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Abstract: In this paper, we determine the Laplacian spectra of graphs obtained by appending 7 end vertex
to all vertices of a defined class of graphs called the base graph. The end vertices allow for a quick solution to
the eigen-vector equations of the Laplacian matrix satisfying the characteristic equation, and the solutions to
the eigenvalues of the Laplacian matrix of the base graph arise. We determine the relationship between the
eigenvalues of the Laplacian matrix of the base graph and the eigenvalues of the Laplacian matrix of the new
graph as constructed above, and determine that if ¢ is an eigenvalue of the Laplacian matrix of the base

(@+h+1)xy(@+h+1) —4da
2

graph, then A= is an eigenvalue of the Laplacian matrix of the

constructed graph.

We then determine the Laplacian spectra for such graphs where the base graph is one of the well-known
classes of graphs, namely the complete, complete split-bipartite, cycle, path, wheel and star graphs. We then
use the Laplacian spectra to determine the Laplacian energy of the graph, constructed from the base graphs,
for each of the above classes of graphs. We then analyse the case where only one end vertex is appended to
each vertex in the base graph, and determine the Laplacian energy for large values of 7, the total number of
vertices in the constructed graph.In the last section, we investigate the eigen-bi-balance of the graphs
using the eigenvalues of the Laplacian matrix for graphs with appended end vertices, and consider
the example of the star sun graph.

Keywords: Laplacian spectra of graphs; Graphs with many end vertices; Laplacian energy of graphs; Laplacian eigen-
bi-balance.

JEL Classification: 05C50

1. Introduction

In this paper, we use the concept of the energy of a graph using the eigenvalues of a graph Gutman [1] and use
it to define the energy of a graph using the eigenvalues of the Laplacian matrix of a graph Fath-Tabar, et al. [2] and
Gutman [1]. There are some similarities between these definitions, and some differences — see Radenkovic and
Gutman [3].

We determine the Laplacian spectra of graphs obtained by appending h end vertex to all vertices of a defined
class of graphs called the base graph. The end vertices allow for a quick solution to the eigen-vector equations
satisfying the characteristic equation for the Laplacian matrix, and the solutions to the eigenvalues of the Laplacian
matrix of the base graph arise. We determine the relationship between the eigenvalues of the Laplacian matrix of the
base graph and the eigenvalues of the Laplacian matrix of the new graph as constructed above, and determine that if

(@ +h+1)E\(a+h+1} —4a
2

a is an eigenvalue of the Laplacian matrix of the base graph, then A = is an
eigenvalue of the Laplacian matrix of the constructed graph.

We then determine the spectra for such graphs where the base graph is one of the well-known classes of graphs,
namely the complete, complete split-bipartite, cycle, path, wheel and star graphs. We also determine the energy of
the constructed graph for each of these classes of graphs.
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In the last section, we apply the definitions of eigen-bi-balance of graphs using the eigenvalues of the Laplacian
matrix of a graph Winter and Jessop [4], and then apply these definitions to the graphs with appended end vertices,
and calculate the ratios for the star sun graph.

2. Laplacian Energy
The energy of a graph was introduced almost 30 years ago, and has a clear connection to chemical problems.
Definition 2.1

n
The energy of a graph is E(G) = Z|/1i |, where A4, 1<i<n are the eigenvalues of the adjacency matrix of
i=1

the graph G .

n n
It is easily verified that the eigenvalues obey the following well-known relations z/li =0 and Zﬂf =2m
i=1 i=1
See Gutman and Zhou [5].
This quantity has in recent times attracted much attention of mathematicians and mathematical chemists. There
has also been much learnt about a graph by creating an adjacency matrix for the graph, and then computing the
eigenvalues of the Laplacian of the adjacency matrix. We now define the Laplacian energy of a graph as follows.

Definition 2.2

The Laplacian eigenvalues f4, i,, ls,..., 1, of a graph G, are the eigenvalues of the Laplacian matrix
L(G)of G, where L(G)=D(G)— A(G), D(G) is the diagonal matrix of vertex degrees of G and A(G) is
the adjacency matrix of G. Then we have

Zn:,ui =2mand Zn:,uiz =2m +Zn:di2 :
i=—1 i=1

i=—1

See Gutman and Zhou [5].
The Laplacian energy of the graph G, was defined to get a graph energy concept that is defined in terms of the

eigenvalues of the Laplacian matrix instead of the eigenvalues of the adjacency matrix of the graph, and that would
preserve the main features of the original graph energy definition.

The Laplacian energy of the graph G, denoted by L,E(G), i =1,2has been defined in the following two
ways:

1) The first definition is a direct adaptation of the definition of the Energy of a graph, using the eigenvalues of the
Laplacian matrix, ie.

n
LE(G) = Z|/ui|'
i=1
However, since the eigenvalues of the Laplacian matrix is always non-negative,

>l =3 14 = 2m=tr(L(G)).

i=1 i=—1

2) The definition for the Laplacian energy of a graph was then adapted, in a natural way, to become

. iﬂi

1

L,E(G) :Z,ui —;‘,Where yzi =i=T
=

ie. The sum of the absolute value of the deviation of the Laplacian eigenvalues from the mean of the Laplacian
eigenvalues. This gives a measure of the variance of the Laplacian eigenvalues about their mean. This definition

preserves the main features of the original graph energy E(G) definition as follows:

2t n
U=t —= 2m , and therefore L,E(G) = Z 7 _2m :
n n — n

We note that (similar to the original graph energy E(G) definition):
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n

n 2 n 2
Z(/“i —2—mj =0and Z[,ui —z—mj =2M where M = m+%2(di —2—mj and that if G is a regular
i1 n i=1 n ) n

graph, then M =m. See Gutman and Zhou [5].
There are a great deal of similarities between the properties of the energy of a graph E(G) and the two

definitions of the Laplacian energy of a graph L,E(G),1 =1,2, but there are also some significant differences. See

Gutman and Zhou [5], Radenkovic and Gutman [3].
For regular graphs, we have the following:
Lemma 6.1.1

If the graph G is regular of degree I', then L,E(G) = E(G).
Proof

. 2m
Ifa(n, m)—graph is regular of degree I', then — =1
n

Now A(G)ﬁ = A;%; for eigenvalue 4; and eigenvector X , for i=1,...,n, and

L(G)yj =(I’| —A(G))yj =rly; —A(G)yj = p;Y; for eigenvalue p;and eigenvector Y, of L(G),
for j=1,..,n.

