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Abstract: A 177-point realization of daily exchange rates of the Uganda shilling (UGX) — Nigerian naira
(NGN) from 22nd September, 2015 to 16th March, 2016, is analyzed by Box-Jenkins methods. The original
series being non-stationary is differenced seasonally i.e. on a seven-day basis. A further non-seasonal differencing
is done to ensure seasonality. These differences of the seasonal differences of the series are modeled by seasonal
autoregressive integrated moving average (SARIMA) approach. The first 170 values are used for the modeling
process and the remaining 7 are used for out-of-sample forecast goodness-of-fit test. By a new fitting algorithm, it
is concluded that the time series follows the additive SARIMA (1,1,0)x(1,1,0)7 model. Forecasts obtained for the
daily rates from March 10 to March 16, 2016 agree so closely with the observed values that the calculated
goodness-of-fit chi-square test statistic is far from being statistically significant with a p-value of more than 99%.
Daily exchange rates between the two currencies may be simulated or forecasted by the model.
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1. Introduction

Foreign exchange is a major issue in the discussion of world economy. Any trade relationship between the
country Uganda and the country Nigeria is based on the relative value of the Uganda Shilling (UGX) and the
Nigerian Naira (NGN). In this write-up the daily exchange rates shall be modelled by Box-Jenkins methods. The
particular approach shall be the seasonal autoregressive integrated moving average (SARIMA) approach proposed
by Box and Jenkins [1].

In recent times, many authors have adopted the SARIMA modeling approach to model real iife data. Zhang, et
al. [2] observed that SARIMA modelling outdid standard Poisson regression, autoregressive adjusted Poisson
regression and multiple linear regression. Nirmala and Sundaram [3] fitted a SARIMA(0,1,1)x(0,1,1)12 to monthly
rainfall in Tamilnadu. Jiang, et al. [4] noticed that SARIMA modelling produced better forecasts than dynamic
harmonic regression and seasonal —trend decomposition procedure based on Loess. Padhan [5] modelled Indian
International tourists footfalls by a SARIMA (1,1,1)x(2,1,4),.. Mahsin, et al. [6] used a SARIMA(0,0,1)x(0,1,1),, to
model raginfall in Dhaka Division of Bangladesh. Oduro-Gymah, et al. [7] fitted a SARIMA(1,1,1)x(0,1,2);, to
microwave transmission in Ghana. Liberian inflation rates have been modelled by a SARIMA(0,1,0)x(2,0,0)1, [8].
Jianfeng [9] noticed that SARIMA modelling results in closer forecasts to the real data than dynamic linear
modelling in forecasting monthly cases of mumps in Hong Kong. He fitted a SARIMA(2,1,1)x(1,1,1) 1, model to the
time series . Li, et al. [10] modelled monthly outpatient numbers in China by a SARIMA(0,1,1)x(0,1,1)1,. Kibunja,
et al. [11] forecasted monthly precipitation in Mount Kenya region using a SARIMA(1,0,1)x(1,0,0);, model.
Valipour [12] observed that SARIMA modelling outdid its non-linear counterpart ARIMA in long-term runoff
forecasting. Hassan and Mohamed [13] found that a SARIMA(0,0,5)x(1,0,1);, was the most adequate in the
simulation of monthly rainfall drought in the Gadaref region of Sudan. Gikungu, et al. [14] fitted a
SARIMA(0,1,0)x(0,0,1)4 to quarterly Kenyan inflation rates.

The orthodox and usual approach to SARIMA modelling was proposed by [1]. Suhartono [15] proposed another
method based on moving average modelling. In his work he found that according to his definitions a subset
SARIMA model outdid both the additive and the multiplicative models for the airline data whereas an additive
model best explained variation in the arrival of tourists. Etuk and Ojekudo [16] proposed an alternative modelling
algorithm based on duality arguments. This algorithm has been applied to model series with a measure of success
[17, 18].
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The seasonal nature of the realization of the exchange rates used for this work makes the application of a
SARIMA approach reasonable. The purpose of this write-up is to fit a model to the daily exchange rates of Ugandan
shilling (UGX) and Nigerian Naira (NGN) using the algorithm of Etuk and Ojekudo [16]. This work is therefore a
further application of the algorithm.

2. Materials and Methods

2.1. Data

The data for this work are 177 values of daily UGX / NGN exchange rates of September 22, 2015 through March 16,
2016. They were obtained from the website www.exchangerates.org/UGX-NGN-exchange-rate-history.html
accessed on March 17, 2016. These numbers are interpreted as the quantities of NGN per UGX.

