

Academic Journal of Applied Mathematical Sciences ISSN: 2415-2188 Vol. 2, No. 2, pp: 11-18, 2016 URL: http://arpgweb.com/?ic=journal&journal=17&info=aims

Box-Jenkins Method Based Additive Simulating Model for Daily Ugx-Ngn Exchange Rates

Ette Harrison Etuk [*]	Department of Mathematics/Computer	Science	Rivers	State	University	of	Science	and
	Technology Port Harcourt Nigeria							

Bartholomew Anuriobi Uchendu Mazi Yellow Dimkpa Department of Mathematics/Statistics Federal Polytechnic Nekede, Imo State Nigeria

Department of Statistics Ken Saro Wiwa Polytechnic Rivers State Nigeria

Abstract: A 177-point realization of daily exchange rates of the Uganda shilling (UGX) – Nigerian naira (NGN) from 22nd September, 2015 to 16th March, 2016, is analyzed by Box-Jenkins methods. The original series being non-stationary is differenced seasonally i.e. on a seven-day basis. A further non-seasonal differencing is done to ensure seasonality. These differences of the seasonal differences of the series are modeled by seasonal autoregressive integrated moving average (SARIMA) approach. The first 170 values are used for the modeling process and the remaining 7 are used for out-of-sample forecast goodness-of-fit test. By a new fitting algorithm, it is concluded that the time series follows the additive SARIMA (1,1,0)x(1,1,0)7 model. Forecasts obtained for the daily rates from March 10 to March 16, 2016 agree so closely with the observed values that the calculated goodness-of-fit chi-square test statistic is far from being statistically significant with a p-value of more than 99%. Daily exchange rates between the two currencies may be simulated or forecasted by the model.

Keywords: Ugandan shilling; Nigerian naira; foreign exchange rates; SARIMA models.

1. Introduction

Foreign exchange is a major issue in the discussion of world economy. Any trade relationship between the country Uganda and the country Nigeria is based on the relative value of the Uganda Shilling (UGX) and the Nigerian Naira (NGN). In this write-up the daily exchange rates shall be modelled by Box-Jenkins methods. The particular approach shall be the seasonal autoregressive integrated moving average (SARIMA) approach proposed by Box and Jenkins [1].

In recent times, many authors have adopted the SARIMA modeling approach to model real iife data. Zhang, et al. [2] observed that SARIMA modelling outdid standard Poisson regression, autoregressive adjusted Poisson regression and multiple linear regression. Nirmala and Sundaram [3] fitted a SARIMA(0,1,1)x(0,1,1)12 to monthly rainfall in Tamilnadu. Jiang, et al. [4] noticed that SARIMA modelling produced better forecasts than dynamic harmonic regression and seasonal -trend decomposition procedure based on Loess. Padhan [5] modelled Indian International tourists footfalls by a SARIMA $(1,1,1)x(2,1,4)_{12}$. Mahsin, et al. [6] used a SARIMA $(0,0,1)x(0,1,1)_{12}$ to model raqinfall in Dhaka Division of Bangladesh. Oduro-Gymah, et al. [7] fitted a SARIMA $(1,1,1)x(0,1,2)_{12}$ to microwave transmission in Ghana. Liberian inflation rates have been modelled by a SARIMA $(0,1,0)x(2,0,0)_{12}$ [8]. Jianfeng [9] noticed that SARIMA modelling results in closer forecasts to the real data than dynamic linear modelling in forecasting monthly cases of mumps in Hong Kong. He fitted a SARIMA $(2,1,1)x(1,1,1)_{12}$ model to the time series . Li, et al. [10] modelled monthly outpatient numbers in China by a SARIMA $(0,1,1)x(0,1,1)_{12}$. Kibunja, et al. [11] forecasted monthly precipitation in Mount Kenya region using a SARIMA $(1,0,1)x(1,0,0)_{12}$ model. Valipour [12] observed that SARIMA modelling outdid its non-linear counterpart ARIMA in long-term runoff forecasting. Hassan and Mohamed [13] found that a SARIMA $(0,0,5)x(1,0,1)_{12}$ was the most adequate in the simulation of monthly rainfall drought in the Gadaref region of Sudan. Gikungu, et al. [14] fitted a SARIMA(0,1,0)x(0,0,1)₄ to quarterly Kenyan inflation rates.