Therefore A(G)X =rly—uy

= AG)y=(rl -4y

=>(r—p)=4.

2m .
Therefore, g, ——— =, —r=—A4, for i=12,..,n.
n

Then LZE(G)=Zn:,ui—27m=Zn:|—Z,,|=E(G). 0
i=1 i=1

The following theorem is useful in determining the Laplacian eigenvalues for a number of classes of graphs.
Theorem 2.1

Let K and L be two graphs with Laplacian spectrum A4 >4, >2..24 and @ 2w, 2.2,
respectively. Then the Laplacian eigenvalues of K & L are
w=K+1;
i =l+4,1<i<k-1;
ty,; =k+o;, 1< j<I-1;and

Hen =0.
See Mohannadian and Tayfeh-Rezaie [6].

3. End Vertices Appended to Each Vertex of a Base Graph

Let the generalized sun graph Gsun(h, p) be a graph which consists of the base graph G on p vertices, with
h end vertices appended to each of the P vertices in the graph G . Then the graph Gsun(h, p) has n= p(h +1)
vertices, and the (nxn) Laplacian matrix of GSun(h, p) is:

LG)+hl,, —1,, ... —1,,

_Ipp Ipp Opp

L(GSun(h, p))= S L g
_Ip,p Op,p Ip,p

For example, the Laplacian matrix of CompSun(2,3) is
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(4 -1 -1 -1 0 0 -1 0 0]
-1 4 -1 0 -1 0 0 -1 0
-1 -1 4 0 0 -1 0 0 -1
-1 0 0 1 0 0 0O 0 O
L(CompSun(23))=|0 -1 0 0 1 0 0 0 O
0O 0 -1 0 0 1 0 0 O
-1 0 0 0 0 0 1 0 O
0 -1 0 0 0 0 0 1 O
0 0 -1 0 0 0O O 0 1]

Theorem 3.1

(aj +h+1)i\/(aj +h+1)2 —4a;
2
are two eigenvalues of L(GSun(h, p)), for 1< j < p. The remaining eigenvalues of L(GSun(h, p)) are

Aoge; =1, 1< j< p(h-1).
Proof
Let X =(X,, X,X5,..., X, ) be an eigenvector of L(GSun(h, p)), with eigenvalue A . Then we have:

L(GSun(h, p))x = Ax

If «; are the eigenvalues of L(G), 1< j< p, then {/121._1,2,2].}=

LG)+hl,, —1,, ... =1,
— I e 0
= P e P x = Ax
_Ip,p Op,p Ip,p

h
L(G)l(xl,..., xp)T =D Xew |
i=1

h
L(G)Z(xl,...,xp)T X, =Y X || A%
i=1 .

= E h = /1):( where L(G), is the k the row of L(G),

L(G), (xl,..., xp)T + X =D X A

i=1 .
T. h _lXp_
L(G)p(xl,..., xp) +hX, = > X,
L i1 ]
and
— X+ Xipy = X, ISi<hand 1<k < p.
= =X z(ﬂ“_l)xip+k
1

= Xipuy = 7 X, -

1
Substituting the values for X.. ., = n X, into equation K in the matrix equation above, we get

ip+k

h
LG ), 06y X, )T 1 =D %4 = A%,
=1
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h
= L(G) (g%, T TN =(A-h)x,

= L(G), (%X, | :[Z—h+%jxk

(/1— h +L,1) =a;, forsome j, 1< j < p,where o; isan eigenvalue of L(G). Therefore,

(ﬂ.—h+ij=a-
1-2) !
=(A-hf1-2)+h-a,1-1)=0
=>A-h-2Z+hi+h-a;+a;A=0
= 22 —(a; +h+1)i+(a,)=0

(aj +h+1)i\/(aj +h+1)2 —4a;

= {’121—1'221}: >

Setting X; =0 in equation —X; +X;,,; = AX;,,;, we get A=1 for the remaining p(h+1)-2p=p(h-1)
eigenvalues of L(GSun(h, p)) ie. A,,,;=1,1<j< p(h —1) . o
Theorem 3.2

The Laplacian energy L E of the generalized sun graph GSun(h, p) is
p
LE(GSun(h, p))=>(a, +h+1)
j=1
where ¢; are the eigenvalues of L(G).
Proof

L,E(GSun(h, p))
p(h+1)
Z ‘/11-‘ where 4, are the eigenvalues of L(GSun(h, p))

j=

->

j=1

=1
{‘a +h+1 +\/a +h+1) —da, ‘a +h+1) \/(a +h+1) —4a,
2 i ; |

+p(h-1)
Now all the Laplacian eigenvalues of a graph are non-negative, therefore a; >0,for 1< j< p,andso
(aj +h +1)+ \/(0;. +h +l)2 —4a; ~ 0 and (aj +h +l)—\/(o;. +h +l)2 —4a;
LE(GSun(h, p))
_Zp:[(aj +h+1)—\/(aj +h+1)2 —4a; (a. +h+l)—\/(a. +h+1)2 —4da

