite sequence. As a result,  the Type-B 

mathematical expressions differ slightly from one another, despite having identical computation results. The distinct 

representation  of the Type-B expressions arises from (1) the treatment of the gamma functions including the colatitude 

angle in the spherical coordinate system and the azimuthal order number of the associated Legendre function and (2) the 

method of expressing the phase angle term. Moreover, one of the mathematical expressions of the Type-B is derived 

using a  hypergeometric formula different from other usual one. 

Keywords: Asymptotic series; Associated legendre function; Gamma function; Hypergeometric function. 
 

 

1. Introduction 
The associated Legendre function plays important roles for the study of the free oscillation of a heterogeneous 

Earth model and long-period surface waves [1, 2]. The wavelength and phase velocity are determined using an 

approximate formula for the associated Legendre function [3-5]. The approximate formula has been investigated by 

numerous authors using  a range of mathematical methods [6-9]. Several studies have discussed the optimal 

mathematical conditions for the use of the approximate formula [10, 11], while others contributed a formula 

calculating  the threshold size of the angular degree [12, 13]. Moreover,  theoretical methods for computing synthetic 

seismograms for aspherical global earth models have been developed for the spherical coordinates by various 

authors [14-25]. 

The Legendre functions of the first and second kind, Pn
m
(cosθ) and Qn

m
(cosθ),  respectively,  are the solutions of 

the associated Legendre’s differential equation.  

Through variable transformation formulas, the associated Legendre’s differential equation reduces to the Gauss’ 

equation of hypergeometric type [26]. The solutions of the Gauss’ equation are also given by Pn
m
(cosθ) and 

Qn
m
(cosθ), which are expressible in the various asymptotic series by means of the transformation formulas of the 

Gauss hypergeometric function. The asymptotic series expansion of the associated Legendre functions is represented 

by various mathematical expressions [26-31]. Each of the above-discussed mathematical expressions is slightly 

different, which can engender confusion when attempting to use the asymptotic series expansion.  

The present study aims to classify these mathematical expressions into two simple categories. Factors giving 

rise to the differences between the mathematical expressions of Type-B are also discussed. 

 

2. Mathematical Expressions of the Asymptotic Series Expansion 
The mathematical expressions of the asymptotic series expansion of the associated Legendre function may be 

classified into two types according to their manner of  expression. The first type is Type-A, which replaces the 

asymptotic series expansion with the first three higher terms. The second type is Type-B, which forms the infinite 

sequence of the asymptotic series expansion. The asymptotic series expansion includes the Gamma function and four 

mathematical parameters of  n, m, θ, and k.  The parameter n is the angular degree and the parameter m is the 

azimuthal order number  of the associated Legendre function. The parameters θ and k are the colatitude angle in the 

spherical coordinate system and the ordinal number of the asymptotic series, respectively.   

The following expressions are classified as Type-A: 
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2.1. Type-A  

2.1.1. Type-A1 [29, p. 352]  
Pn

m
(cosθ) =  A1 [ P1 + A2 ・P2 + A3・P3 +  .  .  . ],                 (1) 

A1 = 2 Г(n+m+1) / (π
1/2

Г(n+3/2) ) 

P1 = cos[(n+1/2)θ - π/4+mπ/2]/(2sinθ)
1/2

 

A2 = (1
2
-4m

2
)/{2(2n+3)} 

P2 = cos[(n+3/2)θ-3π/4+ mπ/2]/(2sinθ)
3/2

 

A3 = (1
2
-4m

2
)(3

2
-4m

2
)/[2・4・(2n+3)(2n+5)] 

P3 = cos[(n+5/2)θ-5π/4+ mπ/2]/(2sinθ)
5/2

 

 

2.1.2. Type-A2 [27, p. 239]  
Pn

m
(cosθ) =  A1 [ P1 - A2 ・P2 + A3・P3 -  .  .  . ],                   (2) 

A1 = [(n+m)! /(n+1/2)!] (2/πsinθ)
1/2

 

P1 = cos[(n+1/2)θ + (m-1/2)π/2] 