The orthodox and usual approach to SARIMA modelling was proposed by [1]. Suhartono [15] proposed another method based on moving average modelling. In his work he found that according to his definitions a subset SARIMA model outdid both the additive and the multiplicative models for the airline data whereas an additive model best explained variation in the arrival of tourists. Etuk and Ojekudo [16] proposed an alternative modelling algorithm based on duality arguments. This algorithm has been applied to model series with a measure of success [17, 18].

The seasonal nature of the realization of the exchange rates used for this work makes the application of a SARIMA approach reasonable. The purpose of this write-up is to fit a model to the daily exchange rates of Ugandan shilling (UGX) and Nigerian Naira (NGN) using the algorithm of Etuk and Ojekudo [16]. This work is therefore a further application of the algorithm.

2. Materials and Methods

2.1. Data

The data for this work are 177 values of daily UGX / NGN exchange rates of September 22, 2015 through March 16, 2016. They were obtained from the website <u>www.exchangerates.org/UGX-NGN-exchange-rate-history.html</u> accessed on March 17, 2016. These numbers are interpreted as the quantities of NGN per UGX.

2.2. Seasonal Autoregressive Integrated Moving Average (SARIMA) Models

The definition of a SARIMA model as proposed by Box and Jenkins [1] is as follows. A stationary time series $\{X_t\}$ is said to follow a multiplicative seasonal autoregressive integrated moving average model of order p, d, q, P, D, Q, s designated SARIMA(p,d,q)x(P,D,Q)_s if

 $A(L) \Phi(L^{s}) \nabla^{\mathrm{d}} \nabla^{D}_{s} X_{t} = B(L) \Theta(L^{s}) \varepsilon_{t}$

(1)

(2)

(3)

where A(L) is a p-order polynomial in L and is called the autoregressive (AR) operator; B(L) is a q-order polynomial in L and is called the moving average (MA) operator; $\Phi(L)$ is a P-order polynomial in L called the seasonal AR operator; $\Theta(L)$ is a Q-order polynomial in L called the seasonal MA operator. The numbers d and D are the non-seasonal and the seasonal differencing orders respectively. L is the backward shift operator defined by $L^kX_t = X_{t\cdot k}$. the number s is the period of the seasonality of the time series. ∇ and ∇_s are the non-seasonal and the seasonal differencing operators respectively. $\{\varepsilon_t\}$ is a white noise process.

2.3. SARIMA Modelling

Generally the model (1) is estimated beginning with the determination of the orders: p, d, q, P, D, Q and s. The AR orders p and P are estimated by the non-seasonal and seasonal cut-off lags of the partial autocorrelation function, respectively. Similarly the MA orders q and Q are estimated by the non-seasonal and the seasonal cut-off lags of the autocorrelation function respectively. The seasonal period often suggests itself by the known nature of the series. Otherwise it may be suggestive by the correlogram or an analytical inspection of the series. The differencing orders d and D are such that they sum up to 2 at most.

In this work the subset SARIMA modelling algorithm proposed by Etuk and Ojekudo [16] shall be used. It is the autoregressive-moving-average-duality-based version of the algorithm of Suhartono [15].

Suhartono,s algorithm is as follows:

Fit to $\{X_t\}$ the following SARIMA $(0,0,1)x(0,0,1)_s$ model

 $X_t = \varepsilon_t + \beta_1 \varepsilon_{t-1} + \dots + \beta_s \varepsilon_{t-s} + \beta_{s+1} \varepsilon_{t-s-1}$

If $\beta_{s+1} = 0$ then the model is said to be *additive*. Otherwise if $\beta_{s+1} = \beta_1 \beta_s$, then the model is said to be *multiplicative*. Otherwise it is said to be *subset*.