+—2 ’ j }L p(h-1)
-1

2 2
p
3 (@, +h+1)+ p(h-1) o

j=1

> 0. Therefore,

113



Academic Journal of Applied Mathematical Sciences, 2016, 2(9): 109-134

Theorem 3.3
The Laplacian energy L,E of the generalized sun graph GSun(h, p) is

p(h+1)
LEGsun(h, p)(h, p)) =3 |1, — SEGSUN(.P)

and
j=1 p(h +1) |
N LiEKGSun(L ED‘

LZE(GSun(l, ED = ,le A - - ‘
Proof

p(h+1)

AJ

- 2m  LE(GSun(h, p))
A= = = and

p(h+1) p(h+1) p(h+1)

p(h+1) p(h+1)

LE(GSun(h, p)(h, p)) = Z ‘/1 /1\

Setting h =1, and having n = 2p,

o st |

1 n ‘

- LE(Gsun(h, p)|
p(h+1) |

4. Examples
4.1. The Complete Sun Graph

Let G be the complete sun graph CompSun(h, p) on n =(h +1)pvertices, constructed by taking a
complete graph Kp and appending h pendant vertices to each of the vertices of Kp . The complete sun graph

CompSun(h, p) has p( p2 ]Jrhp p[p—Jrhj edges. Then the (NXN) Laplacian matrix of the

CompSun(h, p) graph is:

AK, )b, =1 o =1,

-1 | e 0

L(CompSun(h, p))= P AL
_Ip,p On,n Ip,p

Theorem 4.1.1
The eigenvalues of L(CompSun(h, p))are

(p+h+1)J_r\/(p+h+1)2 —4p
2

{’121—1”121}:

{ p—l’ﬂ?p}z {h +L0}, and
=1,1< j<ph-1).

,1<j<p-1,

22 p+j
Proof

The eigenvalues of L(Kp) are o, = P,1<k<p-land a, = 0. See Brouwer and Haemers [7].

From Theorem 3.1, the eigenvalues of L(CompSun(h, p)) are
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(aj +h+1)i\/(aj +h+l)2 4.

{/12]_1,/12]}: > L where «; are the eigenvalues of L(Kp), 1<j<p,and
the remaining eigenvalues are equal to 1.
Therefore,
o] _(aj+h+1)i\/(0£j+h+1)2—4aj
2j-17"2j - 2
2
:(p+h+1)i\/(2p+h+1) —4p 1<i<p-1an
{ﬂ, 5 } _(ap+h+l)i\/(ap+h+1)2—4ap
2p-117*2p - 2
_(h+1)£4(h+1)
- 2
={h+1,0}.

The remaining p(h +1)—2p = p(h—l) eigenvalues of L(CompSun(h, p) are
Jope; =1.1< j< p(h-1). 0
Theorem 4.1.2

The Laplacian energy L1E of the complete sun graph is

L, E(CompSun(h, p)) = p(p+2h-1),
LiE[CompSun(l, ED = g[g + 1) , and for large n,
n n
E| CompSun| 1, - X
- [ o 2D 4
Proof
From Theorem 3.2, where ¢, are the eigenvalues of L(Kp )
p
L, E(CompSun(h, p)) = (a, +h+1)+ p(h-1)

j=1
=(p-1p+h+1)+(0+h+1)+ p(h-1)
=p’-p+hp—h+p-1+h+1+ph-p

=p*+2hp-p

= p(p+2h-1) o

Setting h =1, and having n=2p,

omosl) (ARG

2
So, for large N , we have LiE(CompSun(l, gn znT

Theorem 4.1.3
The Laplacian energy L,E of the complete sun graph is
oY (p+2h-1)
L,E(CompSun(h, p)) = A -
2p
L,E CompSun(l, Ej =) Ai— (n+2) and
2 i 4
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2
LZE(CompSun(l,ED >0 _4.
2 4

Proof
p(h+l)i
- ,2_1: : om  (p2+2hp—p) (p+2h-1)
A= = = = an
p(h+1) p(h+1) p(h+1) (h+1)
p(h+1) _ p(h+1) 2h—1
L,E(Compsun(h, p)) SN2 =Sy, - (e )‘
j=1 j=1 (h +1)

Setting h =1, and having n=2p,

, (” 42 —1)
n : 2
LZE(CompSun(l, ED =) A ——F

n+2
;-0

2p
j=1

So, for large N, we have

L, E(CompSun(l, ED

=§ﬂj—(”zz)‘
E+2 + E+2 2—2n
_ [ j (22 J _(nZZ) (g_j

+ (2+Zj_ (2+2j2_2n_(n+2) (E—1j+‘2—M‘+‘O—M‘

4 4

\%
I/
N | D
+
N
~
+
N | D
—_
>
+
N
N—"
o~
>
N
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n>-2n 2n-4
= +
4 4

4.2. The Complete Split-Bipartite Sun Graph
Let G be the complete split-bipartite sun graph BipSun(h, p) on n=(h+1)p vertices, constructed by

taking a complete split-bipartite graph K and appending h pendant vertices to each of the vertices of K

N o
N o
N o
v\:\'c

2
The complete split-bipartite sun graph BipSun(h, p) has pT+ ph edges. Then the (nxn) Laplacian matrix of

the BipSun(h, p) graph is:

L(Kpp}thlpp -1, -1,
22
L(BipSun(h, p))= ~1,, lo == 0.,

L _Ipp Op,p Ipp |

Theorem 4.2.1
The eigenvalues of L(BlpSun( p)) are

R R

{121—11/12]}: 5 1< j<p-2,

N T

{/12 A 2} p+h+1 \/p+h+1 4p
p-317 p- !

{ p,l,ﬂ?p}= {h+1,0}, and

Japy; =1, 1< j < p(h-1).
Proof
Let G be the complete split-bipartite graph K .Then K, =L, ®L, where L, is the graph consisting of

2 2 2

m\:
N\:

n .
E isolated vertices. Then, by Theorem 2.1, the eigenvalues of L[Kn nj are o zg, 1<j<p-2,

1 =Pp,and o, =0.
From Theorem 3.1, the eigenvalues of L(BipSun(h, p)) are

+h+1)+,/(aj +h+1f —4a.