A2 = (4m
2
-1

2
) /[2・1! (2n+3)] 

P2 = cos[(n+3/2)θ- (m-3/2)π/2]/ (2sinθ) 

A3 = (4m
2
-1

2
)(4m

2
-3

2
)/[2

2・2!(2n+3)(2n+5)] 

P3 = cos[(n+5/2)θ+ (m-5/2)π/2]/(2sinθ)
2
 

 

2.2. Type-B  
The mathematical expressions of Type-B are similar to one another. However, they are slightly different in 

terms of their manner of expressions. Therefore they are expanded into the first three higher terms of the asymptotic 

series as for the Type-A mathematical expressions. This process may be useful for comparing the accordance 

between the respective mathematical expressions.  

  The following expressions are classified as Type-B. 

 

2.2.1. Type-B1 [31, p. 125]  
Pn

m
(cosθ) = (2e

mπi
 /π

3/2 
) cos ( mπ)Г(n+m+1)Σk=0

∞
 {[Г(k+m+1/2) 

x Г(k-m+1/2)/( k！Г(n+k+3/2)(2sinθ)
k+(1/2)

 )] 

x cos[(n+k+1/2)θ+ (2m-2k-1)π/4 ]} 

[ n+m ≠ non-negative integer, 2n≠-3, -5, -7, … ]                           (3) 

The expression is convergent if π/6 <θ<π5/6. 

For the expansion of the asymptotic series into the first three higher terms, Eq. (3) is separated into two 

functions, W(n, m) and Z(k, n, m). The former depends on the parameters n and m, while the latter depends on the 

parameters k, n,  and m.  

W(n, m) = (2e
mπi

/π
3/2

) cos(mπ)Г((n+m+1)                                      (4) 

Z(k, n, m) = Σk=0
∞
{[Г(k+m+1/2)Г(k-m+1/2)/(k! 

x   Г(n+k+3/2)(2sinθ)
k+(1/2)

 )] 

x   cos [ (n+k+1/2)θ+ (2m-2k-1)π/4 ]}                                            (5) 

(i) B1-a: First term (k=0) 

Z(0, n, m) =Г(m+1/2)Г(-m+1/2)/[0! Г(n+3/2)(2sin )
1/2

]  

x   cos [(n+1/2)θ-π/4 +mπ/2]                                                           (6) 

∴ W(n, m) Z(0, n, m) = (2 e
mπi 

/π
1/2

)(Г(n+m+1)/Г(n+3/2) ) 

x     (cos (mπ)/π) (-1)
m
π/(2sinθ)

1/2
  

x     cos[(n+1/2)θ-π/4+mπ/2] 

= [ 2
 
Г(n+m+1) e

mπi 
/ (π

1/2
Г(n+3/2) ] 

x     cos[(n+1/2)θ-π/4+mπ/2] / (2sinθ)
1/2

                                          (7)  

(ii) B1-b: Second term (k=1) 

Z(1, n, m) =Г(1+m+1/2)Г(1-m+1/2)/[1!Г(n+1+3/2)(2sinθ)
3/2

]  

       x   cos [(n+3/2)θ-3π/4 +mπ/2] 

       ={ (m+1/2)Г(m+1/2) (-m+1/2)Г(-m+1/2) / 

       x          [(n+3/2)Г(n+3/2)  (2sinθ)
3/2

 ]}  

       x          cos [(n+3/2)θ-3π/4 +mπ/2]      

       = (1
2
-4m

2
) (-1)

m
π/[2(2n+3)Г(n+3/2)  (2sinθ)

3/2
 ] 

       x           cos [(n+3/2)θ-3π/4 +mπ/2]                                                  (8) 

     ∴ W(n, m) Z(1, n, m) = (2 e
mπi 

/π
1/2

)(Г(n+m+1)/Г((n+3/2) ) 

       x     (cos (mπ)/π) [ (1
2
-4m

2
)/2(2n+3)] (-1)

m
π 

       x     cos[(n+3/2)θ- 3π/4+mπ/2] / (2sinθ)
3/2

        