Etuk and Ojekudo's algorithm which is the dual version of (2) is as follows:

Fit to $\{X_t\}$ the following SARIMA $(1,0,0)x(1,0,0)_s$ model

 $X_t + \alpha_1 X_{t-1} + \dots + \alpha_s X_{t-s} + \alpha_{s+1} X_{t-s-1}$

If $\alpha_{s+1} = 0$ the model is said to be *additive*. If not, if $\alpha_{s+1} = \alpha_1 \alpha_s$, the model is said to be *multiplicative*. Otherwise it is said to be *subset*. Additivity is ascertained if

 $\widehat{\alpha_{s+1}} < SE(\widehat{\alpha_{s+1}})$

where SE(.) is the standard error of and ^ denotes the estimate of. In other words, the algorithm of Etuk and Ojekudo [16] is the autoregressive version of Suhartono [15] method which was worded in moving average language. Multiplicativity is ascertained if

 $T = (\widehat{\alpha_{s+1}} - \widehat{\alpha_s} \, \widehat{\alpha_1} \,) / SE(\widehat{\alpha_{s+1}})$

Is not statistically significant where T is t-distributed.

Estimation of the model parameters is done via a non-linear optimization process for the mixed ARMA process.

Often more than one model is entertained based on empirical evidence. Model selection out of the contending ones is done using model identification tools which are information criteria like Akaike Information Criterion (AIC), Schwarz criterion and Hannan-Quinn criterion. Model choice is based on the minimization of the criteria. The Eviews software which uses the least squares technique is to be used for this work.

3. Results and Discussion

The analysis of the series was restricted to the daily exchange rates from 22^{nd} September, 2015 to 9th March, 2016, that is, 270 values. The remaining 7 values were used to compare with forecasts for the ascertainment of the adequacy or otherwise of the fitted model.

The time-plot of Figure 1 shows a generally positive trend depicting relative depreciation of the

Naira within the time period of interest. The Augmented Dickey Fuller (ADF) Test statistic of the series is of value -1.58. With the 1%, 5% and 10% critical values of -3.47, -2.88 and -2.58 respectively, the ADF test adjudges

(4)

the original series as non-stationary. Therefore a 7-day differencing is done. This yields a series with the time-plot of Figure 2 which depicts a generally horizontal trend and a correlogram of figure 3 showing a seasonal nature of period 7 days. The ADF test statistic for these differences is of value -2.21 which on the basis of the same critical values given above makes the null unit-root hypothesis not rejected at the above significant levels. Therefore they are also non-stationary. A further non-seasonal differencing yields a series with the plot of Figure 4 and the correlogram of Figure 5. Evident is a stationary nature which is confirmed by the ADF test with statistics equal to -11.01. Applying the algorithm of Etuk and Ojekudo (3) the SARIMA(1,1,0)x(1,1,0)₁₂ estimated in Table 1 is

$$X_t = 0.2037X_{t-1} - 0.6105X_{t-7} + 0.1200X_{t-8} + \epsilon_t$$

$$(\pm 0.0809)$$
 (± 0.0695) (± 0.0834)

where $\{X_t\}$ is the difference of the seasonal difference of the exchange rates. Clearly the lag 8 coefficient of model (4) is not statistically significant, being less than twice its standard error. That suggests the adoption of the *additive* model, which as given in Table 2 is estimated as

$$\begin{aligned} X_t &= 0.1376 X_{t-1} - 0.5900 X_{t-7} + \varepsilon_t \\ & (\pm 0.0664) \quad (\pm 0.0680) \end{aligned} \tag{5}$$

which is clearly better than the model (4) on the basis of the information criteria: AIC, Schwarz criterion and the Hannan-Quinn criterion. Residuals of the model are of zero mean, median and skewness and so it might be said to be fairly normally distributed (see Figure 7). They are also mostly uncorrelated as evident from Figure 6. Moreover the out-of-sample forecasts agree closely with observed values for March 10 to March 16, 2016 (See Table 3).

