Academic Journal of Applied Mathematical Sciences
ISSN(e): 2415-2188, ISSN(p): 2415-5225
Vol. 4, Issue. 5, pp: 43-48, 2018
URL: http://arpgweb.com/?ic=journal\&journal=17\&info=aims
Academic Research Publishing

Uniformly Order Eight Implicit Second Derivative Method for Solving SecondOrder Stiff Ordinary Differential Equations ODEs

Pius Tumba
Department of Mathematic, Adamawa State University, Mubi-Nigeria

Sabo John

Department of Mathematic, Adamawa State University, Mubi-Nigeria
Markus Hamadina
Department of Statistics, Adamawa State Polytechnic, Yola-Nigeria

Abstract

A one-step hybrid block method for initial value problems of general second order Ordinary Differential Equations has been studied in this paper. In the derivation of the method, power series is adopted as basis function to obtain the main continuous scheme through collocation and interpolations approach. Taylor method is also used together with new method to generate the non-overlapping numerical results. The new method is then applied to solve the system of second-order stiff ordinary differential equations and the accuracy is better when compared with the existing methods in terms of error.

Keywords: Power series; Collocation and interpolation method; Hybrid block method; Stiff ODEs; System of second Order ODEs.

CC BY: Creative Commons Attribution License 4.0

1. Introduction

Numerous problems such as chemical kinetics, orbital dynamics, circuit and control theory and Newton's second law applications involve second-order ODEs [1]. Ordinary differential equations (ODEs) are commonly used for mathematical modeling in many diverse fields such as engineering, operation research, industrial mathematics, behavioral sciences, artificial intelligence, management and sociology. This mathematical modeling is the art of translating.

Problem from an application area into tractable mathematical formulations whose theoretical and numerical analysis provide insight, answers and guidance useful for the originating application [2]. This type of problem can be formulated either in terms of first-order or higher order ODEs. In this article, the system of second-order ODEs of the following form is considered.

$$
\begin{gather*}
{ }^{1} y^{\prime \prime} f\left(x^{1}, y^{1},{ }^{2} y^{\prime}\right), \quad{ }^{1} y\left(x_{0}\right)=a_{0},{ }^{1} y^{\prime}\left(x_{0}\right)=b_{0} \\
{ }^{2} y^{\prime \prime} f\left(x^{2}, y^{2},{ }^{2} y^{\prime}\right), \quad{ }^{2} y\left(x_{0}\right)=a_{1},{ }^{2} y^{\prime}\left(x_{0}\right)=b_{1} \\
\vdots \tag{1}\\
{ }^{m} y^{\prime \prime}{ }^{m} f\left(x^{m}, y^{m},{ }^{m} y^{\prime}\right), \quad{ }^{m} y\left(x_{0}\right)=a_{0},{ }^{m} y^{\prime}\left(x_{0}\right)=b_{m}
\end{gather*}
$$

The method of solving higher-order ODEs by reducing them to a system of first-order approach involves more functions to evaluate them and then leads to a computational burden as mentioned in [3-5]. The multistep methods for solving higher-order ODEs directly have been developed by many scholars such as [6-9]. The aim of this paper is to develop a new numerical method for solving systems of second-order stiff ODEs.

2. Derivation of the Method

In this section, a one-step hybrid block method with two off-step points, $x_{n+\frac{1}{7}}$ and $x_{n+\frac{7}{8}}$ for solving Equation (1) is derived. Let the power series of the form

$$
\begin{equation*}
{ }^{j} y(x)=\sum_{i=0}^{v+m-1} a_{i}\left(\frac{x-x_{n}}{h}\right)^{i}, \quad j=1, \ldots, m \tag{2}
\end{equation*}
$$

be the approximate solution to Equation (1) for $x \in\left[x_{n}, x_{n+1}\right]$ where $n=0,1,2, \cdots N-1, \quad a^{\prime} s$ are the real coefficients to be determined, v is the number of collocation points, m is the number of interpolation points and $h=x_{n}-x_{n-1}$ is a constant step size of the partition of interval $[a, b]$, which is given by $a=x_{0}<x_{1}<\cdots<x_{N}=b$.
Differentiating Equation (2) once and twice yields:

$$
\begin{align*}
& { }^{j} y^{\prime}(x)={ }^{j} f\left(x^{j}, y^{j},{ }^{j} y\right)=\sum_{i=1}^{v+m-1} \frac{i a_{i}}{h}\left(\frac{x-x_{n}}{h}\right)^{i-1}, \quad j=1, \cdots, m \tag{3}\\
& { }^{j} y^{\prime \prime}(x)={ }^{j} f\left(x^{j}, y^{j},{ }^{j} y^{\prime}\right)=\sum_{i=2}^{v+m-1} \frac{i(i-1) a_{i}}{h^{2}}\left(\frac{x-x_{n}}{h}\right)^{i-2}, \quad j=1, \cdots, m . \tag{4}
\end{align*}
$$