       = [ 2
 
Г(n+m+1) e

mπi 
/ (π

1/2
Г(n+3/2) ) ] 

       x     [(1
2
-4m

2
)/2(2n+3)]  

       x     cos[(n+3/2)θ- 3π/4+mπ/2] / (2sinθ)
3/2

                                       (9) 

 (iii) B1-c: Third term (k=2) 
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 Z(2, n, m) = [Г(2+m+1/2)Г(2-m+1/2)/(2! Г(n+2+3/2)(2sinθ)
5/2

)]  

 x             cos [(n+5/2)θ-5π/4 +mπ/2] 

 = ( (3+2m)/2)Г(3/2+m) ((3-2m)/2)Г(3/2-m) / 

 x          (2・(5+2n)/2)Г(n+5/2)  (2sinθ)
5/2

 )  

 x         cos [(n+5/2)θ- 5π/4 +mπ/2]      

 = (9-4m
2
)(1/2+m)Г(1/2+m) (1/2-m)Г(1/2-m) / 

x     [2・2・(5+2n)(n+3/2)Г(n+3/2)  (2sinθ)
5/2

 ] 

 x           cos [(n+5/2)θ- 5π/4 +mπ/2]                                

 = (9-4m
2
)(1

2
-4m

2
)(-1)

m
π/[2・4・(5+2n) 

 x         (3+2n) Г(n+3/2)(2sinθ)
5/2

] 

x          cos[(n+5/2)θ-5π/4 +mπ/2]                                                    (10) 

∴ W(n, m) Z(2, n, m) = (2 e
mπi 

/π
1/2

)(Г(n+m+1)/Г(n+3/2 ) ) 

 x         (cos (mπ)/π) {[ (1
2
-4m

2
)/(3

2
-4m

2
)] (-1)

m
π/ 

 x    [2・4・(2n+3)(2n+5)]} 

x     cos[(n+5/2)θ- 5π/4 +mπ/2]/ (2sinθ)
5/2

          

 = (2 e
mπi 

/π
1/2

)(Г(n+m+1)/Г(n+3/2) ) 

x   { (1
2
-4m

2
)(3

2
-4m

2
)/[2・4・(2n+3)(2n+5)] } 

x    cos[(n+5/2)θ-5π/4 +mπ/2]/ (2sinθ)
5/2

                                         (11) 

From Eq. (7), Eq. (9), and Eq. (11), Eq. (3) may be expressed as follows:    

Pn
m
(cosθ) = (2 e

mπi 
/π

1/2
)(Г(n+m+1)/Г(n+3/2) ) 

x         {   cos[(n+1/2)θ-π/4+mπ/2] / (2sinθ)
1/2

     

x   + ((1
2
-4m

2
)/2(2n+3))cos[(n+3/2)θ-3π/4+mπ/2] / (2sinθ)

3/2
      

x   +  ((1
2
-4m

2
)(3

2
-4m

2
)/(2・4・(2n+3)(2n+5) ) ) 

x             cos[(n+5/2)θ-5π/4 +mπ/2]/ (2sinθ)
5/2

    + . . . }                 (12) 

 

2.2.2. Type-B2 [30, pp. 1742-1743]  
Pn

m
(cosθ) =  (2Г(n+m+1) / (π

1/2
Г(n+3/2) )   

x      Σk=0
∞
 [Г(1/2+m+k) Г(1/2-m+k) Г(n+3/2) / 

x        ( Г(1/2+m) Г(1/2-m) Г(n+k+3/2) k! )  ]  

x         cos[(n+(2k+1)/2)θ- (2k+1)π/4+mπ/2] / (2sinθ)
k+1/2

               (13) 

(m+n ≠ non-negative integer, n+1/2 ≠ non-negative integer) 

Equation (13) is convergent if π/6<θ< 5π/6.  

