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Abstract 
This paper is concerned with the construction of two-step hybrid block Simpson’s method with four off-grid points 

for the solutions of stiff systems of ordinary differential equations (ODEs). This is achieved by transforming a k-step 

multi-step method into continuous form and evaluating at various grid points to obtain the discrete schemes. The 

discrete schemes are applied as a block for simultaneous integration. The block matrix equation is A-stable and of 

order [7, 7, 7, 7, 7, 7] 
T
. This order ‘p’ is achieved by the aid of Maple13 software program. The performance of the 

method is demonstrated on some numerical experiments. The results revealed that the hybrid block Simpson’s 

method is efficient, accurate and convergent on stiff problems. 
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1. Introduction 
A considerable literature exists for the conventional k-step linear multi-step methods for the solution of ordinary 

differential equations (ODE’s) of the form  

],[,)(),,( 0 baxyayyxfy    (1.1) 

Where y  satisfies a given set of initial condition [1], and we assume that the function f  also satisfies the 

Lipschitz condition which guarantees existence, uniqueness and continuous differentiable solution, [2]. For the 

discrete solution of (1.1) linear multi-step methods has being studied by, Lambert [3], Lambert [4], and continuous 

solutions of (1.1) Lie and Norsett [5] and Onumanyi, et al. [6], Onumanyi, et al. [7]. One important advantage of the 

continuous over the discrete approach is the ability to provide discrete schemes for simultaneous integration. These 

discrete schemes can as well be reformulated as general linear methods (GLM) Butcher [8]. The block methods are 

self-starting and can directly be applied to both initial and boundary value problems by Skwame [9] and Donald, et 

al. [10]. Block methods for solving ordinary differential equations have initially been proposed by Milne [11] who 

advanced their use only as a means of obtaining starting values for predictor-corrector algorithms. Several authors 

Roser [12], Shampine and Watts [13], Fatunla [14], and Ngwane and Jator [15] among others] have modified it to be 

more efficient as a computational procedure for the integration 0f IVPs throughout the range of integration rather 

than just as a starting method for method for multistep methods [16]. 

From the results of this study a two-step hybrid block Simpson’s method with four off-grid points will be 

presented. By using Onumanyi, et al. [6], Onumanyi, et al. [17] approach; the derived schemes will be applied in 

block form in order to achieve its order’p’ and error constants; the region of absolute stability, and the results of 

absolute errors. 

 

2. Derivation of the Method 

Consider the collocation methods defined for the step |,| 1nn xx by  
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Where t denotes the number of interpolation points ,1,,0,  tjx jn  and m denotes the number of 

distinct collocation points   1,,1,0,,   mjxxx knnj
 the points jx  are chosen from the step jnx   as 

well as one or more off-step points. 

The following assumptions are made; 
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1. Although the step size can be variable, for simplicity in our presentation of the analysis in this paper, we assume 

it is constant 
h

ab
Nxxh nn


  ,1

 with the steps given by  ,,,1,0,/ Nnnhaxx nn   

2. That (1.1) has a unique solution and the coefficients )(),( xx jj  in (2.1) can be represented by polynomial 

of the form  
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With constant coefficients 1,1, ,  ijij h and collocation conditions  

}1,,1,0{,)(   tjyxy jnjn          (2.4) 

}1,1,0{),(,()(
'

 mjxyxfxy jjj          (2.5) 

With these assumptions we obtained an MC polynomial in the form 
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And also we get D Matrix as follows:  
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 (2.7) 

 

The parameters required for equation (2.7) to obtain two-step Block Hybrid Simpson’s Methods with four off-

grid points (BHSM4)are 5,1,2  kmtK ; where 
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The matrix (2.7) becomes  
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By using the maple software program and evaluating (2.8) at the grid points
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xxxxxxxxxxxx  we obtain six discrete schemes.  
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Therefore, the hybrid block methods are 
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3. Stability of Block Method 
The equations (2.9) when put together formed the block as  
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 (3.1) 

The characteristic of polynomial of the hybrid block methods (2.6) and (3.1) is given as  
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Since }6,,1{,1|| jR
j
  hence the method as a block is zero stable on its own, and the hybrid block 

method is consistent as its order 1P . 
 

