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Abstract 
In this paper, we propose an implicit two-step third derivative hybrid block method with one off-step point for the 

direct solution of second order Ordinary Differential Equations. We adopted the method of interpolation and 

collocation of power series approximate solution to generate the continuous hybrid linear multistep method, which 

was evaluated at non-interpolated step points to give a continuous block method. The discrete block method was 

recovered when the continuous block method was evaluated at all step points. The basic properties of the method 

were investigated and the method was found to be zero-stable, consistent and convergent. The efficiency of the 

method was tested on some stiff equations and was found to give better approximation than the existing methods 

with which we compared our results. 
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1. Introduction 
In this paper, an implicit two-step one off-grid third derivative hybrid block method is derived for the 

integration of second-order differential equation of the form;     

 

         0000 '',,',,'' yxyyxyxyxyxfy                                                            (1) 

 

Where f  is continuous within the interval of integration. Different method have been proposed for the solution 

of (1) ranging from predictor-corrector method to hybrid methods. Despite the success recorded by the predictor-

corrector methods, its major setback is that the predictor are in reducing order of accuracy especially when the value 

of the step-length is high and moreover the result are at overlapping interval. Direct method of solving (1), which we 

shall employ has been discussed by many authors and they concluded that it is more convenient and accurate. 

Among the authors that proposed direct methods were [1-6]. Block methods have the advantage of incorporating 

function evaluation at off-step points which afford the opportunity of circumventing the Dahlquist zero-stability 

barrier and it is actually possible to obtain convergent k-step methods of order 2k+1. Hence, hybrid block method is 

less expensive in terms of number of function evaluation compare to predictor-corrector methods; it also possesses 

the properties of Runge-Kutta for being self-starting and does not require starting values. Other authors who 

proposed block methods are [7-11].  

In this paper, we shall develop a two-step third derivative hybrid block method for direct solution of second 

order ordinary differential equations of the form (1), which is implemented in block method mode. The method 

developed evaluates less function per step and circumventing the Dahlquist barrier’s by introducing a hybrid point. 

The paper is organized as follows: In section 2, we discuss the methods and the materials for the development of the 

method. Section 3 considers analysis of the basis properties of the method, which include convergence and stability 

region. The numerical experiments where the efficiency of the derived method is tested on some stiff numerical 

examples shall be discussed in section 4. Lastly, the conclusion shall be drawn in section 5. 

 

2. Derivation of the Method 
We consider a power series approximate solution of the form  
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where 2r and 4s are the numbers of interpolation and collocation points respectively, is considered to be a 

solution to (1). 

The second and third derivative of (2) gives  
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Substituting (3) into (1) gives  
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Collocating (4) at all points 2,1,
2

1
,0,  sx sn  and interpolating equation (2) at

4

1
,0,  rx rn , gives a system of 

nonlinear equation of the form 

  
UAX                                                                                                                             

(5) 

Where 
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Solving (5) for sai '
 
using Gaussian elimination method, gives a continuous hybrid linear multistep method of 

the form  
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The coefficients of 
2

1
,0,  jy jn  and 2,1,

2

1
,0,  jf jn  are given by; 
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Differentiating (6) once yields 
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The coefficients of ,jnf   and knf   give 

 

 

 

 

 

 

 

 

 

 

 

Evaluating (7) at all points gives a discrete block formula of the form 
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and  
  330 A  identity matrix. 
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3. Analysis of Basic Properties of the Method  
3.1. Order of the Block 

According to Fatunla [12], the order of the new method in equation (8) is obtained by using the Taylor series 

and it is found that the developed method has a uniformly order nine, with an error constants vector of: 
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3.2. Consistency 
The hybrid block method (8) is said to be consistent if it has an order more than or equal to one. 

Therefore, our method is consistent. 
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3.3. Zero Stability of Our Method 
Definition: A block method is said to be zero-stable if as 0h  , the root kizi )1(1,   of the first characteristic 

polynomial   0z  that is     0det
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multiplicity must not exceed two. The block method for k=2, with one off-grid collocation point is expressed in the 

form  
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Hence, our method is zero-stable. 