As for Type-B1, Eq. (13) was separated into the two functions W(n, m) and Z(k, n, m): 

W(n, m) =  2Г(n+m+1) / (π
1/2

Г(n+3/2) )                                          (14)  

Z(k, n, m) = Σk=0
∞
 [Г(1/2+m+k) Г(1/2-m+k) Г(n+3/2) / 

x        ( Г(1/2+m) Г(1/2-m) Г(n+k+3/2) k! )  ]  

x         cos[(n+(2k+1)/2)θ- (2k+1)π/4+mπ/2] /(2sinθ)
k+1/2

                 (15) 

In the function Z(k, n, m), the Gamma and sine functions  which don’t include the ordinal number k are moved 

to W(n, m): 

W(n, m) = [ 2Г(n+m+1) / (π
1/2

Г((n+3/2) ) ]       

x            Г(n+3/2) / [Г(1/2+m) Г(1/2-m) (2sinθ)
1/2

 ] 

= 2
1/2

/ (πsinθ) 
1/2

 ( 1/(-1)
m
) ・Г(n+m+1)/π                                        (16) 

Z(k, n, m) =Σk=0
∞
 [Г(1/2+m+k) Г(1/2-m+k) / (Г(n+k+3/2) k!) ] 

x         cos[(n+(2k+1)/2)θ- (2k+1)π/4+mπ/2] /(2sinθ)
k 
                     (17)   

(i) B2-a: First term (k=0) 

W(n, m) Z(0, n, m) = [ (2/(πsinθ))
1/2

 (1/(-1)
m
) (Г(n+m+1)/π) 

x          (-1)
m
π/(Г((n+3/2) 0!)] 

x          cos[(n+1/2)θ-π/4+ mπ/2]  

= [2(Г(n+m+1)/(π
1/2

 Г(n+3/2) ) ] 

x               cos[(n+1/2)θ-π/4+ mπ/2] / (2sinθ)
1/2

                                (18) 

(ii) B2-b: Second term (k=1) 

W (n, m) Z(1, n, m) = [ (2/(πsinθ))
 1/2

 (1/(-1)
m
) (Г(n+m+1)/π) 

x    (1/2+m)Г(1/2+m) (1/2-m)(Г(1/2-m) / (1!(n+3/2)Г(n+3/2) ] 

x     cos[(n+3/2)θ-3π/4+ mπ/2] / (2sinθ)] 

=[2Г(n+m+1)/(π
1/2

Г(n+3/2))] [ (1+2m)(1-2m)(1/4) /( (1/2)(2n+3)) ] 

x     cos[(n+3/2)θ-3π/4+ mπ/2] / (2sinθ)
3/2

 

=[2Г(n+m+1)/(π
1/2

Г(n+3/2))] [ (1
2
-4

m
) /(2(2n+3)) ] 

x     cos[(n+3/2)θ-3π/4+ mπ/2] / (2sinθ)
3/2

                                         (19) 

(iii) B2-c: Third term (k=2) 

W (n, m) Z(2, n, m) = [ (2/(πsinθ))
 1/2

 (1/(-1)
m
) (Г(n+m+1)/π) 

x  Г(1/2+m+2) (Г(1/2-m+2) / (2!Г(n+2+3/2) ] 

x     cos[(n+5/2)θ-5π/4+ mπ/2] / (2sinθ)
2 
 

=[2Г(n+m+1)/(π
1/2

(2sinθ)
1/2

)]  (1/(-1)
m
)(1/π) [ (3/2+m)Г(3/2+m) 

x   (3/2-m)Г(3/2-m)/ (2(n+5/2)Г(n+5/2) ) ] 
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x     cos[(n+5/2)θ-5π/4+ mπ/2] / (2sinθ)
2
 

=[2Г(n+m+1)/(π
1/2

(2sinθ)
1/2

)]  (1/(-1)
m
) (1/π) [(1/2) (3+2m) (1/2) 

x   (3-2m) (1/2+m)Г(1/2+m) (1/2-m)Г(1/2-m) / (2(n+5/2)(n+3/2) 

x  Г(n+3/2) ]  cos[(n+5/2)θ-5π/4+ mπ/2] / (2sinθ)
2
 

=[2Г(n+m+1)/(π
1/2

Г(n+3/2))] [ (1
2
-4

m
)(3

2
-4m

2
) / 

x    (2・4・(2n+3) (2n+5) ) ] 

x     cos[(n+5/2)θ-5π/4+ mπ/2] / (2sinθ)
5
/
2
                                           (20) 