Interpolating Equation (2) at the selected intervals, i.e., x_{n}, and collocating Equation (3) and (4) at all points in the selected interval, i.e., $x_{n}, x_{n+\frac{1}{7}}, x_{n+\frac{7}{8}}$ and x_{n+1}, gives the following equations which can be written in matrix form:

Applying the Gaussian elimination method on Equation (5) gives the coefficient $a_{i}{ }^{\prime} s, \quad$ for $\quad i=0$ (1) 10 . These values are then substituted into Equation (2) to give the implicit continuous hybrid method of the form:

$$
\begin{equation*}
{ }^{j} y(x)=\sum_{i=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}}{ }^{j} \beta_{i}(x)^{j} f_{n+i}+\sum_{i=0}^{1}{ }^{j} \beta_{i}(x)^{j} f_{n+i}, \quad j=1, \cdots, m \tag{6}
\end{equation*}
$$

Differentiating Equation (6) once yields:

$$
\begin{equation*}
{ }^{j} y^{\prime}(x)=\sum_{i=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}} \frac{d}{d x}^{j} \beta_{i}(x)^{j} f_{n+i}+\sum_{i=0}^{1} \frac{d}{d x}{ }^{j} \beta_{i}(x)^{j} f_{n+i}, \quad j=1, \cdots, m \tag{7}
\end{equation*}
$$

Where

$$
\begin{aligned}
& { }^{j} \alpha_{0}=0 \\
& { }^{j} \beta_{0}=t h-\frac{13331}{147} t^{2} h+\frac{418391}{686} t^{3} h+\frac{418391}{686} t^{4} h-\frac{505984}{343} t^{5} h+\frac{1751168}{1029} t^{6} h-\frac{2297856}{2401} t^{7} h \\
& +\frac{72704}{343} t^{8} h \\
& { }^{j} \beta_{\frac{1}{8}}=\frac{51200}{567} t^{3} h-\frac{799744}{1323} t^{4} h+\frac{13428736}{9261} t^{5} h-\frac{46174208}{27783} t^{6} h+\frac{60293120}{64827} t^{7} h-\frac{1900544}{9261} t^{8} h \\
& { }^{j} \beta_{\frac{7}{8}}=-\frac{26624}{3969} t^{3} h+\frac{898048}{9261} t^{4} h-\frac{4470784}{9261} t^{5} h+\frac{24940544}{27783} t^{6} h-\frac{10944512}{21609} t^{7} h \\
& { }^{j} \beta_{1}=\frac{149}{21} t^{3} h-\frac{10033}{98} t^{4} h+\frac{174208}{343} t^{5} h-\frac{964736}{1029} t^{6} h-\frac{72704}{343} t^{7} h \\
& { }^{j} \gamma_{0}=-\frac{1}{2} x_{n}\left(-x_{n}+2 x\right)-\frac{142}{21} t^{3} h^{2}+\frac{6833}{196} t^{4} h^{2}-\frac{19072}{245} t^{5} h^{2}+\frac{12736}{147} t^{6} h^{2}-\frac{16384}{343} t^{7} h^{2} \\
& +\frac{512}{49} t^{8} h^{2} \\
& { }^{j} \gamma_{\frac{1}{8}}=-\frac{128}{27} t^{3} h^{2}+\frac{2752}{63} t^{4} h^{2}-\frac{258176}{2205} t^{5} h^{2}+\frac{187904}{1323} t^{6} h^{2}-\frac{253952}{3087} t^{7} h^{2}+\frac{8192}{441} t^{8} h^{2} \\
& { }^{j} \gamma_{7}=-\frac{128}{189} t^{3} h^{2}+\frac{4288}{441} t^{4} h^{2}-\frac{105344}{2205} t^{5} h^{2}+\frac{114176}{1323} t^{6} h^{2}-\frac{204800}{3087} t^{7} h^{2}+\frac{8192}{441} t^{8} h^{2} \\
& { }^{\frac{7}{8}} \\
& { }^{j} \gamma_{1}=\frac{1}{3} t^{3} h^{2}+\frac{135}{28} t^{4} h^{2}-\frac{5888}{245} t^{5} h^{2}+\frac{6592}{147} t^{6} h^{2}-\frac{8704}{343} t^{7} h^{2}
\end{aligned}
$$

3. Convergence Analysis

3.1. Order and Error Constants of the Methods

According to Henrici [9] the order of the new method in Equation (5) is obtained by using the Taylor series and it is found that the developed method has an uniformly order Ten, with an error constants vector of:

$$
C_{8}=\left[\begin{array}{lll}
1.4703 \times 10^{-11}, & 1.0490 \times 10^{-8}, & 1.0505 \times 10^{-13}, \\
9.7083 \times 10^{-8}
\end{array}\right]^{T}
$$

3.2. Consistency

Definition 3.1:The hybrid block method (5) is said to be consistent if it has an order more than or equal to one i.e. $P \geq 1$. Therefore, the method is consistent.