Academic Journal	of Applied	l Mathematical Sciences	s, 2016, 2(2): 11-18
------------------	------------	-------------------------	----------------------

Figure-3.	Correlogram of th	le se	easona	l differ	ences	
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
·		1	0.896	0.896	133.18	0.000
	🗖 I	2	0.723	-0.403	220.38	0.000
	🛋	3	0.502	-0.273	262.70	0.000
· 🗖	ן יםי	4	0.270	-0.118	274.99	0.000
1 🛛 1	ן וןי	- 5	0.057	-0.029	275.55	0.000
יםי	ן ווין	6	-0.108	0.036	277.54	0.000
	ן יום ו	- 7	-0.202	0.116	284.56	0.000
 '		8	-0.168	0.459	289.45	0.000
10	[]	9	-0.089	-0.149	290.84	0.000
1 1 1	ן יוםי ן	10	0.020	-0.086	290.91	0.000
ים	ן וןי	11	0.131	-0.035	293.94	0.000
· 🗖	ן ווןי ן	12	0.231	0.056	303.41	0.000
· 💻	() () () ()	13	0.299	0.026	319.43	0.000
	ן וון ו	14	0.324	0.049	338.34	0.000
· 🗖		15	0.308	0.249	355.62	0.000
· 🗖	🛋	16	0.254	-0.220	367.44	0.000
· 🗖 ·	ן יוםי ן	17	0.176	-0.109	373.16	0.000
ים		18	0.092	-0.016	374.72	0.000
1 1	ן יוםי ן	19	-0.001	-0.077	374.72	0.000
יםי	լ լի լ	20	-0.075	0.042	375.78	0.000
	ן יוםי ן	21	-0.138	-0.075	379.36	0.000
 •		22	-0.170	0.227	384.85	0.000
 •	ן פןי ן	23	-0.169	-0.151	390.30	0.000
		24	-0.121	0.188	393.12	0.000
i 🖞 i	1 1	25	-0.049	-0.004	393.59	0.000
i þi	1 1	26	0.045	0.008	393.99	0.000
· Þ	I] I	27	0.135	0.017	397.60	0.000
· 🗖	ן יוםי ן	28	0.233	0.095	408.42	0.000
	ן ויים ו	29	0.297	0.081	426.12	0.000
	ן יוםי ן	30	0.335	-0.067	448.85	0.000
· 🗖	ן יםי	31	0.306	-0.090	467.86	0.000
	ן יוםי ן	32	0.235	-0.067	479.23	0.000
יםי	🖬	33	0.125	-0.156	482.48	0.000
1 1		34	0.000	0.001	482.48	0.000
· □ ·	ן וןי	35	-0.135	-0.027	486.31	0.000
 •		36	-0.236	0.161	498.08	0.000