 

3.4. Region of Absolute Stability of the Two-Step One Off-Grid Point 
We shall adopt the boundary locus method to determine the region of absolute stability of the implicit two-step 

third derivative hybrid block method. This gives stability polynomial below  
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Thus, the absolute stability region of the new method is plotted and shown below 
 

Figure-3.1. Stability region of the method 
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4. Numerical Experiments 
The method derived shall be employed in solving some problems so as to test how computationally reliable the 

method is. 

 

Problem 4.1. 
Consider a highly stiff problem 

    10',10,1000'1001''  yyyyy
           (9)

 

with the exact solution,  

)exp()( xxy               (10) 

 
Table-4.1. Showing the result for Problem 4.1 

x-values Exact Solution Computed Solution Error in our method Error in [8] 

0.100 0.90483741803595957316 0.90483741803595957253 6.300E(-19) 1.054712E(-14) 

0.200 0.81873075307798185867 0.81873075307798180886 4.981E(-17) 1.776357E(-14) 

0.300 0.74081822068171786607 0.74081822068171781705 4.9020E(-19) 2.342571E(-14) 

0.400 0.67032004603563930074 0.67032004603563918790 1.1284E(-16) 2.797762E(-14) 

0.500 0.60653065971263342360 0.60653065971263314623 2.7737E(-16) 3.130829E(-14) 

0.600 0.54881163609402643263 0.54881163609402593546 4.9717E(-16) 3.397282E(-14) 

0.700 0.49658530379140951470 0.49658530379140871125 8.0345E(-16) 3.563816E(-14) 

0.800 0.44932896411722159143 0.44932896411722043065 1.16078E(-15) 3.674838E(-14) 

0.900 0.40656965974059911188 0.40656965974059751543 1.59645E(-15) 3.730349E(-14) 

1.00 0.36787944117144232160 0.36787944117144023830 2.0833E(-15) 3.741452E(-14) 

 

Problem 4.2. 
Consider the problem 

      100',10,'100',,  yyyyyxf
       (11)

 

with the exact solution, 

)10exp()( xxy            (12) 

 
Table-4.2. Showing the result for Problem 4.2 

x-values Exact Solution Computed Solution Error in our method Error in [10] 

0.01 0.90483741803595957316 0.90483741803595956538 7.780E(-18) 0.0000(+00) 

0.02 0.81873075307798185867 0.81873075307798177085 8.782E(-17) 2.431388(-14) 

0.03 0.74081822068171786607 0.74081822068171757330 2.9277E(-16) 7.105427(-14) 

0.04 0.67032004603563930074 0.67032004603563873584 5.649E(-16) 1.384448(-13) 

0.05 0.60653065971263342360 0.60653065971263248017 9.4343E(-16) 2.257083(-13) 

0.06 0.54881163609402643263 0.54881163609402504957 1.38306E(-15) 3.316236(-13) 

0.07 0.49658530379140951470 0.49658530379140759480 1.9199E(-15) 4.555800(-13) 

0.08 0.44932896411722159143 0.44932896411721907405 2.51738E(-15) 5.974665(-13) 

0.09 0.40656965974059911188 0.40656965974059590272 3.20916E(-15) 7.575052(-13) 

0.10 0.36787944117144232160 0.36787944117143835538 3.96622E(-15) 9.361956(-13) 

0.11 0.33287108369807955329 0.33287108369807473419 4.81910E(-15) 1.134093(-12) 

0.12 0.30119421191220209664 0.30119421191219634900 5.74764E(-15) 1.352474(-12) 

 

5. Conclusions 
It is evident from the results obtained that our proposed method is indeed accurate, and can handle stiff 

equations. Also in terms of stability analysis, the method is A-stable. Comparing the new method with the existing 

methods [8, 10]; the results presented in the Tables 4.1 and 4.2 show that the new method performs better than the 

existing methods [8, 10]. In this article, a two-step block method with one off-step point has been derived via the 

interpolation and collocation approach. The developed method is also consistent, convergent and zero-stable. 
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