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1. Introduction 
Foreign exchange is a major issue in the discussion of world economy. Any trade relationship between the 

country Uganda and the country Nigeria is based on the relative value of the Uganda Shilling (UGX) and the 

Nigerian Naira (NGN). In this write-up the daily exchange rates shall be modelled by Box-Jenkins methods. The 

particular approach shall be the seasonal autoregressive integrated moving average (SARIMA) approach proposed 

by Box  and Jenkins [1].  

In recent times, many  authors have adopted the SARIMA modeling approach to model real iife data.  Zhang, et 

al. [2] observed that SARIMA modelling outdid standard Poisson regression, autoregressive adjusted Poisson 

regression and multiple linear regression. Nirmala and Sundaram [3] fitted a SARIMA(0,1,1)x(0,1,1)12 to monthly 

rainfall in Tamilnadu. Jiang, et al. [4] noticed that SARIMA modelling produced better forecasts than dynamic 

harmonic regression and seasonal –trend decomposition procedure based on Loess. Padhan [5] modelled Indian 

International tourists footfalls by a SARIMA (1,1,1)x(2,1,4)12. Mahsin, et al. [6] used a SARIMA(0,0,1)x(0,1,1)12 to 

model raqinfall in Dhaka Division of Bangladesh. Oduro-Gymah, et al. [7] fitted a SARIMA(1,1,1)x(0,1,2)12 to 

microwave transmission in Ghana. Liberian inflation rates have been modelled by a SARIMA(0,1,0)x(2,0,0)12 [8].   

Jianfeng [9] noticed that SARIMA modelling results in closer forecasts to the real data than dynamic linear 

modelling in forecasting monthly cases of mumps in Hong Kong. He fitted a SARIMA(2,1,1)x(1,1,1)12 model to the 

time series . Li, et al. [10] modelled monthly outpatient numbers in China by a SARIMA(0,1,1)x(0,1,1)12. Kibunja, 

et al. [11] forecasted monthly precipitation in Mount Kenya region using a SARIMA(1,0,1)x(1,0,0)12 model. 

Valipour [12] observed that SARIMA modelling outdid its non-linear counterpart ARIMA in long-term runoff 

forecasting. Hassan and Mohamed [13] found that a SARIMA(0,0,5)x(1,0,1)12 was the most adequate in the 

simulation of monthly rainfall drought in the Gadaref region of Sudan. Gikungu, et al. [14] fitted a 

SARIMA(0,1,0)x(0,0,1)4 to quarterly Kenyan inflation rates. 

The orthodox and usual approach to SARIMA modelling was proposed by [1]. Suhartono [15] proposed another 

method based on moving average modelling. In his work he found that according to his definitions a subset 

SARIMA model outdid both the additive and the multiplicative models for the airline data whereas an additive 

model best explained variation in the arrival of tourists. Etuk and Ojekudo [16] proposed an alternative modelling 

algorithm based on duality arguments. This algorithm has been applied to model series with a measure of success 

[17, 18].  

 

Abstract: A 177-point realization of daily exchange rates of the Uganda shilling (UGX) – Nigerian naira 

(NGN) from 22nd September, 2015 to 16th March, 2016, is analyzed by Box-Jenkins methods. The original 

series being non-stationary is differenced seasonally i.e. on a seven-day basis. A further non-seasonal differencing 

is done to ensure seasonality. These differences of the seasonal differences of the series are modeled by seasonal 

autoregressive integrated moving average (SARIMA) approach. The first 170 values are used for the modeling 

process and the remaining 7 are used for out-of-sample forecast goodness-of-fit test. By a new fitting algorithm, it 

is concluded that the time series follows the additive SARIMA (1,1,0)x(1,1,0)7 model. Forecasts obtained for the 

daily rates from March 10 to March 16, 2016 agree so closely with the observed values that the calculated 

goodness-of-fit chi-square test statistic is far from being statistically significant with a p-value of more than 99%. 

Daily exchange rates between the two currencies may be simulated or forecasted by the model. 