{ZZH’ZZJ}: (aJ the ) \/(024+ i ) L where a; are the eigenvalues of L[Kppj, 1<j<p
2'2
and the remaining eigenvalues are equal to 1.
Therefore,
2
(g+h+1ji\/(g+h+lj —4(2)

Moy a2 )= > L 1<j<p-2,

(p+h+1)x+/(p+h+17 —4(p)
{ﬂ’pra")’Zp—Z}: 2 '
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h+1)++/(h+1)
Posas Aoy 1= (nh+1) 2( ) _ th+10} .
The remaining p(h +1)—2p = p(h—l) eigenvalues of L(BipSun(h, p)) are
Aypy; =1, 1< j< p(h-1). 0

Theorem 4.2.2
The Laplacian energy L E of the complete split-bipartite sun graph is

LE(BipSun(h, p)) p[ P, 2hj
LlE(BipSun(l, ED = n(gﬂ) , and for large n,
. n n’
E| BipSun(l,— ~—.
L [ ipSun( 2)) .
Proof

From Theorem 3.2, where ¢, are the eigenvalues of L{K o p J :
22

(a +h+1)+ p

Mu

L E(Bipsun(h, p))

N

j

:(p—2)(§+h+1j+(p+h+1)+(h+1)+ ph—p

(p—2)+hp—2h+p-2+p+2h+2+ph-p

N o
N

P
=—+2h
5 p

Setting h =1, and having n=2p, we get

o) 2]

So, for large N, we have

o oeor(s3))- -

Theorem 4.2.3
The Laplacian energy L,E of the complete sun graph is

p(h+1)

L,E(BipSun(h, p)) =

j=1

pean)
owanfi3)) -3

, and for large n,
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Proof
p(h+l)ﬁ/ p2
1o ,2_1: : _2m :7+2hp (p+4h) "
p(h+1) ph+1) ph+1) 2(h+1)
h+1 h+l) 4h
L,E(BipSun(h, p)) = ‘/1 l‘ A, (2p(rT+1))‘
Setting h =1, and havmg n=2p,
,
LE BipSun[l ﬂ) Yy
? ‘2 = 2(1+1)
(n+8)
_ Z ‘
So, for large N, we have
LZE(BipSun(l,gjj
| (n+ 8)‘
= ﬂ/ _—
%A

(2+2ji (2+2)2—n _(n+8)(n_ j

_|h+4) (n+8)(n ),
: J
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_n*_2n 6n
8 8 8
n> n

__+_ O
8 4

4.3. The Caterpillar Sun Graph
Let G be the path sun graph Caterpillar(h,p) on n=(h+1)p vertices. n=(h-+1)pvertices,
constructed by taking a path graph Pp and appending h pendant vertices to each of the vertices of Pp. The

caterpillar graph Caterpillar(h, p) has (p—l)+ hp edges. Then the (nxn) Laplacian matrix of the
Caterpillar(h, p) graphis:

L(Pp)+h|p,p _Ip,p _Ip,p

—1 | e 0
L(Caterpillar(h, p)) = P v T Tee
—|p,p Op,p |p,p

Theorem 4.3.1
The eigenvalues of L(Caterpilla r(h, p)) are

Vo iizz ) :%(3—0,( +hi\/0k2 ~2(h+1)o, +h?+6h +1),

where o, :2008(%} 0<j<p-1, and

A

2p+]

=1,1<j< p(h-1).

Proof

The Laplacian eigenvalues of the path graph P, are «;,, =2— 2C08(ﬂ]; 0<j<p-1for p=3, -see
p

Brouwer and Haemers [7]. From Theorem 3.1, the eigenvalues of L(Caterpilla r(h, p)) are
(aj +h+1)i\/(aj + h+1)2 —4a;

{ZZM,AZH}: > , where «; are the eigenvalues of L(Pp), 1<j<p,

and remaining eigenvalues are equal to 1.

Therefore,
. . 2 .
(2—2005(72]}+ h +1]+\/{2—2003(7Z]J+ h +1] —4(2—2cos(ﬂ]D
p p p

{ﬂsz /12j+2}: 2

{3 r)efo-se{ ] -e-ee{)

B 2

0<j<p-1.

Set 0 zzcos(ﬂp], 0<j<p-1,then

{izmvlzﬂz} :%(3_01 +hi\/(3_aj+h)2_4(2_aj))
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=%(3—JJ— + hi\/(3+ hy -2B+h)o, +o,° —8+40, )

:%[3—0‘1- +hi\/o-j2 —2(h+1)o, +h’ +6h+1).

The  remaining p(h+1)—2p:p(h—1) eigenvalues  of L(Caterpillar(h, p))

1<j<ph-1)
Theorem 4.3.2
The Laplacian energy of the caterpillar graph is

L E(Caterpillar(h, p)) =2(p+hp-1).

I_lE(Caterpilla r(l, ED =2(n—1), and for large n,

I_lE(Caterpilla r(l, ED ~2n.

Proof
From Theorem 3.2, where ¢, are the eigenvalues of L(Pp )

p

LE(Caterpillar(h, p)) (@, +h+1)+ p(h-1)

[N

LN

= —

(2-6, +h+1)+ p(h-1)

o

p-1
3p+hp-> o;+ph-p

=0
=2p+2hp-2
=2(p+hp-1)
Setting h =1, and having n=2p, we get

LlE(Caterpilla r(l, ED = 2[2 + g —1] = 2(n —1), and for large n,

LIE(Caterpilla r(l, ED ~2n.