From Eq. (18), Eq. (19), and Eq. (20), Eq. (13) may be expressed as follows: 

Pn
m
(cosθ) = (2/π

1/2
)(Г(n+m+1)/Г(n+3/2) ) 

x         {   [cos((n+1/2)θ-π/4+mπ/2) / (2sinθ)
1/2

  ] 

x       +  [ ((1
2
-4m

2
)/2(2n+3)) cos((n+3/2) -3π/4+mπ/2) /(2 sin)

3/2
 ] 

x       +  [ ( (1
2
-4m

2
)(3

2
-4m

2
)/(2・4・(2n+3)(2n+5)) ) 

x             cos((n+5/2)θ-5π/4 +mπ/2)/ (2sinθ)
5/2

  ]  + . . . }                     (21) 

 

2.2.3. Type-B3 [26, pp. 146-147]  
Г(n+3/2)Pn

m
(cosθ) =  [2

1/2
(πsinθ)

-1/2
 Г(n+m+1) ]   

x      Σk=0
∞
 (-1)

k 
[ (1/2+m)k (1/2-m)k  / (k! (2sinθ)

k
 (n+3/2)k ) ] 

x         sin[(n+k+1/2)θ+ (m/2+1/4)π+kπ/2]                                            (22) 

As for Type-B1, Eq. (22) was separated into the two functions W(n, m) and Z(k, n, m): 

W(n, m) =  2
1/2

(πsinθ)
-1/2

Г(n+m+1) /Г(n+3/2)                                       (23)  

Z(k, n, m) = Σk=0
∞
(-1)

k
[(Г(1/2+m+k)/Г(1/2+m))  (Г(1/2-m+k)/  

x   Г(1/2-m) ) ] ・(1/k!) ・[Г(n+3/2) /Г(n+3/2+k)] 

x      (1/(2sin)
k
 )・sin[(n+k+1/2)θ+(mπ/2+π/4)+kπ/2] 

= Г(n+3/2)/((-1)
m
π)Σk=0

∞ 
(-1)

k
 [Г(1/2+m+k)/Г(1/2-m+k)) /  

x   (k!Г(n+3/2+k) ) ] (1/(2sinθ)
k
 )・ 

x      sin[(n+k+1/2)θ+ kπ/2+mπ/2+π/4]                                                   (24) 

In the function Z(k, n, m), the Gumma and sine functions which don’t  include the ordinal number k are moved 

to W(n,m): 

W(n, m) =  2
1/2

(πsinθ)
-1/2

Г(n+m+1) /((-1)
m
π)                                          (25) 

Z(k, n, m) =Σk=0
∞
(-1)

k
[Г(1/2+m+k) (Г(1/2-m+k)/  

x      (k!Г(n+3/2+k) ) ] (1/(2sinθ)
k
 )・ 

x       cos[(n+k+1/2)θ+(k+m)π/2 -π/4]                                                     (26) 

(i) B3-a: First term (k=0) 

W(n, m) Z(0, n, m) =  (-1)
0
 (2

 
/(πsinθ))

1/2
 (Г(n+m+1) /((-1)

m
π)) 

x       ((-1)
m
π/(0!Г(n+3/2) )) cos[(n+1/2)θ+ mπ/2 -π/4]  

=  (-1)
0
 (2/π

1/2
 ) (Г(n+m+1)/Г(n+3/2) ) 

x       cos[(n+1/2)θ+ mπ/2 -π/4] / (2sinθ)
1/2

                                              (27)  

(ii) B3-b: Second term (k=1) 

Z(1, n, m) =  (-1)
1
 [(Г(1/2+m+1)Г(1/2-m+1)/(1!Г(n+3/2+1) )] 

x       sin[(n+1+1/2)θ+ (1+m)π/2 +π/4]  

