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1. Introduction 
The Hahn-Banach and sandwich-type theorems are widely studied and have several applications in different 

branches, among which, for instance, extension theorems for finitely additive measures ([1] and its bibliography, [2, 

3]), convex optimization, Fenchel-type duality theorems for conjugate convex functions, which are deeply used in 

the study of the properties of the dual energy related with the problem of image reconstruction ([4-7]), representation 

theorems for (Riesz) MV-algebras ([8-10]), subdifferential calculus and variational analysis ([6, 11]) and their 

bibliographies), optimization theory and vector programming (see for instance [7, 12-15]), separation theorems for 

convex sets by means of affine manifolds (see also [16-19]).  

Another field, related with these topics, is the study of the properties of measures and functionals invariant with 

respect to suitable (semi)groups of transformations, which are widely studied in several branches of Mathematics, 

for example in group theory, in which the concept of amenability is deeply investigated in various features (see for 

example [20]), and in Probability (see also [21, 22]). In particular, the theory of exchangeable processes is related to 

the group of all permutations of the set of the natural numbers, which keep fixed all but a finite number of integers. 

Note that this group is amenable but not abelian, while every abelian semigroup is amenable (see also [20]).  

These subjects are widely studied in the context of functionals and measures with values in abstract spaces, and 

in particular in partially ordered vector spaces. A comprehensive survey can be found, for instance, in Buskes ([23]), 
Fuchssteiner and Lusky ([24]) and Lipecki ([3]). Moreover some extension, sandwich and Hahn-Banach-type 

theorems for invariant (sub)additive and (sub)linear partially order vector space-functionals were given, for instance, 

in [25-29].  

In this paper we deal with convex subinvariant functionals, defined on suitable subsets of a given real vector 

space, which are not subspaces, and taking values in partially ordered vector spaces. We prove Hahn-Banach and 

sandwich theorems which allow to find invariant linear functionals. We give a direct proof, using a result proved in 

[26] on the existence of an invariant partially ordered vector space-valued mean. Moreover we prove the existence of 

an affine manifold “separating” two suitable convex sets. Furthermore, as consequences and applications, we prove a 

Farkas-type and a Kuhn-Tucker-type theorem, which are related with the problem of finding the minimum of 

nonlinear invariant functionals with values in order spaces, under suitable constraints.  

 

2. Preliminaries 
Let   be a real vector space. An affine combination of elements   ,         of   is any linear combination of 

the form ∑   
 
      with   ,           and ∑   

 
     . An affine manifold of   is a nonempty subset of  , 

closed under affine combinations.  

If      , then the affine hull of   is the smallest affine manifold of   which contains  , and we denote it 

by            (see also [30]). 

A point      is said to be an algebraic interior point of   iff for every     there is a positive real number    

with               for each           . We say that      is an algebraic relative interior point of   iff 

Abstract: We give a direct proof of Hahn-Banach and sandwich-type theorems in the setting of convex 

subinvariant functionals, and a result of separation of convex sets by means of an invariant affine manifold. As 

consequences and applications, we give some conditions for an optimal solution of minimization problems, 

proving a Farkas and a Kuhn-Tucker-type theorem.   

Keywords: Partially ordered vector space; Amenability; Hahn-Banach theorem; Sandwich theorem; Farkas theorem; 

Kuhn-Tucker theorem. 



 Academic Journal of Applied Mathematical Sciences, 2016, 2(6):45-50 

 

46 

for each              there is      such that               for each           . We denote by      and 

       the sets of all algebraic interior points of   and of all algebraic relative interior points of  , respectively.  

A nonempty set     is said to be algebraically expanded iff there is at least an element          with 

                for each     and        .  
A nonempty subset   of any real vector space   is said to be convex iff               for every   , 

     and        .  
Given any two real vector spaces  ,   (where   is equipped with a partial order compatible with the structure of 

real vector space) and a convex set    , we say that a function       is convex (resp. concave) on   iff 

                                 (resp.                                 ) for every   , 

     and        . In this case, sometimes we will write      instead of  .  

Let   be a semigroup, and      be the family of all subsets of  . We say that   is left (resp. right) amenable iff 

there exists a finitely additive measure             , with        and            (resp.             
   ) for every     and    . We say that   is amenable iff it is both left and right amenable. Note that, in 

general, left and right amenability do not coincide, but are equivalent when   is a group (see also [31]).  

Let      be a semigroup of (linear) homomorphisms, with               for any  ,     and    . 

Such a semigroup is said to be acting on X. Let   be a Dedekind complete partially ordered real vector space, 

             ,         be the space of all bounded  -valued functions defined on  . Given           

and    , we call left(right) -translation of   the function    (resp.   )          defined by  

                                        
A linear positive function             is called a left (resp. right)- -invariant  -mean iff            

(resp.           ) for each           and    , and        for each    , where   is the constant 

function which associates the value   to every element    .  