Theorem 4.3.3
The Laplacian energy L,E of the caterpillar graph is

" 2(prhp-1)
L, E(Caterpillar(h, = A -
,E(Caterpillar(h, p)) ; T e )
L, E(Caterpilla r(l, ED = z A= 2n-1) ,and for large n,
2 = n
LZE(Caterpilla r[l, ED >0.618n.
Proof
p(h+1)
A 2m  2(p+hp-1)
e and

ph+1) ph+1)  p(h+1)

are 4, =1,
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2(p+hp—1)‘

h+1
L,E(Caterpillar(h, p)) i ‘ﬂ“ ’1‘ g p(h+1)

j=1
Setting h =1, and having n=2p,

LZE(Caterpilla r(l, ED :an: A -
J=
-3 —1)‘

So, for large n, we have

L, E(Caterpilla r(l, ED

_3 (;(3 o +h+\/0' —2(h+1)o, +h2+6h+l) Z(n—l)j‘

> Jzz; (%(4—(2)+ (2) —4(2)+8j—@j‘
+§£%(4—(— 2)-(2F ~4(-2)8)- 20 1)j‘

n
L}

>

(2+\/Z)—@J‘ +§[%(6—@)—@}‘

7 N\
N

5[5l A 252) (2o
2(2+\/— 6+\/_)
=0.618n o

4.4. The Cycle Sun Graph
Let G be the cycle sun graph CycleSun(h, p) on n= (h +1)p vertices, constructed by taking a cycle

graph Cp and appending h pendant vertices to each of the vertices of Cp . The cycle sun graph CycIeSun(h, p)
has (h +l)p edges. Then the (nxn) Laplacian matrix of CycleSun(h, p) is:

LC,)+ht,, —1,, . -1,

-1 | e 0

L(CycleSun(h, p))= A R
_Ip,p Op,p Ip,p

Theorem 4.4.1
The eigenvalues of L(CycleSun(h, p))are

3 gj+h+\/gj —2(h+1)g, +h2+6h+1)

2]+1 2]+2

Wherng—ZCO( ) 0<j<p-1,and
| <

Ao =1,1<5]

2p+]

27
p
p(h-
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Proof

2 .
The Laplacian eigenvalues of the cycle graph C, are o, =2~ 2COS(—”JJ; 0<j<p-1,for p=3, -
p

Brouwer and Haemers [7]. From Theorem 3.1, the eigenvalues of L(CycIeSun(h, p)) are
(aj +h +1)i\/(aj +h +1)2 —4a;

{ﬂzjﬂ,lzw}: L where «; are the eigenvalues of L(Cp), 1<j<p,

2
and the remaining eigenvalues are equal to 1.

Therefore,
{ﬂ’zj+1'ﬂ’2j+2}

] e 3 e s i 63

2
27 24) Y 27
{3 — 2COS(7ZJJ + hJ + [3 — 2COS(7Z]) + hJ — 4{2 — Zcos(ﬂ]j]

p p p .

- ,0<j<p-1.
2
27 .
Set ¢ =ZCOS(T} 0<j<p-1,then
1

{/121+1J~2j+2} =§[3_gj +hi\/(3+h_gj)2_4(2_gi)j

:%(3_% +hJ_r\/gj2 —2(h+1)gj +h? +6h +1j.

The remaining p(h +1)— 2p= p(h —1) eigenvalues of L(CycIeSun (h, p)) are
Ao =1,1< j< p(h-1). o

2p+]

Theorem 4.4.2
The energy of the cycle sun graph is

L E(CycleSun(h, p)) =2p(1+h).

LlE(CyCIeSun(l, ED = 2n, and for large n,

LlE(CycIeSun(l, gjj =2n.

Proof
From Theorem 3.2, where ¢, are the eigenvalues of L(Cp)

=}

L,E(CycleSun(h, p)) (@, +h+1)+ p(h-1)

T T
NN

(Z—gj + h+l)+ p(h —1)

—
o

p-1
3p+hp-Y g, +ph-p
j=0

=2p+2hp
=2p(d+h)
Setting h =1, and having n=2p, we get
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n n n
LlE(CycleSun(l, ED = 2[5 + Ej =2n

Theorem 4.4.3
The Laplacian energy L,E of the cycle sun graph is

h+1)
L,E(CycleSun(h, p)) = i ‘/I 2‘

=

L E(CycleSun( ZD Z‘/l —2‘ and for large n,

L, E(CycleSun [1, gj] > 0.618n.

Proof
p(thlll
- ; j 2m  2p(l+h)
A= = = =2 and
p(h+1) ph+1) p(h+1)
p h 1 h+1
L,E(CycleSun(h, p)) = Z ‘/1 ~7|= Z ‘A -2

Setting h =1, and having n=2p,

LZE(CycIeSun[L ED - il\zj -2
=

So, for large N, we have

L, E(CycIeSun [1, gn

=;‘1j—2‘
oy :
E(4—gj +.¢," —4g, +8)—2‘

1 ——
E(“"gk + gkz —4g, +8j_
>2%(4—2+\/22—4.2+8)—2
E%(G—@)—Z‘

|5 —
Il
LN

Il
RN

—
o

|=
LN

L}
(1 f

‘*‘205(4_9( —\s" —4g +8j_2‘
j=

n %(4—(— 2)— /(=2 —4(- 2)+8)—2‘

+_
2

Il
T'M"’
o

-+
2

=0.618n
4.5. The Wheel Sun Graph
Let G be the wheel sun graph WheelSun(h, p) onn= (h +1)p vertices, constructed by taking a wheel

graph W and appending h pendant vertices to each of the vertices of W . The wheel sun graph WheeISun(h, p)
has (h + 2)(p —1)+ h edges. Then the (nxn) Laplacian matrix of WheelSun(h, p) is:

A(Wp) Ip,p Ip,p

I 0 e 0
L(WheelSun(h, p))=| °* %" . PP

Ip,p Op,p Op,p
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Theorem 4.5.1
The eigenvalues of L(WheeISun(h, p))are

(4= (p+h+1)i\/(pz+h+1)2 —4(p),

)l/lzj+1,2j+2} —;[4 T +h+\/ 2h+4) +h2+8h+4),

{ﬂ’prl’ﬂ’Zp}z {h +l0}, and
Ay =1,1< j< p(h-1).