3.3. Zero Stability

Definition 3.2: The hybrid block method (5)said to be zero stable if the first characteristic polynomial $\pi(r)$ having roots such that $\left|r_{z}\right| \leq 1$ and if $\left|r_{z}\right|=1$, then the multiplicity of r_{z} must not greater than two.

In order to find the zero-stability of hybrid block method (5), we only consider the first characteristic polynomial of the method according to definition (3.2) as follows
$\left.\Pi(r)=\left|r^{[2]_{3}}-\bar{B}_{1}^{[3]_{3}}\right|=|r| \begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \left.-\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right) \right\rvert\,=r^{2}(z-1)$
Which implies $r=0,0,1$.Hence the method is zero-stable since $\left|r_{z}\right| \leq 1$ and if $\left|r_{z}\right|=1$.

3.4. Convergence

Theorem (3.1): Consistency and zero stability are sufficient condition for linear multistep method to be convergent.Since the method (5) is consistent and zero stable, it implies the method is convergent for all point.

3.5. Regions of Absolute Stability (RAS)

Using the MATLAB package, we were able to plot the stability regions of the block method (see fig. below). This is done by reformulating the block method as general linear method to obtain the values of the matrices according to $[10,11]$. The matrices are substituted into the stability matrix and using MATLAB software, the absolute stability regions of the new methods are plotted as shown in fig. below.

3.6. Numerical Implementation

To study the efficiency of the block hybrid method for $k=1$, we present some numerical examples widely used by Althemai, et al. [12], Areo and Adeniyi [13] and Sirisena, et al. [14]. In this section, the performance of the developed one-step hybrid block method is examined using the following two systems of second-order initial value problems. Tables 1 and 2 show the comparison of the numerical results of the new method with the existing method by Althemai, et al. [12], Areo and Adeniyi [13] and Sirisena, et al. [14] for solving problems 1 and 2 respectively.

Example 1
$y_{1}^{1}=-8 y_{1}+7 y_{2} ; y_{1}(0)=1$,
$y_{2}^{1}=42 y_{1}-43 y_{2} ; y_{2}(0)=8, \quad h=\frac{1}{10}$. With Exact Solution
$y_{1}(x)=2 e^{-x}-e^{-50 x}$
$y_{2}(x)=2 e^{-x}-6 e^{-50 x}$
See Althemai, et al. [12]

Table-1. Comparison of absolute errors for Problem 1

X-value	Error in Althemai, et al. [12] BHSM Three off-grid points		Error in New method	
	$y_{1}(x)$	$y_{2}(x)$	$y_{1}(x)$	$y_{2}(x)$
0.1	1.38×10^{0}	3.20×10^{0}	2.36×10^{-4}	8.23×10^{-2}
0.2	9.02×10^{-1}	7.36×10^{-1}	3.26×10^{-6}	1.32×10^{-1}
0.3	1.09×10^{0}	2.58×10^{0}	2.60×10^{-8}	3.95×10^{-6}
0.4	9.09×10^{-1}	5.32×10^{0}	5.00×10^{-9}	3.20×10^{-8}
0.5	8.84×10^{-1}	2.10×10^{0}	8.00×10^{-9}	7.00×10^{-9}
0.6	7.22×10^{-1}	3.75×10^{0}	8.00×10^{-9}	6.00×10^{-9}
0.7	7.15×10^{-1}	1.71×10^{0}	7.20×10^{-9}	8.40×10^{-9}
0.8	6.42×10^{-1}	2.57×10^{0}	8.20×10^{-9}	7.60×10^{-9}
0.9	5.78×10^{-1}	1.39×10^{0}	8.40×10^{-9}	8.50×10^{-9}
1.0	5.68×10^{-1}	1.67×10^{-1}	8.50×10^{-9}	8.00×10^{-9}

Example 2
$y^{1}=-y ; y(0)=1, \quad 0 \leq x \leq 1, \quad h=\frac{1}{10}$
With Exact Solution

$$
y(x)=e^{-x}
$$

See Areo and Adeniyi [13] and Sirisena, et al. [14]
Table-2. Comparison of absolute errors for problem 2