A set       is said to be  -invariant iff      whenever    . A set         is  -invariant iff 

         whenever     and        .  

A function       is said to be  -subinvariant (resp.  -superinvariant,  -invariant) iff            (resp. 

          ,           ) for every     and    .  

By        and        we denote the sets of all linear functions from   to   and from   to  , respectively. We 

indicate with           (resp.            ) the set of all linear (resp. linear positive)  -invariant functions   
      .  

A nonempty set       is called a cone with vertex        iff              for every non-

negative  real number  .  

Given   ̸         ,   ̸           and    in  , set  

                               (1) 

It is not difficult to check that the set   defined in (1) is empty or an affine manifold of     (see also [17]). 

If  ,   are two nonempty subsets of     and     is as in (1), then we say that   separates   and   iff 

     and     , where  

                                
                              

The projection of     onto   is the function          defined by           for every         
 . Moreover, for any nonempty set      , put  

                                             
It is not difficult to see that                     for any two nonempty subsets  ,      .  

Given a set        , we call cone generated by   the set             : there exist     
  and 

     with        . It is not difficult to check that, if   is convex, then      is too, and that     and        

are  -invariant whenever   and   are  -invariant.  

 

3. The Main Results 
We begin with proving Theorem 3.1, which is a Hahn-Banach-type theorem, whose [32], is the particular case 

in which the involved functions are not necessarily  -invariant or  -subinvariant (or, equivalently,   is supposed to 

be a trivial group having one element). We always assume, when we do not say it explicitly, that   is a real vector 

space,   is a right amenable semigroup acting on X and   is a Dedekind complete partially ordered real vector space.  

Theorem 3.1.  Let   be a convex and  -invariant subset of  ,   be a  -invariant subspace of   with         , 

      be a convex and  -subinvariant function, and              be such that            for every 

     . Then    admits an extension            , with            for every    .  

Proof. By Zowe [32] there is a function           (not necessarily  -invariant) with            for every 

    and             for each    . Now, choose arbitrarily     and define            by       
      ,    . Since   is right amenable and   is Dedekind complete, by Chojnacki [26] there is a right  -invariant 

 -mean            . Set            ,    . Since                                for every 

   , then                                  for any    , and hence   is  -invariant. Moreover, as 

           for every     and   is  -subinvariant, we get                         for every    , 

and hence                        . Finally, if   ,      and   ,     , then  

          
      (            )                   
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for every    , and hence  

                             
   

        
         

                   

Thus,            . This ends the proof.     □    

By proceeding analogously as in Zowe [32], it is possible to give the following consequence of Theorem 3.1.  

Theorem 3.2.  Let   be as in Theorem 3.1, and       be a convex and  -subinvariant function. If          

and       , then there is             with           for every    .  

Similarly as in the proof of Theorem 3.1, it is possible to prove the following sandwich-type theorem, which extends 

to invariance the analogous result given in [32], proved when the involved convex, concave and linear functions are 

not necessarily  -subinvariant,  -superinvariant and  -invariant, respectively.  

Theorem 3.3. Let   and   be two convex and  -invariant subsets of   with nonempty intersection,       be a 

convex function,       be a concave function. Assume that            and           for every     
 . Then there exist             and      with              for every     and              for 

each    .  

Now, using Theorem 3.2, we prove the existence of  -invariant affine manifolds separating two convex sets in the 

context of partially ordered vector spaces, and extend to invariance earlier results proved in [16], [17] and [18].  

Theorem 3.4.  Let  ,   be two  -invariant subsets of     such that        is convex,         is 

algebraically expanded,  

                (2) 

and  

                                       (3) 

Then there exist             and      such that the affine manifold  

                          (4) 

separates   and  .  

Proof. First of all, observe that it is known that, if                          , then    is a subspace of   and  

                                   
                   

       

(see also [17, 18]). From this and (2) it follows that  

          
        (5) 

Moreover, since   and   are  -invariant, it is not difficult to deduce that    is  -invariant too. By (5), for each 

     there is      such that for every          there is     with           .  

Set now                       ,     . Note that 
 

 
     for every         , and hence      for 

any     .  

We claim that     for each     . Indeed, choose arbitrarily         . Then there exist    ,          , 

         , with                         , and hence      . From this and (3) it follows that      . 

Thus,             , getting the claim.  

We now show that  

    
    

       
                    (6) 

Fix arbitrarily   ,      , and pick       
,      . Then,        ,               . From this, since 

       is convex, it follows that                     , and hence             
.  

Now, we show that the set    is bounded from below for every     . Choose arbitrarily     . Since      , 

there exists      with        . From (6) we get               , and hence       , namely 

    .  

