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1. Introduction 
The construction of an associated control operator for continuous-time linear regulator problems with delay 

parameter has been constructed by Adebayo and Aderibigbe [1]. This serves as a spring board and motivated the 

construction of a similar control operator for discrete-time linear quadratic regulator problems with delay parameter. 

The continuous-time linear quadratic regulator performance measure to be minimized considered by George and 

Siouris [2] and the Bolza problem of David and Hull [3] and Athans and Falb [4]  as: 

Problem (P1): 
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subject to the differential delay state equation  

 ̇                                                  1.2 

                                1.3 

where H and      are real symmetric positive semi-definite     matries.       is a real symmetric positive 

definite     matrix, the initial time,     and the final time,     are specified.      is an n-dimensional state vector, 

     is the m-dimensional plant control input vector.               are not constrained by any boundaries. 

            are specified constants which are not necessarily positive, the delay parameter,              is a 

given piecewise continuous function which is of exponential order on       . 
 According to Aderibigbe [5] and Adebayo and Aderibigbe [1], the controlled differential–delay constraint 

(1.2) constitutes an important model which has been used variously. Sequel to this, equation (1.1) can be rewritten 

as: 
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        1.5 

As customary with penalty function techniques, constrained problem equations (1.2) and (1.5) may be put into the 

following equivalent form:  
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where     is the penalty parameter and  ‖                        ̇   ‖  is the penalty term. Let us 

denote by  ̃ the product space 

  ̃    [     ]    [     ]                    1.9  
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of the Sobolev space  [     ] of absolutely continuous function      such that, both          ̇    are square 

integrable over the finite interval [       and the Hilbert space         of equivalence classes of real valued 

functions on [     with norm defined by:  

 ‖    ‖         (∫ |    |   
 

 
)

 
 
              .                1.10 

Then, the inner product       ̃ on  ̃ is given by  

       ̃         [     ]          [     ]                                 1.11 

Suppose       ̃ denotes ordered triple pair 

       (              )        [     ]        [     ]                       1.12 

then, we seek to determine the operator G on  ̃ such that  

           ̃   ∫ {       ̇    
 

 
               

 

 
             

  
  

    

                              ‖                        ̇   ‖ }                         1.13 

where  ̃ is suitably chosen Hilbert space. It follows from (1.9) that          ̃ has the norm 

 ‖    ‖ ̃
   ‖    ‖ [     ]

  ‖    ‖  [     ]
  ‖    ‖        

                1.14 

According to Kirk and Donald [6], before the numerical procedure of dynamic programming can be applied, the 

state equation dynamic,(1.2), must be approximated by a difference equation, and the integral in the performance 

measure must be approximated by a summation. This can be done most conveniently by dividing the time interval 

           into N equal increments,    . Then, from (1.2), we have 

 
            

  
                                      1.15 

                                           
                                                      1.16 

Here, it will be assumed that     is small enough so that the control signal can be approximated by a piecewise 

constant function that changes only at the instants 

                                                  1.17 

Thus,  

                         1.18 

Putting (1.18) for t in (1.16), we obtain 

                                                              1.19 

                where        is referred to as the kth value of x and is denoted by     . With this, the system 

difference equation (1.19) as can be written as: 

                                                   1.20 

Following the same trend as above, the performance measure, (1.5) becomes 
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On applying the same condition as in (1.20) to (1.23), we obtain 
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          )  
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Then, (1.24) can now be written using summative convention as: 

     ∑     
          ̇    

 

 
            

 

 
                     1.25  From the above, 

the performance measure of the discrete-time linear regulator problem subject to the difference delay state equation 

of the form (1.20) and (1.25) can now be written in the constrained form:    
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Using [7] and [8], the discretized unconstrained problem is as: 
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On substituting the RSH of (1.20) into (1.27), we obtain 
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Expanding and simplifying (1.28) at      , we obtain   
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     1.29 

The next section shall focus on discussing the CGM algorithm for completeness sake, since the constructed operator 

is to be applied in the ECGM algorithm which is an application of the CGM to optimal control problems. 

 

2. Conjugate Gradient Method Algorithm                    
The conjugate Gradient Method (CGM) is a variant of the gradient method. In its simplest form, the gradient 

method uses the iterative scheme   

                                                                      2.1 

To generate a sequence {  }      
  of vectors which converge to the minimum of F( ). The parameter   appearing 

in (2.1) denotes the step length of the descent direction sequence. In particular, if F is a functional on a Hilbert space 

  such that in  , F admits a Taylor series expansion 

      =             
 

 
                                           2.2 

Where a,   ϵ   and is a positive definite, symmetric, linear operator, then it can be shown by Hasdorff [9] that F 

possesses a unique minimum    say in  , and that         = 0. The CGM algorithm for iteratively locating the 

minimum     of       in   as described by Hasdorff [9] is as follows:               

Step 1: Guess the first element    ϵ   and compute the remaining members of the sequence with the aid of the 

formulae in the steps 2 through 6. 

Step 2: Compute the descent direction                        2.3a 

Step 3:   Set                 ; where    =  
        

         
       2.3b 

Step 4: Compute                            2.3c 

Step 5: Set                  ;       
             

         
         2.3d 

Step 6: If         for some i, then, terminate the sequence; else set i = i + 1 and go to step 3. 

In the iterative steps 2 through 6 above,     denotes the descent direction at i-th step of the algorithm,   , is the 

step length of the descent sequence  {  } and     denotes the gradient of F at   . Steps 3, 4 and 5 of the algorithm 

reveal the crucial role of the linear operator G in determining the step length of the descent sequence and also in 

generating a conjugate direction of search.  

 

3. Necessary Ingredients for Conjugate Gradient Method 
In a view to constructing the control operator, there is need to determine the ingredients of the operator in what 

follows as: 
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3.1. The Gradient of the Algorithm  
From (1.29), the gradient is given as: 
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3.2. Descent Direction of the Algorithm 
Also, from (1.29) and (3.1), the descent direction to be used in the CGM algorithm is given as: 
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3.3. The Associated Control Operator 
As shown by [9] in (2.2), F admits a Taylor series expansion and the linear operator, G, is a Hessian matrix 

which we shall go on to determine in what follows from (1.29) as: 
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The required control operator is the product of (3.2) and (3.3), given by our next equation (3.4) as: 
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From (3.4), we obtain the entries of the control operator as:  
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Then control operator,                    
   can now be used in steps 3, 4 and 5 of the CGM algorithm in 

determining the step length,    of the descent sequence and also in generating a conjugate descent direction of 

search. 

 

4. Conclusion 
It follows from here that, while [10] constructed an operator for CLRP, [5] focuses on same class of optimal 

control problem but with delay parameter in the state variable. The construction of this associated control operator, 

G, helps to bridge the gap between Bolza form performance measure control problems and CLRP with delay 

parameter via discretization of the continuous linear regulator problem. This makes the construction of the associated 

control operator very important and relevant in that, it takes cares of the CLRP without delay parameter in the state 

variable.  Based on this, our next paper shall be devoted to a detailed exposition of the construction and 

computational application of the control operator to CGM algorithm in solving Discrete-Time Linear Regulator 

Problems with delay parameter in the state variable with numerical comparison of the operator with [1] shall be 

exhibited. 
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