X-value	Sirisena, et al. [14]	$\begin{aligned} & \text { Areo and Adeniyi } \\ & {[13]} \end{aligned}$	New method
0.1	2.00×10^{-9}	1.80×10^{-10}	1.00×10^{-10}
0.2	2.00×10^{-9}	5.80×10^{-10}	0.0
0.3	1.00×10^{-9}	5.80×10^{-10}	0.0
0.4	2.00×10^{-9}	7.40×10^{-10}	1.00×10^{-10}
0.5	1.00×10^{-9}	8.10×10^{-10}	1.00×10^{-10}
0.6	3.00×10^{-9}	9.00×10^{-10}	3.00×10^{-10}
0.7	2.00×10^{-9}	9.90×10^{-10}	2.00×10^{-10}
0.8	3.00×10^{-9}	1.00×10^{-9}	2.00×10^{-10}
0.9	3.00×10^{-9}	1.10×10^{-9}	2.00×10^{-10}
1.0	3.00×10^{-9}	1.20×10^{-9}	2.00×10^{-10}

It is obvious from the result presented in the tables 1 and 2 that new method performs better than the existing method by Althemai, et al. [12], Areo and Adeniyi [13] and Sirisena, et al. [14].

4. Conclusions

In this article, a one-step block method with two off-step points is derived via the interpolation and collocation approach. The errors arising from Problems 1 using the new method were compared with those obtained by Althemai, et al. [12]. Some authors earlier solved problems 2, the errors were compare with [13] and Sirisena, et al. [14] respectively. A close look at the tables presented above reveal that the newly proposed method performs better than those compared with. The method is also desirable by virtue of possessing high order of accuracy. The developed method is consistent, A-stable, convergent, with a region of absolute stability and uniformly order eight.

References

[1] Alkasassbeh, M. and Zurni, O., 2017. "Implicit one-step block hybrid third-derivative method for the direct solution of initial value problems of second -order ordinary differential equations." J. Apply. Math., vol. 2017, p. 8.
[2] Omar, Z. and Sulaiman, M., 2004. "Parallel r-point implicit block method for solving higher order ordinary differential equations directly." J. ICT, vol. 3, pp. 53-66.
[3] Kayode, S. J. and Adeyeye, O., 2011. "A 3-step hybrid method for direct solution of second order initial value problems." Aust. J. Basic Appl. Sci., vol. 5, pp. 2121-2126.
[4] James, A., Adesanya, A., and Joshua, S., 2013. "Continuous block method for the solution of second order initial value problems of ordinary differential equation." Int. J. Pure Appl. Math, vol. 83, pp. 405-416.
[5] Omar, Z. and Suleiman, M. B., 2006. "Parallel two-point explicit block method for solving high-order ordinary differential equations." Int. J. Simul. Process Model, vol. 2, pp. 227-231.
[6] Vigo-Aguiar, J. and Ramos, H., 2006. "Variable stepsize implementation of multistep methods for (equation)." J. Comput. Appl. Math., vol. 192, pp. 114-131.
[7] Adesanya, A. O., Anake, T. A., and Udo, O., 2008. "Improved continuous method for direct solution of general second order ordinary differential equations." J. Niger. Assoc. Math. Phys., vol. 13, pp. 59-62.
[8] Awoyemi, D. O., 2003. "A P-stable linear multistep method for solving general third order of ordinary differential equations." Int. J. Comput. Math., vol. 80, pp. 985-991.
[9] Henrici, P., 1963a. "Some applications of the quotient-difference algorithm." Proc. Symp. Appl. Math., vol. 15, pp. 159-183.
[10] Lambert, J. D., 1973. Computational methods in ODEs. New York, NY, USA: John Wiley and Sons.
[11] Skwame, Y., Sabo, J., and Kyagya, T. Y., 2017. "The construction of implicit one-step block hybrid methods with multiple off-grid points for the solution of stiff ODEs." JSRR, pp. 2320-0227.
[12] Althemai, J. M., Skwame, Y., and Donald, J. Z., 2014. "Multiple off-grid hybrid block simpson's methods for solution of stiff ordinary differential equations." International Journal of Science and Research, vol. 5, pp. 1104-1109.
[13] Areo, E. A. and Adeniyi, R. B., 2009. "One-step embedded butcher type two-step block hybrid method for the IVPs in ODEs. Advances in mathematics Vol. 1: Proceedings of a memorial conference in honour of late Professor C. O. A. Sowunmi, University of Ibadan, Nigeria." vol. 1, pp. 120-128.
[14] Sirisena, U. W., Kumleng, G. M., and Yahaya, Y. A., 2004. "A new butcher type two-step blockhybrid multistep method for accurate and efficient parallel solution of ODEs." Abacus, Math Series, vol. 31, pp. 17.