=  (-1)
1
 [ ((1+2m)/2) (1-2m)/2 ) (-1)

m
π/ ((2n+3)/2)Г(n+3/2))] 

x       sin[(n+3/2)θ+3π/4+mπ/2 ] / (2sinθ)                                                (28) 

∴ W(n, m) Z(1, n, m) =  (-1)
1
 (2・2

 
/(π・2sinθ))

1/2
 (Г(n+m+1) /((-1)

m
π)) 

x   ( (1-4m
2
) (-1)

m
π/(2(2m+3)Г(n+(3/2) ) 

x       sin[(n+3/2)θ+3π/4+mπ/2 ] / (2sinθ) 

=   (2/π
1/2

 ) [(Г(n+m+1)/Г(n+3/2) ) (1-4m
2
)/(2(2n+3)) ] 

x         cos[(n+3/2)θ - 3π/4 +mπ/2] / (2sinθ)
3/2

                                         (29)  

(iii) B3-c: Third term (k=2) 

Z(2, n, m) =  (-1)
2
 [(Г(1/2+m+2)Г(1/2-m+2)/(2!Г(n+3/2+2) )] 

x       sin[(n+2+1/2)θ+ (2+m)π/2 +π/4] / (2sin θ)
2
 

=  [ (3/2+m)Г(3/2+m) (3/2-m)Г(3/2-m) / 

x            ( 2(n+5/2)Г(n+5/2) ) ] 

x       sin[(n+5/2)θ+5π/4+mπ/2 ] / (2sinθ)
2
 

=  [(3/2+m)(1/2+m)Г(1/2+m) (3/2-m)(1/2-m)Г(1/2-m) / 

2(n+5/2)(n+3/2)Г(n+3/2) ] 

x         cos[(n+5/2)θ - 5π/4 +mπ/2] / (2sinθ)
2
      

= (1
2
-4m

2
) (3

2
-4m

2
) (-1)

m
π/(2・4  

x            (2n+5) (2n+3)Г(n+3/2) ) 

x         cos[(n+5/2)θ - 5π/4 +mπ/2] /  (2sinθ)
2
                                          (30) 

∴ W(n, m) Z(2, n, m) =  (2・2
 
/(π・2sinθ))

1/2
 (Г(n+m+1) /((-1)

m
π)) 

x   (1
2
-4m

2
)(3

2
-4m

2
)(-1)

m
π/(2・4(2n+5)(2n+3)Г(n+3/2) ) 

x      cos[(n+5/2)θ - 5π/4 +mπ/2] / (2sinθ)
5/2

    

= (2/π
1/2

 ) [(Г(n+m+1)/Г(n+3/2) ) (1
2
-4m

2
)(3

2
-4m

2
) / 

 (2・4(2n+3) (2n+5) )] 
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x         cos[(n+5/2)θ - 5π/4 +mπ/2] / (2sinθ)
5/2

                                           (31) 

From Eq. (27), Eq. (29), and Eq. (31), Eq. (22) may be expressed as follows: 

Pn
m
(cosθ) =   (2/π

1/2
 ) (Г(n+m+1)/Г(n+3/2) )  

x      { cos[(n+1/2)θ+ mπ/2 -π/4] / (2sinθ)
1/2

    

x      + ( (1-4m
2
)/(2(2n+3)) ) cos[(n+3/2)θ-3π/4+mπ/2]/(2sinθ)

3/2
 

x      + ( (1
2
-4m

2
)(3

2
-4m

2
) / (2・4(2n+3) (2n+5) ) ) 

x         cos[(n+5/2)θ - 5π/4 +mπ/2] / (2sinθ)
5/2

  

x      + . . .  }                                                                                               (32) 

 

2.2.4. Type-B4 [28, p. 325]  
Pn

m
(cosθ) =  π

-1/2
  2

m+1
(sinθ)

m
 (Г(n+m+1) / Г(n+3/2) ) 

x      Σk=0
∞ 

[ (m+1/2)k (n+m+1)k  / (k! (n+3/2)k ) ] 

x                sin[(n+m+2k+1)θ] 

