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Abstract 
In this study, a new one step continuous hybrid constant block method is developed using interpolation and 

collocation of power series approximate solution to  solve  initial -value  problems involving  third -order  ordinary  

differential  equations. The one step block method was augmented by the introduction of off grid points so as to 

circumvent Dahquist zero stability barrier. The block method is then applied to obtain the solution of two numerical 

examples for demonstration of the efficiency of the new method. The results are compared with the existing ones in 

literature and it is concluded that results of Continuous Hybrid Constant Block Method  is more accurate than  when 

it was implemented in  predictor corrector mode or using implicit Runge-Kutta method. 
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1. Introduction 
This paper considers the numerical solution to third order initial value problems of the form. 
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Solutions to some third order differential equations appearing in the field of Engineering and Science are due to 

natural phenomenon; hence they do not have a close solution Nicolette [1]; Hopkins and Kosmatov [2]. Approximate 

solutions are obtained by the application of numerical methods. These methods are categorised in to two: one step 

and Multistep methods. 

Linear Multistep methods are commonly applied for solving higher order IVPs by first reducing it to an 

equivalent system of first-order ordinary differential equations (ODEs). This approach has been  extensively 

discussed by notable authors such as Lambert [3], Lambert [4], Brugnano and Trigiante [5], Onumanyi, et al. [6], 

Onumanyi, et al. [7], Fatunla [8] and Jator [9]  are cited.  One disadvange of these methods is that it involves more 

human effort and wastage computer time as discussed in Awoyemi [10]. Recently, Jator [11], Jator and Li [12], 

proposed LMMs for the direct solution of the general second and third order IVPs, which were shown to be zero 

stable and implemented without the need for either predictors or starting values from other methods. Their method 

was tested on few problems and was found to be effective.  

It has also been discovered that direct methods for the solution of higher order ordinary differential equation are 

better than the method of reduction in terms of approximation, time of execution and cost of implementation. This 

was discovered by scholars such as Adesanya, et al. [13], James, et al. [14], Kayode and Obaruah [15],  and Jator 

[16]. 

The technique  of collocation and interpolation of power series approximate solution to generate a continuous 

linear multi-step method has been discussed by many authors, among them are: Awoyemi and Idowu [17], Majid, et 

al. [18], Olabode and Yusuf [19], Adesanya, et al. [20]. These authors developed method which is implemented 

either in predictor-corrector method or block method. However, Block method has advantage over predictor-

corrector method because it is cost effective and give better approximations. Hybrid method has also been found to 

have the advantage of reducing the step number of a method and still remains zero stable.  

In this paper, we derive a new continuous hybrid constant block method through interpolation and collocation, 

see Lie and Norsett [21], Atkinson [22], Onumanyi, et al. [7]. The method retains the characteristics of Runge kutta 

method and hybrid method.  The simultaneous application of this derived method is more accurate than predictor-

corrector methods which are generally applied as formulas over overlapping intervals in literature. Thus, the method 

presented in this paper is more robust in terms of self-starting, less time of execution, cost effectiveness. The new 

block method derived is also zero-stable, consistent, and hence convergent.  The superiority of the method in this 

paper over Runge-Kutta method is established through the results obtained from the numerical examples.  

The paper is organized as follows. In Section 2, the methodology for the development of the method is 

considered. Section 3 is devoted to the explanation of the basic properties of the method developed. The efficiency 

of the new block method are discussed in Section 4 by testing it on some numerical examples. Finally, the 

conclusion of the paper is discussed in Section 5. 
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2. Methodology  
We consider the approximate solution of the form  
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Where  r  and s  are the number of interpolation and collocation points respectively. sja '  are the unknown 

coefficient to be determined.  x  is the polynomial basis function of degree j . 