Keywords: Ugandan shilling; Nigerian naira; foreign exchange rates; SARIMA models. 
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The seasonal nature of the realization of the exchange rates used for this work makes the application of a 

SARIMA approach reasonable. The purpose of this write-up is to fit a model to the daily exchange rates of Ugandan 

shilling (UGX) and Nigerian Naira (NGN) using the algorithm of Etuk and Ojekudo [16]. This work is therefore a 

further application of the algorithm. 

 

2. Materials and Methods 
2.1. Data 
The data for this work are 177 values of daily UGX / NGN exchange rates of September 22, 2015 through March 16, 

2016. They were obtained from the website www.exchangerates.org/UGX-NGN-exchange-rate-history.html 

accessed on March 17, 2016. These numbers are interpreted as the quantities of NGN per UGX.     

 

2.2. Seasonal Autoregressive Integrated Moving Average (SARIMA) Models 
The definition of a SARIMA model as proposed by Box  and Jenkins [1] is as follows. A stationary time series 

{Xt} is said to follow a multiplicative seasonal autoregressive integrated moving average model of order p, d, q, P, 

D, Q, s designated  SARIMA(p,d,q)x(P,D,Q)s if  

 ( ) (  )     
     ( ) ( 

 )            (1) 

where A(L) is a p-order polynomial in L and is called the autoregressive (AR) operator; B(L) is a q-order 

polynomial in L and is called the moving average (MA) operator;  (L) is a P-order polynomial in L called the 

seasonal AR operator;  (L) is a Q-order polynomial in  L called the seasonal MA operator. The numbers d and D 

are the non-seasonal and the seasonal differencing orders respectively. L is the backward shift operator defined by 

L
k
Xt = Xt-k. the  number s is the period of the seasonality of the time series.    and s are the non-seasonal and the 

seasonal differencing operators respectively. { t} is a white noise process.  

 

2.3. SARIMA Modelling 
Generally the model (1) is estimated beginning with the determination of the orders: p, d, q, P, D, Q and s. The 

AR orders p and P are estimated by the non-seasonal and seasonal cut-off lags of the partial autocorrelation function, 

respectively.  Similarly the MA orders q  and Q are estimated by the non-seasonal and the seasonal cut-off lags of 

the autocorrelation function respectively. The seasonal period often suggests itself by the known nature of the series. 

Otherwise it may be suggestive by the correlogram or an analytical inspection of the series. The differencing orders 

d and D are such that they sum up to 2 at most.   

In this work the subset SARIMA modelling algorithm proposed by Etuk and Ojekudo [16] shall be used. It is 

the autoregressive-moving-average-duality-based version of the algorithm of Suhartono [15].   

Suhartono,s algorithm is as follows: 

Fit to {Xt} the following SARIMA(0,0,1)x(0,0,1)s model 

                                                         (2) 

If s+1 = 0 then the model is said to be additive.  Otherwise if s+1 = 1s, then the model is said to be 

multiplicative. Otherwise it is said to be subset.  

Etuk and Ojekudo’s algorithm which is the dual version of (2) is as follows:  

Fit to {Xt} the following SARIMA(1,0,0)x(1,0,0)s model 

                                           (3) 

If s+1 = 0 the model is said to be additive. If not, if s+1 = 1s, the model is said to be multiplicative. Otherwise 

it is said to be subset. Additivity is ascertained if  

    ̂    (    ̂)                                  
 where SE(.) is the standard error of and  ^ denotes the estimate of. In other words, the algorithm of Etuk and 

Ojekudo [16] is the autoregressive version of Suhartono [15] method which was worded in moving average 

language.  Multiplicativity is ascertained if  

  (    ̂    ̂   ̂ )   (    ̂)    
Is not statistically significant where T is t-distributed. 

Estimation of the model parameters is done via a non-linear optimization process for the mixed ARMA process.  

Often more than one model is entertained based on empirical evidence. Model selection out of the contending 

ones is done using model identification tools which are information criteria like Akaike Information Criterion (AIC), 

Schwarz criterion and Hannan-Quinn criterion. Model choice is based onthe minimization of the criteria. The 

Eviews software which uses the least squares technique is to be used for this work. 

