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Abstract 
The aim of this study is to examine the effects of outliers on the specification and efficiency of heteroscedastic 

models fitted to the daily closing share price returns series of two outstanding banks in Nigeria from January 3, 2006 

to November 24, 2016. The series consists of 2690 observations for each bank. The data were obtained from the 

Nigerian Stock Exchange.  GARCH(2,0) model with respect to student-t error distribution and GARCH(1,1) model 

under normal error distribution were successfully fitted to the outlier contaminated series of Diamond bank and 

United bank for Africa accordingly. On the contrary, EGARCH(1,1) model with respect to student-t error 

distribution adequately captured the changing variance in the outlier adjusted series of the two banks considered. 

Substantial evidence revealed that the presence of outliers in returns series leads to model misspecification and 

adjusting for such outliers ensures model efficiency. 

Keywords: ARCH effects; Model efficiency; Nigerian banking sector; Volatility. 
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1. Introduction 
Heteroscedasticity simply means changing variance. It usually occurred when the assumption of constant 

variance in time series is violated. According to Rosopa, et al. [1], the assumption of constant variance is required to 

ensure the accuracy of standard errors and asymptotic covariances among estimated parameters. It could be 

remarked that a major setback to linear stationary models when applying to financial data (returns series) is their 

failure to account for changing variance. One way to account for changing variance is to entertain heteroscedastic 

models mainly generalized autoregressive conditional heteroscedastic (GARCH-type) models. Meanwhile, stock 

returns often occur in clusters indicating the presence of outliers which is a very common attribute in time series 

data. By definition, outliers are observations that are distinct from the main body of the data and are incompatible 

with the rest of the data [2]. As noted by Alih and Ong [3], outliers in homoscedastic model make the model 

heteroscedastic. Carnero, et al. [4] further affirmed and maintained that outliers affect the identification of 

conditional heteroscedasticity and the estimation of GARCH models. Also, it is evident in Rana [5] that outliers have 

great impact on the existing heteroscedasticity tests and the estimators of heteroscedastic model and such impact of 

outliers on the diagnostic tools for heteroscedasticity is well defined in van Dijk, et al. [6]. They showed that both 

the asymptotic size and power properties of Lagrange (LM) test for ARCH/GARCH are adversely affected by 

outliers, particularly, additive outliers. Meanwhile, Grossi and Laurini [7] found that order of identification, t-

statistics and corresponding p-values of the estimates of GARCH parameters are affected by outliers in an 

unexpected manner. Therefore, it could be argued that it is gainful to take into consideration the presence of outliers 

whenever heteroscedasticity is modeled.  

This study is aimed at examining the effects of outliers on the specification and efficiency of heteroscedastic 

models. The motivation is derived from the fact that prior studies in Nigeria did take to account the effects of outliers 

while modeling the heteroscedasticity in the stock returns of Nigerian banks. The fact that previous studies in 

Nigeria have failed to consider the presence of outliers while modeling heteroscedasticity in stock returns has 

provided a novel ground for this study. For instance, Onwukwe, et al. [8] investigated the time series behaviours of 

daily stock returns of four firms listed in the Nigerian Stock Market from  January 2, 2002 to December, 31 2006 

using three different models of heteroscedastic process, namely; GARCH(1,1), EGARCH(1,1) and GJR-

GARCH(1,1) models respectively. The four firms whose share prices were used in the analysis are United Bank for 

Africa, Unilever, Guinness and Mobil. All return series exhibit leverage effect, leptokurtosis, volatility clustering 

and negative skewness which are common to most economic financial time series. The estimated results revealed 

that the GJR-GARCH(1,1) gives a better fit to the data and are found to be superior both in-sample and out-sample 

forecasts evaluation.  

Onwukwe, et al. [9] studied the modeling and forecasting of daily returns volatility of Nigerian Banks Stocks 

using data from January 4, 2005 to August 31, 2012 Three symmetric models ARCH(1), ARCH(2) and 
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GARCH(1,1) and two asymmetric models EGARCH(1,1) and TARCH(1,1) were used in capturing the volatility 

pattern of the banks stocks. The findings of the study revealed that the return series were stationary but not normally 

distributed with the presence of ARCH effect. Furthermore, the results of post estimation evaluation revealed that 

asymmetric conditional heteroscedastic models are more suitable for modeling daily returns volatility of Nigerian 

Banks stocks compared with symmetric heteroscedastic models. 