Proof
Let G be the wheel graph W, with n—21spokes, with n>4. Then W, =C_, ® L, where L, is the graph

consisting of 1 isolated vertex. Then, by Theorem 3.2, the Laplacian eigenvalues of the wheel graph W, are

where 7; =ZCOS(2—ﬂ]:J, 1<j<p-2,

2p+]

o =p, o :3—2COS(%] 1<j<p-2, and a,=0. From Theorem 3.1, the eigenvalues of
L(WheelSun(h, p)) are

+h+1)+ (e, +h+1f — 40
{),2]. 1 21}: (aj o )+\/(02CJ o ) % , Where ¢ are the eigenvalues of L(Wp), 1<j<p,and

the remaining eigenvalues are equal to 1.

Therefore,
_(p+h+1)+y(p+h+1F -4(p)
CERE i ,
(3 2cos[ 27 ]+h+1} \/(3—2COS[ ﬂ]J+h+1J 4[3—2cos{2ﬂjn
{/1 2 }_ p-1 p-1 p-1
2j+1072§+2) T 2

] 2 ]
4 —2cos 272] +h|x.[| 4—2cos 2—721 +h| —4 3—2cos 2—721
p-1 p-1 p-1 .
= 1< )< p-2.

Bl 2

Set 7, =Zcos(2—ﬂ]1j, 1< < p—2, then

! j+1,12j+2}=%(4—rj+hi\/(4—rj+h)2—4(3—rj))

;(4 T +h+\/ —(2h+4)r, +h2+8h+4j

and

Vops 2oy = (h+1)+ (h;l)z —40) _ th+10}.

The remaining p(h +1)—2p = p(h—l) eigenvalues of L(WheeISun(h, p)) are 4,,,;,=1,1<j< p(h —1)

O

125



Academic Journal of Applied Mathematical Sciences, 2016, 2(9): 109-134

Theorem 4.5.2
The energy of the wheel sun graph is

L, E(WheelSun(h, p)) =4p—4+2hp.

LlE(WheeISun(l, gn =3n—4, and for large n,

LlE[WheeISun(l, ED ~3n.

Proof
From Theorem 3.2, where ¢, are the eigenvalues of L(Wp)

L, E(WheelSun(h, p))

= Zp:(aj + h+1)+ p(h—-1)

j=1

-2

=(p+h+1)+ (3 T, +h+1)+(h+1)+ p(h-1)
j=

=p+h+1+4(p-2)+h(p- er+h+1+ ph—p

j=1

=p+h+1+4(p-2)+h(p—2)-2(-1)+h+1+ph-p

=4p—4+2hp

Setting h =1, and having n=2p, we get

el inl )] (45025 )

Theorem 4.5.3
The Laplacian energy L,E of the wheel sun graph is
p(h+1)

L, E(WheelSun(h, p)) => 1

LE(WheeISun( D ni .

j=1

L
2 —
LE(WheeISun( D Z;( +\fr 2—67,.+13j—3” 1

'U

,_\

_4p—4+2hp
J p(h+1)

, and for large n,

J

j=1 n

Proof

p(h+1)

4

oA _ 2m _ 4p-4+2hp

p(h+1) p(h+1) p(h+1)

p(h+1) _ p(h+1)
L,E(WheelSun(h, p)) =>4 -4= -
= j=1

Setting h =1, and having n=2p,

LZE(WheeISun(l, ED

: /1__3n—4‘

:Z j
e

2
‘+ (E+Zj —-2n+
2

4n-8
n
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1[4—71 +1+ 7, 6, +13)— 3”_4‘
2

n

L
S
=

2

n n n

N (2+1+1ji\/(2+1+1j 4 34 +|(1+1)i\/(1+1)2 _3n—4|
2 n ‘ 2 n ‘

2 2
[”+2)+ (”+2j ~on (”+2)— (”+2j “on
2 2 3n—-4 2 2 3n—4+n—4+3n—4

2 n 2 n n n

2 _ 2
=Z£(5—Tji,/z'j2—6rj +13j—3n 4 + +

12 n 2 n

2 _ 2 —
:Z%(5—qi,/ri2—6ri+13)—3” 4. (g+2j _on42n=8 .

; n

n

4.6. The Star Sun Graph
Let G be the star sun graph StarSun(h,p) on n= (h +1)p vertices, constructed by taking a star graph

Spi1 , with p—1rays of length 1, and appending M pendant vertices to each of the vertices of Sp—l,l' The star

sun graph StarSun(h, p) has (h +1)(p —1)+ h edges. Then the (nxn) Laplacian matrix of StarSun(h, p)
is:

LS, J+hl,, —1,, o I

p.p p.p

_1 | e 0
L(StarSun(h, p))= P A

_Ip,p Op,p Ip,p
Theorem 4.6.1

The eigenvalues of L(StarSun(h, p)) are

(p+h+1)i\/(p+h+l)2 —4p
5 :

{11’2’2}:

{12141’/12142}: ,1<j<p-2
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Proof

Let G be the star graph S ,with N—1 rays of length 1. Then S _,, =L , ®L, where L; is the graph

n-11

consisting of 1 isolated vertices. Then, by Theorem 3.2, the Laplcaian eigenvalues of the star graph Sn—l,l are

a=p,a;=1,2<j<p-land o, =0.From Theorem 3.1, the eigenvalues of L(StarSun(h, p)) are

(aj+h+1)i\/(aj+h+l)2—4aj _ )
A= 5 , where «; are the eigenvalues of L(StarSun(h, p)), 1< j < p,
and the remaining eigenvalues are equal to 1.