( 0< θ<π)                                                                                                    (33) 

As in the case of Type-B1, Eq. (33) was separated into the two functions W(n, m) and Z(k, n, m): 

W(n, m) =     (2/π
-1/2

)(2sinθ)
m
 Г(n+m+1) / Г(n+3/2)                                 (34) 

Z(k, n, m) =Σk=0
∞ 

[ (Г(m+1/2+k)/Г(m+1/2) ) 

x     (Г(n+m+2k)/Г(n+m+k) ) (1/k!)  

x     (Г(n+3/2)/Г(n+3/2+k)) sin((n+m+2k+1)θ]                                         (35)  

The function W(n, m) expressed by Eq. (34) is different from that expressed by Eq. (23) of Type-B3. Similarly, 

the function Z(k, n, m) expressed by Eq. (35) is different from that expressed by Eq. (24) of Type-B3. 

However, Eq. (33) is identical to 3.5 Eq. (2) of [26, p. 146] in which the expression was obtained using 

hypergeometric functions different from those used for the derivation of Eq. (22) of Type-B3 (see Appendix). The 

mathematical characteristics of Eq. (22) are accordant with those of Eq. (1), Eq. (2), Eq. (3), and Eq. (13). Therefore, 

Eq. (33) is not expanded into first three higher terms in the present analysis. 

 

3. Discussion 
Equations (1) and (2) of Type-A are completely identical by way of the asymptotic series of the associated 

Legendre function. The difference exists only in the formation of (2sinθ)
-1/2

 in the sequence. The two equations have 

a mathematical limitation; namely, the computation accuracy is limited within the first three terms of the asymptotic 

series expansion. However, the approximate value for the associated Legendre function can be easily obtained if the 

parameters n, m, and θ are assigned.  

Equations (3), (13), and  (22) of Type-B perfectly consist of the sequence of the asymptotic series of the 

associated Legendre function. Through the analysis of the expansion of the asymptotic series, which is conducted in 

Section 2, it is found that Eq. (3), Eq. (13), and Eq. (22) can be expressed as Eq. (1) or Eq. (2), as long as the 

asymptotic series is limited within the first three terms. However, the coefficient e
mπi

 of Eq. (3) seems to be 

redundant, as shown in Eq. (12). It should be noted here that the coefficient e
mπi

 is forced on Pn
m
((cosθ) in Eq. (3) 

[31, p. 120] . There are  some articles in which, for the definition of  Pn
m
((cosθ), (i) the coefficient e

mπi
 is added; (ii) 

the coefficient e
mπi

 is deleted; and (iii) the coefficient [sin(n+m)π] /sin(nπ) or Г(n+m+1) is replaced, instead of e
mπi

 

[31, p.85; p. 120].  

It is also noted that Eq. (16) of Type-B2 and Eq. (25) of Type-B3 have the same function W(n, m), which does 

not depend on the ordinal number k of the asymptotic series. The conspicuous point of Eq. (22) of Type-B3 is that 

the phase angle term is expressed by both the sine function and the ordinal number (-1)
 k

 . On the other hand, the 

phase angle terms of Eq. (3) of Type-B1 and Eq. (13) of Type-B2 are expressed by only a cosine function.
 

 

4. Conclusion 
The asymptotic series of the associated Legendre function may be classified into two types according to the 

manner of expression. The first type (Type-A) [30, 31] is the mathematical expression in which the asymptotic series 

is directly expanded into the first three higher terms. If the colatitude degree n, the azimuthal order m, and the 

colatitude angleθ are given in the formula, the associated Legendre function can be easily calculated. However, 

information on additional terms beyond these three is not involved. 