al diffe Figure-3. Co of t

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	· 🗖	1	0.338	0.338	18.864	0.000
· 🗖		2	0.240	0.142	28.401	0.000
1 🛛 1	10	3	0.055	-0.072	28.908	0.000
i 🗖 i		4	-0.092	-0.143	30.329	0.000
	·	5	-0.234	-0.192	39.566	0.000
L 1		6	-0.345	-0.223	59.800	0.000
		7	-0.606	-0.493	122.68	0.000
 '		8	-0.222	0.115	131.16	0.000
	լին	9	-0.145	0.052	134.82	0.000
1 1	1 1	10	-0.006	-0.007	134.82	0.000
1 🗓 1	1 <u>1</u> 1	11	0.050	-0.108	135.27	0.000
· 🗖 ·	10	12	0.158	-0.057	139.68	0.000
· 🗖 ·	יםי	13	0.207	-0.084	147.35	0.000
· 🗖 ·		14	0.185	-0.266	153.47	0.000
· 🗖 ·	· 🗖	15	0.193	0.212	160.21	0.000
יםי	יםי	16	0.111	0.082	162.46	0.000
ւլիս	1 1	17	0.038	-0.002	162.73	0.000
ւիւ	ן וויין ו	18	0.040	0.028	163.03	0.000
יםי	יםי	19	-0.085	-0.069	164.38	0.000
10	וויו	20	-0.045	0.044	164.76	0.000
E 1		21	-0.141	-0.245	168.53	0.000
 '	יםי	22	-0.164	0.116	173.61	0.000
· ·	□ '	23	-0.230	-0.211	183.75	0.000
· 🗖 ا	111	24	-0.118	0.018	186.45	0.000
· 🗖 ا	1 1	25	-0.116	-0.049	189.05	0.000
111	1 1	26	0.013	-0.006	189.09	0.000
10	יםי	27	-0.033	-0.085	189.31	0.000
· 🗖 ·	1	28	0.180	-0.036	195.74	0.000
· P	יווי	29	0.132	0.040	199.24	0.000
	1 1	30	0.323	0.045	220.25	0.000
	· •	31	0.188	0.082	227.40	0.000
	' P'	32	0.203	0.119	235.78	0.000
i 🗗	' '	33	0.079	0.020	237.08	0.000
<u>'</u>	I <u>1</u> !	34	0.039	0.005	237.39	0.000
		35	-0.189	-0.170	244.90	0.000
III I		36	-0.138	0.119	248.91	0.000

Figure-5. Correl	ogram of difference	of the	seasonal	differe	ence
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob

 Table-1. Estimation of the sarim(1,1,,0)x(1,1,0) model

 Dependent Variable: DSDUXNN1

 Method: Least Squares

 Date: 03/22/16
 Time: 18:11

 Sample (adjusted): 17 170

 Included observations: 154 after adjustments

 Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error t-Statistic		Prob.
AR(1)	0.203658	0.080935	0.0129	
AR(7)	-0.610471	0.069542	0.0000	
AR(8)	0.120007	0.083414	0.1523	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.414035 0.406274 0.000307 1.43E-05 1028.487 2.035574	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Qui	-1.30E-06 0.000399 -13.31801 -13.25885 -13.29398	
Inverted AR Roots	.8440i	.84+.40i	.2191i	.21+.91i
	.20	5873i	58+.73i	93

Table-2. Estimation of the additive sarima model

Dependent Variable: DSDUXNN1 Method: Least Squares Date: 03/22/16 Time: 18:21 Sample (adjusted): 16 170 Included observations: 155 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error t-Statistic		Prob.
AR(1) AR(7)	0.137633 -0.589968	0.066373 2.07362 0.068039 -8.67098		0.0398 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.405990 0.402107 0.000307 1.45E-05 1034.610 1.882951	Mean depend S.D. depend Akaike info ci Schwarz crite Hannan-Quir	-1.29E-06 0.000398 -13.32400 -13.28473 -13.30805	
Inverted AR Roots	.8640i 56+.72i	.86+.40i 5672i	.23+.90i 91	.2390i

Figure-6. Correlogram of the additive sarima model residuals Autocorrelation Partial Correlation AC PAC Q-Stat Prob