Therefore,

4 (p+h+1)i\/(r;+h+l)2—4(p)'

e (1+h+1)i\/(12+h+1)2 -4(1) _ (2+h)iw/£2+h)2 4 i<t
b, }:(O+h+1)i\/(02+h+1)2—4(0) 410}

The remaining p(h +1)—2p = p(h—l) eigenvalues of L(StarSun(h, p)) are A,.,.=1,1<j< p(h —1).

2p+]

Theorem 4.6.2
The Laplacian energy L E of the star sun graph is

L E(StarSun(h, p)) =2(p+ ph-1).

LiE(StarSun(l, gn =2n-2,and, for large n,

LiE(StarSun(l, gn ~2n.

Proof
From Theorem 3.2, where ¢, are the eigenvalues of L(S p71,1)!

L,E(Starsun(h, p)) = i(aj +h+1)+ p(h-1)

=(p+h+1)+(p-2)1+h+1)+(h+1)+ p(h-1)
=p+h+1+2p—4+ph-2h+h+1+ph—p

=2(p+ ph-1)
Setting h =1, and having n=2p, we get

LlE(StarSun(l, ED = 2[2 L —1] =2n-2,
2 2 2

and for large n,

LlE(StarSun(l, ED —2n-2

Theorem 4.6.3
The Laplacian energy L,E of the star sun graph is

Pel - 2(p+ ph-1)
L E(StarSun(h, zii-——
,E(Starsun(h, p)) D (W)
LZE(StarSun[l, gD =Zn:ﬂj —Z(nT_l) , and, for large n,
j=1

128



Academic Journal of Applied Mathematical Sciences, 2016, 2(9): 109-134

LZE(StarSun(l, gD ~1.823n.

Proof

p(h+1)l
2N on a(paphd)
1= - = and

p(h+1) ph+1)  ph+1)

p(h+1) _ p(h+1) 2(p+ ph—l)

L E(StarSun(h, =2 A= 2 A-
LE(Starsun(h, p)) ;‘J | ; T p(h+y)

Setting h =1, and having n=2p,

LZE(StarSun(l, ED -
2 <

So, for large N, we have

L, E(StarSun(l, ED

3,203
_ (E’szi (2”)2_% 2(n-1) +\(2+1)iw/(2+1)2—2 _2(n—1)|(ﬂ_2
2 n ‘ 2 n ‘\2 J
e 2(n—1)|+ 0 2(n—1)|
) [+2)+ (+2j —-2n 2n-1) ) 2(n—1)_(2+ j— (+2)2—2n
2 n n 2

2 n 2 n 2 2 n
[ A2
:( n2+16J+\/7(g—2j+2
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5. Summary of Results
Theorem 5.1.

The Laplacian eigenvalues and the Laplacian energy for the following classes <3 of graphs on N = (h +l)p
vertices are:

Section | Class of graph Eigenvalues of Laplacian matrix Laplacian for h=1, large
Energy n
41 Complete sun p-l 2h—-1
. (e fpeney—gp | HE| P any
2
CompSun(h, p) )
n
h+1 vy
( 4
(1)p(h—1)
(o)
W (pa2h-1) | & 2
L2E ,Z:: lj— P(hil)l‘ — ij—(nz )
n’-4
T4
4.2 Complete  spit- 5 p-2 LE P n
TRt —+2h nf—+1
bipartite sun LR Y ] -2p p(z ) (8 )
graph 2 2
BipSun(h, p) 2 o
)
1
(p+h+1)x(p+h+1F —4p
2
(h+1)
(1)p(h71)
(o)
L,E "“‘*”lv_(p+4h) Sl _(n+8)
17 2(h+1) = 8
L
T8 4
4.3 Caterpillar graph | 4 LE 2(p +hp _1) 2(n _1)
Caterpillar(h, p (2(3—01 +hi\/gjz—2(h+1)o'j +h?+6h+1
~2n
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o;= 2COS(ﬂp], 0<j<p-1
(1)p(h—1)
p(h+1) +hp— n —
LE > A;Z(‘;(hhfl) 2 ;,11—2(”“ )
> 0.618n
4.4 Cycle sun graph LE 2p(l+ h) 2n
Cyc|eSun(h1 p) ((3—9‘] -I-hi\/gjz —2(h+1)§]- +h% +6h+1
G = 2005(2%]} 0<j<p-1
(1)p(h71)
LZE p(h+1) n
2 -7 22
j=1 j=1
>0.618n
45 Wheel sun graph E 4p—4+2hp 3n—-4
Wheelsun(h, p) ;(4—11- +hi\/rjz—(2h+4)fj +h?+8h+4 5
~3n
T, :2005(2%]} 1<j<p-2
1
(p+h+1)£/(p+h+1? —4p
2
(h+1)
(l)p(h—l)
(0
LE (Z) I_4pp—(:++12)hp‘ ,Zn:l:ﬂ" _3nn—4
4.6 Star sun graph 1 E 20p+ph=1)| 2n—2
starsun(h, p) (p+h+1)xy(p+h+1) —4p L (p-+ph-1)
2 ~2n
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(2+n)ty2enp-a)"

2

(h+1)

(l)p(h—l)

(0f

LE | " 2p+ph-1)| <[, 2(n-1)
? i g p(h+1) ;ij n ‘
[ n2+16]+ﬁ[n2J+2
2 2
~1.823n

6. Laplacian Eigen-Bi-Balance of Classes of Graphs

The concept of eigen-bi-balance was introduced for the eigenvalues of the adjacency matrix of a graph. See
Winter and Jessop [4]. These definitions can also be applied to the eigenvalues of the Laplacian matrix of a graph as
follows.
Definition 6.1

Aclass 3 of graphs is said to be sum*(s)*Laplacian eigen-pair (integral) balanced if there exists a pair (a, b)
of distinct non-zero eigenvalues (eigenvalues considered once so we ignore multiplicities) of the Laplacian matrix
associated with each member of the class, called a Laplacian eigen-pair, such that a+b =swhere S is the same
integer as a fixed constant for each member in the class, or S is the same integer as a function of each member in

the class. The sum balance is exact, if s is the same integer as a fixed constant for each member in the class, or non-
exact.