Akpan, et al. [10] looked at a possible combination of both ARMA and ARCH-type models to form a single 

model such as ARMA-ARCH that will completely model the linear and non-linear features of financial data. Daily 

closing share prices of First Bank of Nigeria plc from January 4, 2000 to December 31, 2013were considered. The 

study provided evidence to show that ARMA (2,2) model was adequate in modeling the linear dependence in the 

returns while ARCH(1) model was adequate in modeling the changing conditional variance in the returns. Hence, 

ARMA(2,2)-ARCH(1) model completely modeled the returns series of First Bank of Nigeria. 

Akpan and Moffat [11] detected and modeled the asymmetric GARCH effects in a discrete-time series by 

exploring the share price returns of Zenith bank plc obtained from the Nigerian Stock Exchange from January 4, 

2006 to May26, 2015. The study applied sign and size test to identify the asymmetric GARCH effects and modeled 

by EGARCH and TGARCH respectively with respect to normal distribution. The findings of the study revealed that 

the asymmetric effect was adequately captured modeled by EGARCH(0,1) and TGARCH(0,1) models.  

The organization of the remaining part of the paper is as follows: section 2 treats the materials and methods; 

results are presented in section 3; discussion of results is covered in section 4 while section 5 accommodates the 

conclusion. 

 

2. Materials and Methods 
2.1. Return 

The return series    can be obtained given that    is the price of a unit share at time, t and       is the share price 

at time t 1. 

                                                                                                                            (1) 

The     in equation (1) is regarded as a transformed series of the share price,    meant to attain stationarity, that 

is, both mean and variance of the series are stable [11]. The letter   is the backshift operator. 

 

2.2. Autoregressive Integrated Moving Average (Arima) Model 
Box, et al. [12] considered the extension of ARMA model to deal with homogenous non-stationary time series in 

which     itself is non-stationary but its    difference is a stationary ARMA model. Denoting the     difference of 

   by   

                                                                    (2) 

where      is the nonstationary autoregressive operator such that d of the roots of         are unity and the 

remainder lie outside the unit circle.      is a stationary autoregressive operator. 

 

2.3. Heteroscedastic Models 

2.3.1. Autoregressive Conditional Heteroscedastic (ARCH) Model 
The first model that provides a systematic framework for modeling heteroscedasticity is the ARCH model of 

Engle [13]. Specifically, an ARCH (q) model assumes that, 

                         
  

           
           

 .                                                                                                                   (3) 

where    ] is a sequence of independent and identically distributed (i.i.d.) random variables with mean zero, that 

is E(  ) = 0  and variance 1, that is E(  
 ) = 1,                     [14]. The coefficients     for     , must 

satisfy some regularity conditions to ensure that the unconditional variance of   is finite.  

 

2.3.2. Generalized Autoregressive Conditional Heteroscedastic (GARCH) Model 
Although the ARCH model is simple, it often requires many parameters to adequately describe the volatility 

process of a share price return. Some alternative models must be sought. Bollerslev [15] proposed a useful extension 

known as the generalized ARCH (GARCH) model. For a return series,   , let            be the innovation at 

time t. Then,    follows a GARCH (q, p) model if  

        , 

  
      

 
 

   
      

  

 
 

   
      

                                                                                                               (4) 

where again    is a sequence of i.i.d. random variance with mean, 0, and variance, 1,               

   
        

 
   

            [16]. 

Here, it is understood that        for    , and       for    . The latter constraint on        implies that 

the unconditional variance of    is finite, whereas its conditional variance   
   evolves over time. 
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2.3.3. Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) 

Model 
The EGARCH model represents a major shift from ARCH and GARCH models [17]. Rather than modeling the 

variance directly, EGARCH models the natural logarithm of the variance, and so no parameter restrictions are 

required to ensure that the conditional variance is positive. The EGARCH (q, p) is defined as,  

                           

    
           |

    

√    
 

|
 
        

 
   (

    

√    
 

)      
 
         

                                                                  (5) 

where again,    is a sequence of i.i.d. random variance with mean, 0, and variance, 1, and     is the asymmetric 

coefficient. 