_	Autocorrelation	Faltial Collelation		AC	FAC	Q-Stat	FIUD
	1 1	iĝi	1	0.056	0.056	0.4927	
	ים	1 1	2	0.106	0.104	2.2932	
	1 1	111	3	-0.002	-0.013	2.2938	0.130
	i di i	1 I I I I I I I I I I I I I I I I I I I	4	-0.096	-0.108	3.7733	0.152
	i 🗖 i	1 I I I I I I I I I I I I I I I I I I I	5	-0.117	-0.107	5.9774	0.113
	 •		6	-0.195	-0.169	12.214	0.016
		L	7	-0.194	-0.168	18.372	0.003
	i þi		8	0.126	0.175	21.020	0.002
	1 j 1	լ ի	9	0.051	0.071	21.450	0.003
	1 🗐 1	1 1	10	0.072	-0.001	22.321	0.004
	1 🗐 1	111	11	0.073	-0.009	23.227	0.006
		10	12	0.016	-0.046	23.269	0.010
	ים	ון ו	13	0.090	0.059	24.657	0.010
	· ·	· ·	14	-0.337	-0.340	44.244	0.000
		יםי	15	0.009	0.121	44.257	0.000
	i di i	10	16	-0.129	-0.067	47.189	0.000
	10	111	17	-0.039	-0.017	47.454	0.000
		1 1	18	0.024	0.014	47.554	0.000
	1 1	וםי	19	-0.006	-0.055	47.560	0.000
	ւիւ	111	20	0.065	-0.014	48.329	0.000
	i þi	[]	21	0.044	-0.152	48.675	0.000
	111	ייםי	22	-0.009	0.105	48.690	0.000
	יםי	יםי	23	-0.058	-0.133	49.307	0.000
	1 1	ון ו	24	0.002	0.059	49.307	0.001
	111	יני	25	-0.015	0.030	49.351	0.001
	i 🏻 i	1 1	26	0.037	0.014	49.605	0.002
	יםי	יםי	27	-0.113	-0.086	52.049	0.001
	יםי	יםי	28	0.085	-0.095	53.431	0.001
	10	ון ו	29	-0.048	0.056	53.882	0.002
	· 🗖 ·		30	0.235	0.176	64.675	0.000
	i li i	יון י	31	0.025	0.047	64.800	0.000
	יףי		32	0.116	0.139	67.456	0.000
	יםי	י ויין די	33	0.094	0.036	69.210	0.000
	יםי	יוין י	34	0.089	0.091	70.800	0.000
	יםי	[]	35	-0.077	-0.145	71.990	0.000
	i 🗍 i	[[]]	36	-0.070	0.035	72.981	0.000

Table-3. Out-of-sample comparision of	forecasted and observed values
---------------------------------------	--------------------------------

Days	Forecasted Rates	Observed Rates
March 10, 2016	0.0596	0.0594
March 11, 2016	0.0599	0.0592
March 12, 2016	0.0597	0.0593
March 13, 2016	0.0600	0.0592
March 14, 2016	0.0597	0.0593
March 15, 2016	0.0600	0.0593
March 16, 2016	0.0601	0.0591

35 Series: Residuals Sample 16 170 30 **Observations 155** 25 Mean 5.27e-06 Median 0.000000 20 Maximum 0.001123 Minimum -0.000940 15 Std. Dev. 0.000306 Skewness 0.039231 Kurtosis 4.506680 10 Jarque-Bera 14.70073 5 Probability 0.000642 0 --0.0010 -0.0005 0.0000 0.0005 0.0010

Figure-7. Histogram of the additive sarima model residuals

4. Conclusion

It may be concluded that daily UGX-NGN exchange rates follow an additive SARIMA $(1,1,0)x(1,1,0)_7$ model. Forecasting and simulation of the series may therefore be based on the proposed model (5). The algorithms of Suhartono [15] and Etuk and Ojekudo [16] guarantee parametric parsimony. Precision should however not be sacrificed on the altar of parsimony. The relative benefits and demerits of the novel approach vis-a-vis the traditional ones should be investigated with a view to improving upon the modelling procedure.