Definition 6.2

A classes 3 of graphs is said to be product*(t)*Laplacian eigen-pair (integral) balanced if there exists a
Laplacian eigen-pair (a, b), such that a.b =t where t is the same integer as a fixed constant for each member in

the class, or t is the same integer as a function of each member in the class. The sum balance is exact, if t is the
same integer as a fixed constant for each member in the class, or non-exact.

Definition 6.3
Classes of graphs, which are both sum and product Laplacian eigen-pair balanced are said to be Laplacian eign-
bi-balanced with respect to the Laplacian eigen-pair a,b.

Definition 6.4

The reciprocals of eigenvalues are connected to the idea of robustness or tightness of graphs Brouwer and
Haemers [7]. Since a and b are non-zero, the sum of their reciprocals is defined, and we define the Laplacian eigen-
balanced ratio of the structure (with respect to the Laplacian eigen-pairs) as:

a+b
Lr(aSb):l+1: ——  where ab#0.
b a ab
Definition 6.5

If the Laplacian eigen-balanced ratio is a function f(n) of the size n of the graph, and has a horizontal
asymptote, we call this asymptote the Laplacian eigen-balanced ratio asymptote with respect to the Laplacian eigen-

pair a,b and denoted by Lr(aJ3b)” or asymp(Lr(aJb)).
This asymptote can be seen as the behavior of the ratio as the size of the graph becomes increasingly large.

Theorem 6.1
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Let 3 be a class of graphs consisting of the graphs GSun(h, p), for p=21,2,... and some h=12,.... Then, if

a;, 1< J < p,isanintegral eigenvalue of L(G), then:

1. Jis sum* (aj +h +1)*Laplacian eigen-pair (integral) balanced with respect to (ﬂZk_l./”tZk), where
{12]-_1, A } are two eigenvalues of L(GSun(h, p));

2. Jis product* (— a; )* Laplacian eigen-pair (integral) balanced with respect to (/12k_1./12k );

3. The Laplacian eigen-bi-balanced ratio of the class of graphs J is

Lr(/”tzj_lSﬂzj ): M, and

&

There is no Laplacian eigen-bi-balanced ratio asymptote of Lr(/lzjflsﬂ,zj ) for the class of graphs J .

Proof

As per  Theorem 31, if «; is an eigenvalues  of L(G), 1<j<p, then

+h+1)x/la; +h+1f —4a,
{lzj_l,lzj}z <aj o ) \/(O; o ) i are two eigenvalues of L(GSun(h, p)),forlé i<p.

Now if a; is integral, then

Tt :(aj+h+l)+\/(o;.+h+l)2—4aj . :

=a;+ h +1 is integral,

(aj +h+l)—\/(aj +h+1)2 Yok

J

and 3 is sum* (aj +h +1)*Lap|acian eigen-pair (integral) balanced with respect to (/12]71-12] )

(aj +h+1)+\/(05j +h+1)2 —4a; (aj +h+l)—\/(ocj +h+1)2 —4a;
2 ' 2

(aj +h+1f —(\/(aj +h+1f —4a, jz

4

Ayjataj =

= isintegral,
and 3 is product* (aj )*Laplacian eigen-pair (integral) balanced with respect to (/12]71.12] )

The Laplacian eigen-bi-balanced ratio of the class of graphs 3 is

AjatAy aj+h+l ) o
r(/”tZHS/lzj )= = , and there is no asymptote of this ratio for large h. o
12,-_1-12,- a;
For example, let 3 be the class of graphs consisting of the star sun graphs StarSun(h, p), for p=212,... and
some h=12... Then a;=1, 2<j<p-1, is an integral eigenvalue of L(StarSun(h, p)) and

AjatA;=a;+h+1=h+2isintegral, and 4,; ,.4,; = a; =1 isintegral. Therefore,

Fis sum* (h + 2)*Laplacian eigen-pair (integral) balanced with respect to (ﬂ,Zkfl./le), where {/IZH,Z,Zk} are

the  two eigenvalues of L(StarSun(h, p)) as per  Theorem 3.1, i.e.
{1 A }_ (aj +h +1)J_r\/(0:j +h +1)2 —4a; B (2+ h)J_r ,/(2+ h)2 —4
2j-1 M= 5 = 5 ;

4. Jis product* (1) *Laplacian eigen-pair (integral) balanced with respect to (/12k_l./12k );
5. The Laplacian eigen-bi-balanced ratio of the class of graphs Jis
a;+ h+1 h+2

Lr(4,, 34, )= —h+2;and

a; 1

6. There is no asymptote of the Laplacian eigen-bi-balanced ratio Lr(/lzj_lﬁlzj) for large h.
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7. Conclusion

In this paper, we determined the Laplacian spectra of graphs obtained by appending h end vertices to all the
vertices in the well-known classes of graphs, namely the complete, complete split-bipartite, cycle, path, wheel and
star (with rays of length 1) graphs. The end vertices allowed for a quick solution to the eigen-vector equations of the
Laplacian matrix satisfying the characteristic equation. We determined the Laplacian energy (based on both
definitions in section 6.1) for each of these classes of graphs, and anaylsed this energy for h=21and n=2p . We
then determined the Laplacian energy for each class of graph, for large values of n.

We finally defined the Laplacian eigen-bi-balanced characteristics of a graph and showed that if a graph G has
a non-zero, integral eigenvalue of its Laplacian matrix, then the graph constructed by appending end vertices to each
of the vertices in G has a pair of Laplacianeigenvalues, such that the new graph is sum and product Laplacian eigen-
bi-balanced with respect to this pair of Laplacian eigenvalues of the constructed graph. We also determined the
Laplacian eigen-bi-balanced characteristics for the star sun graph.
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