 

2.3.4. Glosten, Jagannathan and Runkle (GJR-GARCH) Model 
The GJR-GARCH (q, p) model proposed by Glosten, et al. [18] is a variant, represented by  

          

  
               

  
                  

  
             

  
 
                                                                                 (6) 

where      is an indicator for negative         that is, 

         {
                 
                   

 

 

and        and    are nonnegative parameters satisfying conditions similar to those of GARCH models.  Also the 

introduction of indicator parameter of leverage effect,      in the model accommodates the leverage effect, since it is 

supposed that the effect of      
  on the conditional variance   

  is different accordingly to the sign of    . 

 

2.4. Outliers in Time Series 
Generally, a time series might contain several, say k outliers of different types and we have the following 

general outlier model;  

      
 
     (B)  

   
   ,                                                                                                                                    (7) 

where                    ,   (B)   1 for an AO, and   (B)    
    

    
 for an IO at t    ,   (B)     –       

for a LS,     (B)     –        for an TC, and   is the size of outlier. For more details on the types of outliers and 

estimation of the outliers effects [12, 19-23].  

Moreover, in financial time series, the residual series,    is assumed to be uncorrelated with its own past, so 

additive, innovative , temporary change and level shift outliers coincide, and where both the mean and variance 

equations evolves together, we have for example GARCH(1,1) model:  

       ̃     
   

                                                                                                                                             (8) 

 ̃                                                                                                                                                                     (9) 

  
         ̃   

        
                                                                                                                                 (10) 

where  ̃  is the outliers contaminated residuals. 

 

2.4.1. Methods of Outliers Detection in Heteroscedasticity 
One approach for correcting the series for outliers is using standard criteria and then estimates the conditional 

variance. This approach involves detecting and correcting of outliers before estimating the conditional variance [24]. 

 

2.4.2. Efficiency of Heteroscedastic Models 
Efficiency is a measure of quality of an estimator of a model. It is often expressed using variance or mean 

square error. For the purpose of this study which looks at a unified effect of outliers, unconditional variance is 

considered as the measure of efficiency of estimator of heteroscedastic model. 

For ARCH(q)  model which is equivalent to GARCH(q, 0) model, the unconditional variance is given as 

follows:  

       
 

         
 
   

                                                                                                                                                 (11) 

For GARCH(q,p) model, the unconditional variance is expressed thus: 

       
 

  –    
  
   

      
  
   

 
                                                                                                                                     (12) 

For EGARCH(q,p) model, the unconditional variance is expressed as follows: 

        
(

 

        
  
   

 
)

                                                                                                                                             (13) 

Where e is natural exponential function 

For GJR-GARCH(q,p) model  

       
 

  –    
  
   

  –  
  

 ⁄
  
   

     
  
   

 
                                                                                                                         (14) 

Hence, a model with the smallest unconditional variance is considered superior in terms of efficiency.  
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3. Results   
Figures 1 - 2 represent the share price series for the two giant banks in Nigeria. It could be observed that the 

share prices of all the banks do not fluctuate around a common mean which clearly indicate the presence of a 

stochastic trend in the share prices, implying non-stationarity. 

 
Figure-1. Share Price Series of Diamond Bank 

 
 

Figure-2. Share Price Series of United Bank for Africa 

 
 

Since the share price series is found to be non-stationary, the first difference of the natural logarithm of the 

series is taken to have a stationary (returns) series. The inclusion of the log transformation is to normalize the 

variance. Figures 3-4 show that the returns series appear to be stationary which suggests that volatility clustering is 

quite evident in the series. 

 
 

 

 

Figure-3. Return Series of Diamond Bank 
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Figure-4. Return Series of United Bank for Africa Diamond Bank 

 
 

From Figures 5 and 6, both ACF and PACF indicate that mixed model could be entertained. The following 

models; ARIMA(1,1,1), ARIMA(1,1,2) and ARIMA (2,1,1) are considered tentatively. 
 

Figure-5. ACF of Return Series of Diamond Bank 

 
 

Figure-6. PACF of Return Series of Diamond Bank 

 
From Table I, ARIMA(2,1,1) model is selected based on the grounds of significance of the parameters and  

minimum AIC.  
 

Table-I. ARIMA Models for Return Series of Diamond Bank 

Model 

Parameter Akaike Information 

Criteria (AIC)             

ARIMA(1,1,1)                      11357.69 

ARIMA(1,1,2)          0.2858          11360.79 

ARIMA(2,1,1)                                  11360.86 

                 *** significance at 5% level ; * significance at 1% level                                                    
 

Evidence from Ljung-Box Q-statistics shows that ARIMA(2,1,1) model is adequate at 5% level of significance 

given the Q-statistic at Lags 1, 4, 8 and 24, that is, Q(1) = 0.0084, Q(4) = 1.5075, Q(8) = 6.3308 and Q(24) =  25.476 

with corresponding  (P = 0.9268), (P =  0.8253), (P =  0.6102) and (P =  0.3803) respectively. 