References

- [1] Box, G. E. P. and Jenkins, G. M., 1976. *Time series analysisi, forecasting and control.* San Francisco: Holden-Day.
- [2] Zhang, Y., Bi, P., and Hiller, J., 2008. "Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models." *International Journal of Bimeteorology*, vol. 52, pp. 179-187.
- [3] Nirmala, M. and Sundaram, S. M., 2010. "A seasonal Arima Model for forecasting monthly rainfall in Tamilnadu." *National Journal on Advances in Building Sciences and Mechanics*, vol. 1, pp. 43-47.
- [4] Jiang, B., Liang, S., Wang, J., and Xiao, Z., 2010. "Modelling MODIS LAI time series using three statistical methods." *Remote Sensing of Environment*, vol. 114, pp. 1432-1444.
- [5] Padhan, P. C., 2011. "Forecasting International tourists footfalls in India: An assortment of competing models." *International Journal of Business and Management*, vol. 6, pp. 190-202.
- [6] Mahsin, M., Akhter, Y., and Begum, M., 2012. "Modelling rainfall in Dhaka division of Bangladesh using time series analysis." *Journal of Mathematical Modelling and Application*, vol. 1, pp. 67-73.
- [7] Oduro-Gymah, F. K., Harris, E., and Darkwah, K. F., 2012. "Sarima time series model application to microwave transmission of yeji-salaga (Ghana) line-of-sight link." *International Journal of Applied science and Technology*, vol. 2, pp. 40-51.
- [8] Fannoh, R., Orwa, G. O., and Mung'atu, J. K., 2012. "Modelling the inflation rates in liberia sarima approach." *International Journal of Science and Research (IJSR)*, pp. 1360-1367. Available: www.ijsr.net/archive/v3i6/MDIwMTQ0NDU=.pdf
- [9] Jianfeng, H., 2013. "Comparing the performance of SARIMA and Dynamic Linear Model in Forecasting Monthly Cases of Mumps in Hong Kong. A Master of Public Health dissertation submitted to the Uiversity of Hong Kong." Available: <u>www.hub.hku.hk/bitstream/10722/193789/2/Fulltext.pdf?accept=1</u>
- [10] Li, X., Ma, C., Lei, H., and Li, H., 2013. "Application of SARIMA model in forecasting Outpatient amount." *Chinese Medical Record English Edition*, vol. 1, pp. 124 128.
- [11] Kibunja, H. W., Kihoro, J. M., Orwa, G. O., and Yodan, W. O., 2014. "Forecasting Precipitation Using SARIMA model: A Case Study of Mt. Kenya Region." *Mathematical Theory and Modelling*, vol. 4, pp. 50 – 59.
- [12] Valipour, M., 2015. "Long-term runoff study using SARIMA and ARIMA models in the United States." *Meteorological Applications*, vol. 22, pp. 592 – 598.
- [13] Hassan, H. M. and Mohamed, T. M., 2015. "Rainfall drought simulating using stochastic sarima models for gadaref region, sudan." Available: <u>https://mpra.ub.uni-muechen.de/61153/MPRA_paper_61153.pdf</u>
- [14] Gikungu, S. W., Waititu, A. G., and Kihoro, J. M., 2015. "Forecasting inflation rate in Kenya using SARIMA model." *American Journal of Theoritical and Applied Statistics*, vol. 4, pp. 15 18.
- [15] Suhartono, 2011. "Time Series Forecasting by using Autoregressive Integrated Moving Average: Subset, Multiplicative or Additive Model." *Journal of Mathematics and Statistics*, vol. 7, pp. 20 – 27.

- [16] Etuk, E. H. and Ojekudo, N., 2015. "Subset SARIMA modelling: An alternative definition and a case study." *British Journal of Mathematics and Computer Science*, vol. 5, pp. 538-552.
- [17] Etuk, E. H. and Victor-Edema, U. A., 2014. "A model for the forecasting of monthly nigerian bank lending rates: A seasonal box-jenkins approach." *International Journal of Applied Mathematics and Machine Learning*, vol. 1, pp. 165-180.
- [18] Etuk, E. H., 2015. "A subset sarima model for daily euro-dollar exchange rates." *Euro-Asian Journal of Economics and Finance*, vol. 3, pp. 113-124.