2.2. Seasonal Autoregressive Integrated Moving Average (SARIMA) Models

The definition of a SARIMA model as proposed by Box and Jenkins [1] is as follows. A stationary time series
{X¢} is said to follow a multiplicative seasonal autoregressive integrated moving average model of order p, d, g, P,
D, Q, s designated SARIMA(p,d,q)x(P,D,Q); if

ALY (L) VIVEX, = B(L) (L) &, (1)

where A(L) is a p-order polynomial in L and is called the autoregressive (AR) operator; B(L) is a g-order
polynomial in L and is called the moving average (MA) operator; ®(L) is a P-order polynomial in L called the
seasonal AR operator; ©(L) is a Q-order polynomial in L called the seasonal MA operator. The numbers d and D
are the non-seasonal and the seasonal differencing orders respectively. L is the backward shift operator defined by
L*X, = X¢x. the number s is the period of the seasonality of the time series. V and V; are the non-seasonal and the
seasonal differencing operators respectively. {g:} is a white noise process.

2.3. SARIMA Modelling

Generally the model (1) is estimated beginning with the determination of the orders: p, d, g, P, D, Q and s. The
AR orders p and P are estimated by the non-seasonal and seasonal cut-off lags of the partial autocorrelation function,
respectively. Similarly the MA orders g and Q are estimated by the non-seasonal and the seasonal cut-off lags of
the autocorrelation function respectively. The seasonal period often suggests itself by the known nature of the series.
Otherwise it may be suggestive by the correlogram or an analytical inspection of the series. The differencing orders
d and D are such that they sum up to 2 at most.

In this work the subset SARIMA modelling algorithm proposed by Etuk and Ojekudo [16] shall be used. It is
the autoregressive-moving-average-duality-based version of the algorithm of Suhartono [15].

Suhartono,s algorithm is as follows:

Fit to {X} the following SARIMA(0,0,1)x(0,0,1)s model

Xe= &+ Pr&er + oo+ Bsbros + Bos18t-s1 )

If Bs+s = O then the model is said to be additive. Otherwise if Bs; = Bifs then the model is said to be
multiplicative. Otherwise it is said to be subset.

Etuk and Ojekudo’s algorithm which is the dual version of (2) is as follows:

Fit to {X} the following SARIMA(1,0,0)x(1,0,0)s model

Xe+ arXe g+ FaXe s+ a5p1Xp51 3)

If o1 = 0 the model is said to be additive. If not, if a1 = oy0, the model is said to be multiplicative. Otherwise
it is said to be subset. Additivity is ascertained if

@51 < SE(@547)

where SE(.) is the standard error of and ” denotes the estimate of. In other words, the algorithm of Etuk and
Ojekudo [16] is the autoregressive version of Suhartono [15] method which was worded in moving average
language. Multiplicativity is ascertained if

T = (Cs4q — @ @1 ) /SE(@17)

Is not statistically significant where T is t-distributed.

Estimation of the model parameters is done via a non-linear optimization process for the mixed ARMA process.

Often more than one model is entertained based on empirical evidence. Model selection out of the contending
ones is done using model identification tools which are information criteria like Akaike Information Criterion (AIC),
Schwarz criterion and Hannan-Quinn criterion. Model choice is based onthe minimization of the criteria. The
Eviews software which uses the least squares technique is to be used for this work.

3. Results and Discussion

The analysis of the series was restricted to the daily exchange rates from 22" September, 2015 to 9" March,
2016, that is, 270 values. The remaining 7 values were used to compare with forecasts for the ascertainment of the
adequacy or otherwise of the fitted model.

The time-plot of Figure 1 shows a generally positive trend depicting relative depreciation of the

Naira within the time period of interest. The Augmented Dickey Fuller (ADF) Test statistic of the series is of
value -1.58. With the 1%, 5% and 10% critical values of -3.47, -2.88 and -2.58 respectiively, the ADF test adjudges
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the original series as non-stationary. Therefore a 7-day differencing is done. This yields a series with the time-plot
of Figure 2 which depicts a generally horizontal trend and a correlogram of figure 3 showing a seasonal nature of
period 7 days. The ADF test statistic for these differences is of value -2.21 which on the basis of the same critical
values given above makes the null unit-root hypothesis not rejected at the above significant levels. Therefore they
are also non-stationary. A further non-seasonal differencing yields a series with the plot of Figure 4 and the
correlogram of Figure 5. Evident is a stationary nature which is confirmed by the ADF test with statistics equal to -
11.01. Applying the algorithm of Etuk and Ojekudo (3) the SARIMA(1,1,0)x(1,1,0),, estimated in Table 1 is

