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1. Introduction 
In many fields of the contemporary science and technology systems with delaying links are often met and the 

dynamical processes in these are described by systems of delay differential equations [1-3]. The delay appears in 

complicated systems with logical and computing devices, where certain time for information processing is needed. 

The theory of linear delay differential equations has been developed in the fundamental monographs [1], [2-6].  

Our aim in this paper is to establish a new result for the solutions to second order linear delay differential 

equations with constant coefficients and constant delay. Analogous results for the solutions to second order linear 

delay differential equations has recently been obtained by the authors [7], [8-10] and Yeniçerioğlu [11]. Our work in 

the present paper is essentially motivated by the results in the papers by Philos and Purnaras [12-17].  

     Let us consider initial value problem for second order delay differential equation   

)()()()()( 2121   tyqtyqtyptypty  ,     0t ,                     (1.1) 

            )()( tty   ,      0 t ,                                                                   (1.2) 

where 2121 ,,, qqpp  are real numbers,   is positive real number and )(t  is a given continuously 

differentiable initial function on the interval ]0,[  .     

The equation of form of (1.1) is of interest in biology in explaining self-balancing of the human body and in 

robotics in consructing biped robots (see [18], [19]). These are illustrations of inverted pendulum problems. A 

typical example is the balancing of a stick (see [20]).  

As usual, a twice continuously differentiable real-valued function y  defined on the interval ),[   is said to 

be a solution of the initial value problem (1.1) and (1.2) if y  satisfies (1.1) for all 0t  and (1.2) for all  

0 t . 

It is known that (see, for example, [3]), for any given initial function  , there exists a unique solution of the 

initial problem (1.1)-(1.2) or, more briefly, the solution of (1.1)-(1.2). 

Along with the second order delay differential equation (1.1), we associate the following equation 
   eqqepp 2121

2
,                                                                                  (1.3) 

which will be called the characteristic equation of (1.1). Equation (1.3) is obtained from (1.1) by looking for 

solutions of the form 
tety )(
 
for IRt , where   is a root of the equation (1.3). 

For a given solution   of the characteristic equation (1.3), we consider the (first order) delay differential equation 
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     By a solution of the first order delay differential equation (1.4), we mean a continuous real-valued function z 

defined on the interval ),[   and satisfies (1.4) for all 0t . 

     With the first order delay differential equation (1.4), we associate the equation 
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Abstract:     A wide class of second order linear autonomous delay differential equations with distributed type 

delay is considered. By the use of two distinet real roots of the corresponding characteristic equation, a new result 

on the behavior of the solutions is obtained. 
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which is said to be the characteristic equation of (1.4). The last equation is obtained from (1.4) by seeking solutions 

of the form 
tetz )(  for IRt , where   is a root of the equation (1.4). 

The paper is organized as follows. A known (see Yeniçerioğlu [11]) asymptotic result for the solutions of the 

second order delay differential equation (1.1) is presented in Section 2. Section 3 is devoted to three lemma which 

concerns the real roots of the characteristic equation (1.5). The main result of the paper will be given in Section 4. 

 

2. A Known Asymptotic Result 
In this section, we will present an asymptotic result for the solutions of the second order delay  differential 

equation (1.1), which is closely related to the main result of this paper. This asymptotic criterion has recently been 

obtained by Yeniçerioğlu [11].  

Theorem 2.1.  .  Let 0  be real root of the characteristic equation (1.3)  and let 0 be real root of the 

characteristic equation (1.5), and set  
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(Note that, because of 0
0
 , we always have 00  .) Assume that 
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(This assumption guarantees that 0
00 ,  .) Then, for any  IRC ],0,[   ,  the solution y  of (1.1)-(1.2) 

satisfies  
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3. Three lemma 
Here, we will give three lemma that is concerned with the real roots of the characteristic equation (1.5).  

Lemma 3.1.  Let 0  and 0  be real roots of the characteristic equations (1.3) and (1.5), respectively, and let 

00 , be defined as in Theorem 2.1. Suppose that  

        and              .                                      (3.1) 

Then 0
00 ,    if  (1.5) has another real root less than 0 , and 0

00 ,    if  (1.5) has another real root greater 

than 0 . 

Proof of Lemma 3.1. Let )(F  denote the characteristic function of (1.5), i.e.,

 
  00 ))(1(2)( 202

1

201


 eqpeeeppF

 
or  
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            (3.2) 

for         We obtain immediately  
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for          Furthermore,  
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for          So, taking into account (3.1), we conclude that 

 0)(  F   for                       (3.4) 

Now, assume that (1.5) has another real root     with        (respectively,       ). From the definition of 

the function   by (3.2) it follows that  (  )   (  )   , and consequently Rolle’s Theorem guarantees the 

existence of a point α with         (resp.,         ) such that   ( )   . But, (3.4) implies that    is 

positive on (α,∞) (resp.,    is negative on  

(-∞,α)). Thus we must have   (  )    (resp.,   (  )   ). The proof of lemma 3.1 can be completed, by observing 

that   

   (  )  
00 , .