Thus, since   is Dedekind complete, it makes sense to define a function        by  

      ⋀          

We now claim that   is  -subinvariant. Pick arbitrarily     and    . Since        is  -invariant, then 

      , and hence  

      ⋀          ⋀               

getting the claim.  

Now, fix arbitrarily   ,      . Taking into account (6), we have  

          ⋀           
  ⋀             

       
   (7) 

  ⋀          
  ⋀          

                

Moreover for every      and     we get  

       ⋀          ⋀           (8) 

  ⋀           ⋀                  
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From (7) and (8) we deduce that   is sublinear, and also convex, on   . Moreover       , since      . By 

Theorem 3.2 there exists               with            for every     . From this it follows that for each 

          and           it is  

                                         (9) 

From (9) we get                    . Let      be such that  

 ⋁                         ⋀                       (10) 

Note that such an element does exist in  , since   is Dedekind complete. Let    be an algebraic complement of   , 

that is a subspace of   such that every element     can be expressed in a unique way as        , where 

     ,      . Such a space    does exist (see also [33]). Let us define       by            . From (10) it is 

not difficult to deduce that   and    are such that the affine manifold   defined as in (4) separates   and  . This 

ends the proof.   

 

4. Applications 
In this section, as consequences and applications of the results proved in Section 3, we establish some conditions 

for an optimal solution of some minimization problems for invariant functionals with values in a partially ordered 

vector space.  

Following [18], suppose that      is a G-invariant cone with vertex  , which induces on   the natural order, 

defined by       if and only if           and suppose that         whenever     and        Assume 

that            is a  -equivariant function (that is,               for every     and       , see 

also [34]),            is a  -invariant function,                ,      and      are  convex and 

 -invariant sets. Put  

    ⋀                   (11) 

and  

                                         (12) 

Suppose that      is convex,          is algebraically expanded, and  

                  (13) 

As a consequence of Theorem 3.4, we first prove the following Farkas-type theorem, extending earlier results proved 

in [12, 13].  

Theorem 4.1. Under the same hypotheses and notations as above, assume that  

                                  (14) 

Then there is               with  

                               (15) 

 

Proof. First of all, observe that from (14) it follows that    , where   is as in (11). If      and      are such 

that         , then        and hence, by construction,       . From this it follows that          
  for any     . Furthermore, since      ,               and            for every     and     , 

then                                           for each          ,      and     , 

and hence it is not difficult to deduce that the set   defined in (12) is  -invariant. Let               . Then, 

the sets   and   satisfy the hypotheses of Theorem 3.4. Thus, there are             and            with 

           for each         and  

                       (16) 

for each     ,     ,     . From (16) used with    , taking into account that    , we obtain  

                  (17) 

for each      and     . In particular, choosing    , we get                for each     , that is (15).  

We now claim that   is positive. Pick arbitrarily     . For each     , taking into account (17), we get  

                                                  
and hence, passing to the infimum, we deduce  

     ⋀      
 

 
                       

This ends the proof.   □ 

 

We now are in position to prove our version of the Kuhn-Tucker theorem for invariant functionals (see also [12, 14, 

15]).  

Theorem 4.2. Under the same hypotheses and notations as in Theorem 4.1, let    be a solution of the problem  

P1)  find             :         such that            for every     .  

Then there exists                such that         is a solution of the problem  

P2)  find       and                such that  

                                              (18) 

for every      and              .  
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Proof. Let    be a solution of the problem P1). Set                  ,       . It is not difficult to check 

that   and    fulfil condition (14), and thus satisfy (15) too, thanks to Theorem 4.1. Hence there is                

with                  for every     , that is                     for each     . Thus, 

           . Since         and    is positive, then            , and hence            . Thus, it 

follows that  

                                               (19) 

As        , we get            for every              , and hence  

                                      (20) 

for each              . From (19) and (20) it follows that         is a solution of Problem P2). □   

Remark 4.3.  Observe that both Dedekind completeness and (right) amenability of   are not only sufficient, but also 

necessary conditions in order that Hahn-Banach and sandwich-type theorems hold (see also [35] and [25], 

respectively).  

 

5. Conclusions 
We proved some versions of Hahn-Banach and sandwich-type theorems related to convex subinvariant 

functionals, taking values in a partially ordered vector space  . We used some similar classical results holding 

without invariance and a technique, by means of which it is possible to construct an invariant  -valued mean on all 

bounded  -valued functions defined on an amenable semigroup of homomorphisms and to get an invariant linear 

functional from a not necessarily invariant linear functional. We used the obtained Hahn-Banach theorem to prove a 

result on separation of convex sets by means of an invariant affine manifold. As consequences and applications, we 

got some conditions for an optimal solution of minimization problems related to nonlinear vector programming, 

extending to our context some Farkas and Kuhn-Tucker type theorems.  
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