The third derivation of (2) gives 
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Substituting (3) into (1) 
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Solving (6) for the unknown constants and substituting into (2) gives a continuous hybrid linear multistep 

method in the form  
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Which when solved for the independent solution at the grid points gives a continuous block formula of the form 
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Evaluating (7) at t = 0, 1,
4

3
,

2

1
,

4

1
 gives a discrete block method of the form 

 )()()3(
2

0

)()(0

mini

i

i

i

ni

ii

m YFbyfdhyehYA  



  , 2,1,0i                                            (8)

T

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

m yyyyyyyyY 







 



)(

,1

)(

,
8

7

)(

,
4

3

)(

,
8

5

)(

2

1

)(

8

3

)(

4

1

)(

8

1

)( ,,,,  

T

nn
nnn

m fffffYF 







 


,,,,)( 1

4

3

2

1

4

1  

T

nn
nnn

n fffffyf 







 


,,,,)( 1

4

3

2

1

4

1  

880 XA   Identity matrix 

When 0i



































10000000

10000000

10000000

10000000

10000000

10000000

10000000

10000000

0e         















































10000000
8

7
0000000

4

3
0000000

8

5
0000000

2

1
0000000

8

3
0000000

4

1
0000000

8

1
0000000

1e

 

















































2

1
0000000

128

49
0000000

32

9
0000000

128

25
0000000

8

1
0000000

128

9
0000000

32

1
0000000

128

1
0000000

2e

    

















































840

31
0000000

2949120

81977
0000000

71680

1431
0000000

344064

4625
0000000

40320

331
0000000

2293760

9729
0000000

71680

113
0000000

10321920

2599
0000000

0d

 



Academic Journal of Applied Mathematical Sciences 

 

56 

































































504

1
0

105

2
0

210

1
0

315

34
0

1474560

2401
0

2949120

31213
0

983040

2401
0

589824

45619
0

71680

81
0

7168

45
0

35840

243
0

35840

1863
0

4128768

3125
0

458752

1875
0

1376256

10625
0

4128768

130625
0

403320

19
0

5040

13
0

168

1
0

5040

83
0

114688

27
0

2293760

2979
0

2293760

7209
0

2293760

15201
0

645120

47
0

107520

43
0

107520

103
0

64512

107
0

20643840

143
0

4128768

155
0

6881280

601
0

20643840

2693
0

0b

 

When 1i  



































10000000

10000000

10000000

10000000

10000000

10000000

10000000

10000000

1e      















































10000000
8

7
0000000

4

3
0000000

8

5
0000000

2

1
0000000

8

3
0000000

4

1
0000000

8

1
0000000

2e

   

















































90

7
0000000

737280

50029
0000000

2560

147
0000000

147456

6925
0000000

1440

53
0000000

81920

2181
0000000

23040

367
0000000

737280

4081
0000000

1d

    



































































00
45

4
0

15

1
0

15

4
0

81920

343
0

92160

4459
0

122880

5831
0

1536

343
0

2560

9
0

128

3
0

1280

27
0

640

117
0

49152

125
0

9216

125
0

24576

125
0

6144

875
0

480

1
0

90

1
0

48

1
0

10

1
0

16384

27
0

10240

93
0

40960

891
0

5120

297
0

7680

7
0

5760

29
0

3840

47
0

128

3
0

245760

49
0

4608

5
0

122880

313
0

30720

121
0

1b  

When   2i  



Academic Journal of Applied Mathematical Sciences 

 

57 



































10000000

10000000

10000000

10000000

10000000

10000000

10000000

10000000

2e   , 

















































90

7
0000000

23040

1883
0000000

320

27
0000000

1152

95
0000000

360

29
0000000

2560

213
0000000

2880

251
0000000

11520

847
0000000

2d

 
































































90

7
0

45

16
0

15

2
0

25

16
0

11520

49
0

23040

6223
0

7680

1421
0

23040

7693
0

320

3
0

160

21
0

40

9
0

160

51
0

4608

25
0

4608

175
0

1536

275
0

4608

1525
0

360

1
0

90

1
0

15

1
0

90

31
0

640

3
0

2560

63
0

2560

117
0

2560

813
0

2880

19
0

1440

53
0

120

11
0

1440

323
0

23040

91
0

23040

499
0

7680

397
0

23040

1969
0

2b

 
 

3. Basic Properties of the Method Developed 
3.1. Order of the Block 
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3.2. Consistency 

A block method is said to be   consistent if it has order  .1p  Hence the block method developed is consistent. 