  
Lemma 3.2. Let      be real root of the characteristic equations (1.3). Assume that  
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Then, in the interval (       
 

 
   ), the characteristic equation (1.5) has a unique root    ; this root satisfies 

(2.1), and the root    is less than        
 

 
 , provided that  
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                                   (   ) 

Proof of Lemma 3.2. Consider the real-valued function    defined by (3.2). The derivative     of    is given by (3.3). 

It follows from (3.2) that  
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and consequently, by (3.5), it holds 
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)                                                                         (3.8) 

Moreover, from (3.2) we obtain, for         
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Therefore,  

  ( )                                                                           (3.9) 

Furthermore, using (3.3), we have, for every           
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Consequently, in view of (3.6), it holds 
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   ( )      for all           
 

 
 , 

which implies that   is strictly increasing on (       
 

 
   )    By using this fact as well as (3.8) and (3.9), we 

conclude that, in the intreval (       
 

 
   ), the equation  ( )    (which coincides with (1.5)) has a unique 

real root    . This root satisfies (2.1). Indeed, by using again (3.6), we have 
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               . 

Finally, let us assume that (3.7) holds. Then it follows from (3.2) that 
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As   (       
 

 
)    , we see that      must be less than        

 

 
    This completes the proof  of  the 

lemma 3.2.  

Lemma 3.3. Let      be real root of the characteristic equations (1.3). Suppose that statement (3.1) is true. Then we 

have: 

a) In the interval           ) , the characteristic equation (1.5) has no roots. 

b) Assume that (3.5) holds. Then: (i)           
 

 
  is not a root of the characteristic equation (1.5). (ii) In 

the interval (       
 

 
        )  (1.5) has a unique root. 

 (iii)  In the interval (            
 

 
) ,  (1.5) has a unique root.  

Proof of Lemma 3.3.  a) Let  ̂ be real root of  the characteristic equation (1.5). Using (3.1), we can immediately see 

that 

              
 (    ̂)  (       ) 

    ∫   ̂   

 

 

     

Hence, from (1.5) it follows that  ̂  (      )   ,  i.e.,   ̂  (      ) .  We have thus proved that every real 

root of (1.5) is always less than        .  

     b)  Consider the real-valued function     defined by (3.2). As in the proof of Lemma 3.1, we see that (3.4) holds 

and consequently  

    is convex on   .              (3.10) 

Next, we observe that, as in the proof of Lemma 3.2, assumption (3.5) means that (3.8) holds true. Inequality (3.8) 

implies, in particular, that          
 

 
  is not a root of the characteristic equation (1.5). From (3.2) we obtain  

 (      )      
 (     )  (       ) 

    ∫  (      )   

 

 

   

So, by using (3.1), we conclude that   
  (      )                                        (3.11) 

Furthermore, from (3.2) we get  

  ( )    (      )     
 (    )      for      . 

Using this inequality, it is not difficult to show that  

  (  )    .               (3.12) 

From (3.8), (3.10) and (3.11) it follows that, in the interval (       
 

 
        )  the characteristic equation 

(1.5) has a unique root. Moreover, (3.8), (3.10) and (3.12) guarantee that, in the interval (            
 

 
),  (1.5) 

has also a unique root. The proof of the lemma 3.3 is complete.  

 

4. The Main Result 
Theorem 4.1. Let    and    be real roots of the characteristic equation (1.3) and (1.5), respectively,  and let    

,  

      
,   (    ) and  (       ) be defined as in Theorem 2.1. Suppose that statement (3.1) is true.  Also, let     be 

real root of (1.5) with        ( Note that, because of    
  ,  we have       and     . Moreover, Lemma 3.1. 

guarantees that        
   . ) Then the solution    of the IVP (1.1) and (1.2) satisfies  
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for all     , where 
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              (          )     
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and 
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     We see immediately that inequalities (4.1) can equivalently be written as follows
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                                                             (          ) (     )                
Hence, if      , then the solution   of the IVP (1.1) and (1.2) satisfies (2.2). 

     Also, we observe that (4.1) is equivalent to  
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for all     .  

 

Proof of Theorem 4.1. Consider an arbitrary initial function  IRC ],0,[    and let   be the solution of the 

initial problem (1.1)−(1.2). Define 

  ( )        ( )   for        

and next, set 
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As it has been shown by Yeniçerioğlu [11], the fact that   satisfies (1.1)  for       is equivalent to the fact that   

satisfies 
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for       , while the initial condition (1.2) takes the equivalent form 
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Now we define 

  ( )   (     )   ( )    for                                                                                     (4.6) 

Because of the definitions of    and  , we have the following expression for the function  : 
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Furthermore, by the use of the function   , (4.4) can equivalently be written as 
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for       and (4.5) becomes 

             ( )       *      ( )  
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 (       )

      

+                 ]                 (   )  

As solution    satisfies the initial condition (1.2), we can use (4.7) as well as the definitions of   (          ) and 

  (          ) by (4.2) and (4.3), respectively, to see that 

   (          )     
      