The second type (Type-B) [26-29] is the mathematical expression in which the asymptotic series is expressed by 

the infinite series as the sum of the sequence of  the ordinal numbers from 0 to   . In the present study, three 

formulas [26, 28, 29] belonging to Type-B were analyzed. Their mathematical expressions are slightly different from 

one another because the treatments of the Gamma function and the trigonometric function including the parameters 

m and θ are different. If the three formulas are expanded into the first three higher terms, they become equivalent to 

those of the asymptotic series of Type-A. The formula  of Type-B [27] is different from the other formulas [26, 28, 

29] because of the use of a different transformation formula in the hypergeometric equation [26]. 
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Appendix: Difference between Type-B3 and Type-B4 
 

   The Legendre functions are solutions of Legendre’s differential equation: 

            (1-z
2
) d

2
w/dz

2
 – 2z dw/dz + {ν(ν+1)- μ

2
/(1-z

2
)}w =  0                          (A1) 

                               z, ν, μ unrestricted. 

   Under the substitution w = (z
2
 – 1)

1/2 μ
 v, with   ζ=1/2 -1/2 z as the independent  

variable, Eq. (A1) becomes [26, pp. 121-122]: 

      ζ(1-ζ) d
2
v/dζ

2
  + (μ+1)(1-2ζ) dv/dζ +(ν-μ)(ν+μ+1) v = 0         (A2) 

This is Gauss’ equation (the hypergeometric equation) with a = μ – ν,  b =ν+μ+1, 

and c = μ+1. The functions Pν
μ
(z) and Qν

μ
(z) are solutions of Eq. (A2). 

   The hypergeometric equation is represented as: 

                             z(1-z) d
2
u/dz

2
 + [c-(a+b+1)z] du/dz – abu =  0                      (A3) 

The solution of Eq. (A3) is: 

            u1 =  Σn=0
∞
 (a)n (b)n z

n
 / [(c)n n!] ≡2F1(a, b; c; z) ≡F(a, b; c; z).                 (A4) 

where (a)n = Г(a+n) / Г(a). 

By means of the transformation formula of the hypergeometric function,  

Pν
μ
(z) and Qν

μ
(z) are expressible in several ways in the forms 

           Pν
μ
(z) = A1 F(a1, b1; c1; ζ)  + A2 F(a2, b2; c2; ζ)          | ζ| < 1                     (A5) 

           e
-μπ

Qν
μ
(z) = A3 F(a3, b3; c3;ζ)  + A4 F(a4, b4; c4; ζ)   | ζ| < 1                       (A6) 

where ζ is a function of z and depends on the choice of the transformation. The  

various expansions (A5) and (A6) are shown to be the transformation formulas  

[26,  pp. 124 – 139]. By the choices of transformation formulas 3.2 (44) and 3.2 (45) 

below, given in the expansions for e
-μπ

Qν
μ
(z) [26], Eq. (22) of Type-B3 [26] and 

Eq. (33) of Type-B4 [28], respectively, are obtained in the form of the 

hypergeometric series through several mathematical transaction processes [26,  

pp. 146-147]. 

 

The transformation formula 3.2 (44) [26, pp. 136-137] is: 

       A3 = (1/2π)
1/2

Г(1+ν+μ) (z
2
-1)

-1/4
 [z-(z

2
-1)

1/2
]

ν+1/2
 /Г(ν+3/2) 

       A4 = 0 

       a3 = 1/2+μ, b3 = 1/2 – μ, c3 = ν+3/2,  ζ= -z + (z
2
-1)

1/2
 

       a4 = . . . ,     b4 = . . . ,       c4 = . . . ,       ζ= 2 (z
2
-1)

1/2
. 

 

The transformation formula 3.2 (45) [26, pp. 136-137] is: 

       A3 = π
1/2

2
μ
Г(1+ν+μ) (z

2
-1)

1/2μ
 [z+(z

2
-1)

1/2
] 

-1-ν-μ 
/Г(ν+3/2) 

       A4 = 0 

       a3 = μ+1/2,  b3 = 1+ν+μ, c3 = ν+3/2,  ζ= z - (z
2
-1)

1/2
 

       a4 = . . . ,      b4 = . . . ,       c4 = . . . ,       ζ= z + (z
2
-1)

1/2
. 

 