4. Convergence Analysis Order and Error Constants of the Block Hybrid 

Simpson’s Methods 
The block hybrid methods which are obtained in a block form with the help of a maple software have the 

following order and error constants. 
 

Table-1. BHSM4 
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The method BHSM4 is of order 7 and has error constants 
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4.1. Region of Absolute Stability 
Using the MATLAB package, we were able to plot the stability regions of the block method. This is done by 

reformulating the block method as general linear method to obtain the values of the matrices A, B, U and V. These 

matrices are substituted into the stability matrix and using MATLAB software, the absolute stability regions of the 

new methods are plotted as shown in fig(1)  
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Figure-1. Stability region of the Block hybrid Simpson’s method for k=2 with four off-grid points (BHSM4)
 

 
 

5. Numerical Experiments 
The newly constructed method is demonstrated on some initial value problems and the results are displayed 

below 
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Example 3 
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Table-2. Absolute Stability Errors for Example 1

 
 BHSM with four off-grid points 

   X Y1  Y2 

0.1 2.011 E
-1

 1.815 E
0
 

0.2 4.699 E
-1

 1.504 E
0
 

0.3 3.821 E
-1

 1.484 E
0
 

0.4 4.668 E
-1

 1.316 E
0
 

0.5 4.713 E
-1

 1.219 E
0
 

0.6 4.951 E
-1

 1.098 E
0
 

0.7 4.951 E
-1

 9.981 E
-1

 

0.8 4.917 E
0
 9.018 E

-1
 

0.9 4.791 E
-1

 8.166 E
-1

 

1.0 4.624 E
-1

 7.384 E
-1

 

1.1 4.420 E
-1

 6.681 E
-1

 

1.2 4.191 E
-1

 6.043 E
-1

 

 
Table-3. Absolute Stability Errors for Example 2

 
 BHSM with four off-grid points 

X Y1 Y2 

0.1 1.978 E
0
 1.813 E

0
 

0.2 8.443 E
-1

 1.728 E
0
 

0.3 1.853 E
0
 1.494 E

0
 

0.4 1.779 E
0
 1.345 E

0
 

0.5 1.683 E
0
 1.220 E

0
 

0.6 1.586 E
0
 1.104 E

0
 

0.7 1.492 E
0
 9.984 E

-1
 

0.8 1.389 E
0
 9.029 E

-1
 

0.9 1.292 E
0
 8.096 E

-1
 

1.0 1.198 E
0
 7.329 E

-1
 

1.1 1.108 E
0
 6.681 E

-1
 

1.2 1.021 E
0
 6.043 E

-1
 

 
Table-4. Absolute Stability Errors for Example 3

 
 BHSM with four off-grid points 

X Y1 Y2 

0.1 5.950 E
-3

 5.950 E
-3

 

0.2 4.902 E
-3

 4.902 E
-3

 

0.3 3.489 E
-5

 2.889 E
-5

 

0.4 2.353 E
-5

 2.353 E
-5

 

0.5 1.355 E
-7

 6.049 E
-4

 

0.6 1.098 E
-7

 7.294 E
-8

 

0.7 2.400 E
-9

 7.060 E
-10

 

0.8 2.100 E
-9

 5.460 E
-10

 

0.9 1.600 E
-9

 7.999 E
-7

 

1.0 1.340 E
-4

 2.999 E
-4

 

1.1 2.300 E
-9

 1.200 E
-10

 

1.2 2.000 E
-9

 2.900 E
-11
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6. Conclusion and Recommendation  
From the results of this finding the newly constructed hybrid block Simpson’s method with four off-grid points 

was demonstrated on some stiff initial value problems (IVPs). From the result displayed on tables (2, 3, 4) it can be 

seen that the BHSM4 performs efficient and converges very well on example three and performs fairly on examples 

1 and 2. Therefore, the newly constructed block hybrid Simpson’s method is efficient, accurate and convergent on 

mildly stiff problems.
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