X; = 0.2037X;.1 — 0.6105X 7 + 0.1200Xg + & 4)

(£0.0809) (+0.0695)  (+0.0834)

where {X} is the difference of the seasonal difference of the exchange rates. Clearly the lag 8 coefficient of
model (4) is not statistically significant, being less than twice its standard error. That suggests the adoption of the
additive model, which as given in Table 2 is estimated as

X, = 0.1376X,.; — 0.5900X,.7 + & Q)
(+0.0664)  (+0.0680)

which is clearly better than the model (4) on the basis of the information criteria: AIC, Schwarz criterion and the
Hannan-Quinn criterion. Residuals of the model are of zero mean, median and skewness and so it might be said to be
fairly normally distributed (see Figure 7). They are also mostly uncorrelated as evident from Figure 6. Moreover the
out-of-sample forecasts agree closely with observed values for March 10 to March 16, 2016 (See Table 3).

Figure-1. Time plot of the exchange rates
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Figure-2. Time plot of the seasonal differences
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Figure-3. Correlogram of the seasonal differences
Autocorrelation Partial Correlation AC PAC  Q-Stat  Prob
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Figure-4. Time plot of differences of the seasonal difference
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Figure-5. Correlogram of difference of the seasonal difference
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
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Table-1. Estimation of the sarim(1,1,,0)x(1,1,0) model
Dependent Variable: DSDLXNMA
Method: Least Squares
Date: 032216 Time: 18:11
Sample (adjusted): 17 170
Included observations: 154 after adjustments
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.

AR(1) 0203658 0.080935 2516325 0.01249

AR(T) -0.610471 0.069542  -B778511 0.0000

AR(E) 0120007 0.083414 1.4386949 0.1523
R-squared 0.414035 Mean dependent var -1.30E-06
Adjusted R-squared 0406274 S.D.dependentvar 0.000399
S.E. of regression 0.000307 Akaike info criterian -13.31801
Sum squared resid 143E-05 Schwarz criterion -13.25885
Log likelihood 1028.437 Hannan-Cluinn criter. -13.29388
Durbin-\Watson stat 2035574
Inverted AR Roots B4-40i Bd+.40i 21-91i 21+.910

20 - BB-T3i - BB+ T3 -83
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Table-2. Estimation of the additive sarima model

Dependent Variable: DSDLKMMA

Method: Least Squares

Date: 032216 Time: 18:21

Sample (adjusted). 16 170

Included observations: 155 after adjustments
Convergence achieved after 3 iterations

Yariable Coefficient Std. Error t-Statistic Prob.

AR(1) 0137633 0.066373 2073628 0.0398

AR(T) -0.580068 0.068039  -B.6709249 0.0000
R-squared 0405990 WMean dependentvar -1.29E-06
Adjusted R-sgquared 0.402107 S5.D. dependentvar 0.0003498
S.E. of regression 0.000307  Akaike info criterion -13.32400
Sum squared resid 1.45E-05 Schwarz criterion -13.28473
Log likelihood 1034 610 Hannan-Cuinn criter. -13.30805
Durbin-YWatson stat 1.882951
Inverted AR Roots BE-40i BE+.40i 23+.90i 23-90i

- 56+ T2 -56-72i -81

Figure-6. Correlogram of the additive sarima model residuals
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
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Table-3. Out-of-sample comparision of forecasted and observed values

Days Forecasted Rates Observed Rates
March 10, 2016 0.0596 0.0594
March 11, 2016 0.0599 0.0592
March 12, 2016 0.0597 0.0593
March 13, 2016 0.0600 0.0592
March 14, 2016 0.0597 0.0593
March 15, 2016 0.0600 0.0593
March 16, 2016 0.0601 0.0591
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Figure-7. Histogram of the additive sarima model residuals
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4. Conclusion

It may be concluded that daily UGX-NGN exchange rates follow an additive SARIMA (1,1,0)x(1,1,0); model.
Forecasting and simulation of the series may therefore be based on the proposed model (5). The algorithms of
Suhartono [15] and Etuk and Ojekudo [16] guarantee parametric parsimony. Precision should however not be
sacrificed on the altar of parsimony. The relative benefits and demerits of the novel approach vis-a-vis the traditional
ones should be investigated with a view to improving upon the modelling procedure.
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