 ( )   and     (          )     
      

 ( )                         (4.10) 

In view of (4.7) and (4.10), the double inequality (4.1) can equivalently written as follows  

    
      

 ( )   ( )     
      

 ( ) for all    .          (4.11) 

All we have to prove that (4.11) hold. We will use the fact that   satisfies (4.8) for all     in order to show that 

(4.11) is valid. We restrict ourselves to proving that 

  ( )     
      

 ( )     for every     .           (4.12) 

The proof of the inequality 

  ( )     
      

 ( )    for every      
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can be obtained in a similar way, and so it is omitted. In the rest of the proof  we will establish (4.12). In order to so, 

we consider an arbitrary real number     with       
      

 ( ), i.e., with 

  ( )      for       .                        (4.13) 

We will show that  

  ( )      for all    .             (4.14) 

To this end, let us assume that (4.14) fails to hold. Then, because of (4.13), there exists a point      so that 

  ( )      for         ,   and    (  )   . 

Thus, by using (3.11) and (1.5), from (4.8) we obtain 
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We have thus arrived at a contradiction and so (4.14) is true. Since (4.14) is satisfied for all real numbers   with 

     
      

 ( ), it follows that (4.12) is always fulfilled. The proof of the theorem 4.1 is complete. 

 

References 
[1] Bellman, R. and Cooke, K., 1963. Differential-difference equations. New York: Academic Press. 

[2] Driver, R. D., 1977. Ordinary and delay differential equations. New York: Springer-Verlag. 

[3] El’sgol’ts, L. E. and Norkin, S. B., 1973. Introduction to the theory and application of differential equations 

with deviating arguments. New York, London: Academic Press. 

[4] Hale, J. K. and Verduyn, L. S. M., 1993. Introduction to functional differential equations. New York: 

Springer, Berlin, Heidelberg. 

[5] Kolmanovski, V. and Myshkis, A., 1992. Applied theory of functional differential equations. Dordrecht: 

Kluver Academic. 

[6] Lakshmikantham, V., Wen, L., and Zhang, B., 1994. Theory of differential equations with unbounded 

delay. London: Kluwer Academic Publishers. 

[7] Chen, G., Gaans, O. V., and Lunel, S. V., 2014. "Asymptotic behavior and stability of second order neutral 

delay differential equations." Indagationes Mathematicae, vol. 25, pp. 405-426.  

[8] Philos, C. G. and Purnaras, I. K., 2007. "Behavior of the solutions to second order linear autonomous  delay 

differential equations." Electronic Journal of Differential Equations, vol. 2007, pp. 1-35.  

[9] Philos, C. G. and Purnaras, I. K., 2009. "An asymptotic property of the solutions to second order linear 

nonautonomous delay di¤erential equations." Math. Comput. Modelling, vol. 49, pp. 1350-1358.  

[10] Philos, C. G. and Purnaras, I. K., 2010. "An asymptotic result for second order linear nonautonomous 

neutral delay differential equations." Hiroshima Math. J., vol. 40, pp. 47-63.  

[11] Yeniçerioğlu, A. F., 2007. "The behavior of solutions of second order delay differential equations." Journal 

of Mathematical Analysis and Applications, vol. 332, pp. 1278-1290.  

[12] Philos, C. G. and Purnaras, I. K., 2004. "Asymptotic properties nonoscillation and stability for scalar first 

order linear autonomous neutral delay differential equations." Electronic Journal of Differential Equations, 

vol. 2004, pp. 1-17.  

[13] Philos, C. G. and Purnaras, I. K., 2005. "More on the behavior of solutions to linear integrodifferential 

equations with unbounded delay." Funkcial. Ekvac., vol. 48, pp. 393-414.  



 Academic Journal of Applied Mathematical Sciences, 2017, 3(9): 74-80 

 

80 

[14] Philos, C. G. and Purnaras, I. K., 2006. "A result on the behavior of the solutions for scalar first order linear 

autonomous neutral delay differential equations." Math. Proc. Cambridge Phil. Soc., vol. 140, pp. 349-358.  

[15] Philos, C. G. and Purnaras, I. K., 2006. "On the behavior of the solutions for certain first order linear 

autonomous functional differential equations." Rocky Mountain J. Math., vol. 36, pp. 1999-2019.  

[16] Philos, C. G. and Purnaras, I. K., 2006. "On the behavior of the solutions to periodic linear delay differential 

and difference equations." J. Math. Anal. Appl., vol. 322, pp. 847-863.  

[17] Philos, C. G. and Purnaras, I. K., 2006. "On periodic linear neutral delay differential and difference 

equations." Electron. J. Differential Equations, vol. 110, pp. 1-25.  

[18] Macdonald, N., 1989. Biological delay systems: Linear stability theory. Cambridge, New York: Cambridge 

University Press. 

[19] Steele, C. R., 1979. "Studies of the ear, lectures in applied mathematics." American Mathematical Society, 

RI, vol. 17, pp. 69-71.  

[20] Tobias, S. A., 1965. Machine tool vibrations. Blackie, London. 

 