 

3.3. Zero Stability 
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3.4. Convergence 
A block method is said to be convergent if and only if it is consistent and zero stable. It is obvious that the block 

method is convergent. 

 

 

4. Numerical Examples 
Problem 1 

,xey                 5)0(,1)0(,3)0(  yyy  

Theoretical Solution:     ,22)( 2 xexxy   

The result is given in Table 1 

Source: Taparki, et al. [23] 

Error in  NM : Error in the New Method 

 
Table-1. Comparison of Error in Problem 1 

x  Theoretical Solution Numerical Solution Error in Taparki, et al. 

[23] Runge-Kutta 

Method 

Error in NM  

0.1 3.12517091807564770 3.12517091807564730 2.280200e-05 4.440892e-16 

0.2 3.30140275816016970 3.30140275816016880 1.673740e-04 8.881784e-16 

0.3 3.52985880757600330 3.52985880757600110 5.571310e-04 2.220446e-15 

0.4 3.81182469764127020 3.81182469764126660 1.328468e-03 3.552714e-15 

0.5 4.14872127070012820 4.14872127070012290 2.632129e-03 5.329071e-15 

0.6 4.54211880039050890 4.54211880039050090 4.634706e-03 7.993606e-15 

0.7 4.99375270747047750 4.99375270747046420 7.520313e-03 1.332268e-14 

0.8 5.50554092849246860 5.50554092849244900 1.148243e-02 1.953993e-14 

0.9 6.07960311115695080 6.07960311115692330 1.674593e-02 2.753353e-14 

1.0 6.71828182845904640 6.71828182845901270 2.355935e-02 3.375078e-14 

 

Problem 2 

,cos3 xy                 2)0(,0)0(,1)0(  yyy  

Theoretical Solution:     xxxxy sin313)( 2   

The result is given in Table 2 

Source: Taparki, et al. [23] 

Error in  NM : Error in the New Method 
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Table-2. Comparison of Error in Problem 2 

x  Theoretical Solution Numerical Solution Error in Taparki, et al. [23] 

Runge-Kutta Method 
Error in  NM  

0.1 1.01049975005951560 1.01049975005951560 2.480000e-07 0.000000e+00 

0.2 1.04399200761481660 1.04399200761481680 7.374000e-06 2.220446e-16 

0.3 1.10343938001598120 1.10343938001598210 6.054200e-05 8.881784e-16 

0.4 1.19174497307404840 1.19174497307404990 2.547870e-04 1.554312e-15 

0.5 1.31172338418739100 1.31172338418739390 7.760160e-04 2.886580e-15 

0.6 1.46607257981489350 1.46607257981489880 1.926125e-03 5.329071e-15 

0.7 1.65734693828692680 1.65734693828693440 4.150540e-03 7.549517e-15 

0.8 1.88793172730143200 1.88793172730144240 8.363734e-03 1.043610e-14 

0.9 2.16001927111755030 2.16001927111756450 1.477375e-02 1.421085e-14 

1.0 2.47558704557631200 2.47558704557633020 2.470199e-02 1.820766e-14 

 

4.1. Discussion of Results 
Two examples are considered to illustrate the efficiency of the newly derived method. It is evident that the new 

block method is superior to the method given in Taparki, et al. [23] numerically. 

Tables 1 and 2 show that the New Continuous Hybrid Constant Block Method is better in terms of accuracy and 

convergence to theoretical solution when compared to Taparki, et al. [23] where they used an implicit Runge- Kutta 

method to solve the two problems considered in this paper. 

 

5. Conclusion 
In  this  paper,  we  have  shown  the  efficiency  of  the New Continuous Hybrid Constant Block Method over 

an implicit Runge- Kutta method  for solving general third-order ODEs.  

Results from the numerical examples revealed that the performance of the developed method is better in terms 

of maximum errors and converges more closely to the exact solution especially with the reduced step size used in 

generating the scheme used in this paper. 
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