 

3. Results and Discussion 
The analysis of the series was restricted to the daily exchange rates from 22

nd
 September, 2015 to 9

th
  March, 

2016, that is, 270 values. The remaining 7 values were used to compare with forecasts for the ascertainment of the 

adequacy or otherwise of the fitted model.  

The time-plot of Figure 1 shows a generally positive trend depicting relative depreciation of the  

Naira within the time period of interest. The Augmented Dickey Fuller (ADF) Test statistic of the series  is of 

value -1.58. With the 1%, 5% and 10% critical values of -3.47, -2.88 and -2.58 respectiively, the ADF test adjudges 

http://www.exchangerates.org/UGX-NGN-exchange-rate-history.html
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the original series as non-stationary. Therefore a 7-day differencing is done.  This yields a series with the time-plot 

of Figure 2 which depicts a generally horizontal trend and a correlogram of figure 3 showing a seasonal nature of 

period 7 days. The ADF test statistic for these differences is of value -2.21 which on the basis of the same critical 

values given above makes the null unit-root hypothesis not rejected at the above significant levels.  Therefore they 

are also non-stationary. A further non-seasonal differencing yields a series with the plot of Figure 4 and the 

correlogram of Figure 5. Evident is a stationary nature which is confirmed by the ADF test with statistics equal to -

11.01.   Applying the algorithm of Etuk and Ojekudo (3) the SARIMA(1,1,0)x(1,1,0)12 estimated in Table 1 is 

Xt = 0.2037Xt-1 – 0.6105Xt-7  + 0.1200Xt-8 +  t      (4) 

      (0.0809)     (0.0695)      (0.0834) 

where {Xt} is the difference of the seasonal difference of the exchange rates. Clearly the lag 8 coefficient of 

model (4) is not statistically significant, being less than twice its standard error. That suggests the adoption of the 

additive model, which as given in Table 2 is estimated as 

 

Xt = 0.1376Xt-1 – 0.5900Xt-7 +  t        (5) 

       (0.0664)     (0.0680) 

 

which is clearly better than the model (4) on the basis of the information criteria: AIC, Schwarz criterion and the 

Hannan-Quinn criterion. Residuals of the model are of zero mean, median and skewness and so it might be said to be 

fairly normally distributed (see Figure 7). They are also mostly uncorrelated as evident from Figure 6. Moreover the 

out-of-sample forecasts agree closely with observed values for March 10 to March 16, 2016 (See Table 3). 

 
Figure-1. Time plot of the exchange rates 

   
 

Figure-2. Time plot of the seasonal differences 
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Figure-3. Correlogram of the seasonal differences 

 
 

Figure-4. Time plot of differences of the seasonal difference 
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Figure-5. Correlogram of difference of the seasonal difference 

 
      

Table-1. Estimation of the sarim(1,1,,0)x(1,1,0) model 
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Table-2. Estimation of the additive sarima model 

 
 

Figure-6. Correlogram of the additive sarima model residuals 

 
 

 
Table-3. Out-of-sample comparision of forecasted and observed values 

Days Forecasted Rates Observed Rates 

March 10, 2016 

March 11, 2016 

March 12, 2016 

March 13, 2016 

March 14, 2016 

March 15, 2016 

March 16, 2016 

0.0596 

0.0599 

0.0597 

0.0600 

0.0597 

0.0600 

0.0601 

0.0594 

0.0592 

0.0593 

0.0592 

0.0593 

0.0593 

0.0591 
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Figure-7. Histogram of the additive sarima model residuals 

 
 

4. Conclusion 
It may be concluded that daily UGX-NGN exchange rates follow an additive SARIMA (1,1,0)x(1,1,0)7 model. 

Forecasting and simulation of the series may therefore be based on the proposed model (5). The algorithms of 

Suhartono [15] and Etuk and Ojekudo [16] guarantee parametric parsimony. Precision should however not be 

sacrificed on the altar of parsimony. The relative benefits and demerits of the novel approach vis-a-vis the traditional 

ones should be investigated with a view to improving upon the modelling procedure. 
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