On the other hand, evidence from ACF and PACF in Figures 7 and 9; Portmanteau-Q (PQ) statistics and 

Lagrange-Multiplier (LM) test statistics in Table II shows that heteroscedasticity exists. 
 

Figure-7. ACF of Squared Residuals of ARIMA(2,1,1) Model 
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Figure-8. PACF of Squared Residuals of ARIMA(2,1,1) Model 

 
 

Table-II. ARCH Heteroscedasticity Test for Residuals of ARIMA(2,1,1) Model fitted to Return Series of Diamond Ban 

Lag(Order) Portmanteau-Q Test p-value Lagrange -Multiplier Test p-value 

4 66.1             2021           

8 85.9             992           

12 95.7             651           

16 133.9           472           

20 143.1           373           

24 148.6           307           
      *** significance at 5% level                                                               

 

With the presence of heteroscedasticity in the residual series of ARIMA(2,1,1) model confirmed, we moved to 

entertain heteroscedastic models that would account for the failure of the ARIMA(2,1,1) model in capturing the 

changing variance. Tentatively, the following models are considered: GARCH(1,0), GARCH(2,0), GARCH(1,1), 

EGARCH(1,1), GJR-GARCH(1,1) with respect to Normal (norm) and Student-t (std) distributions. The following 

model candidates; GARCH(1,0)-norm, GARCH(2,0)-norm, GARCH(1,1)-std, and GJR-GARCH(1,1)-std were not 

successful due to convergence problem, a situation where the estimator of the parameter is not equal to the true 

parameter, that is, the estimator of the parameter does not converge to the true parameter. On the other, 

GARCH(1,0)-std, GARCH(2,0)-std, GARCH(1,1)-norm, EGARCH(1,1)-norm, EGARCH(1,1)-std, and GJR-

GARCH(1,1)-norm were successful. 

Comparing the values of the  information criteria of the six  models as indicated in Table III, it is observed that 

the information criteria for GARCH(2,0)-std model is the smallest. Hence, based on the ground of smallest 

information criteria, GARCH(2,0)-std  model is selected as the appropriate heteroscedastic model for the return 

series of Diamond bank. 
 

Table-III. Output of Heteroscedastic Models of Return Series of  Diamond Bank 

Model Parameter 

Information Criteria 

Akaike Bayes Hannan-Quinn 

      

GARCH 

(1,0)-std  

            

 4.3202  4.3049  4.3147 

-9.93                                    

              

                       

GARCH 

(2,0)-std  

            

 5.0430  5.0255  5.0367 

                                  

              

                       

  GARCH 

(1,1)-
norm 

            

 4.3997  4.3843  4.3941 

                                          

              

                                

EGARCH

(1,1)-

norm  

            

 4.3056  4.2881  4.2993 

                                             

              

                                              

EGARCH

(1,1)-std  

            

 4.4228  4.4031  4.4157 

                               

              

                                              

GJR-

GARCH 

(1,1)-
norm  

            

 4.3994  4.3819  4.3931 

                                         

              

                                      

            *** significance at 5% level 
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The estimated GARCH(2,0) model under student-t distribution is shown in equation (15) 

                                                   

s.e:           (0.1017)             (0.0250)           (0.0988) 

t-ratio:      ( 2.7030)         (7.5938)            (3.0112) 

p-value:    (0.0069)            (0.0000)            (0.0026)                                                                                          (15) 

   
                     

               
  

s.e:             (0.0215)           (0.0216) 

t-ratio:        (23.6094)         (22.6980) 

p-value:        (0.0000)          (0.0000) 

 

The model is found to be adequate given that the p-values corresponding to weighted Ljung-Box Q statistics at 

lags 1, 8 and 14 on Standardized Residuals, weighted Ljung-Box Q statistics at lags 1, 5 and 9 on Standardized 

Squared Residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are all greater than 5% level of 

significance [see Table IV]. 

 
Table-IV. Diagnostic Checking for Heteroscedastic Models of Return Series of Diamond Bank 

Model 

Standardized 

Residuals 

Standardized 

Squared Residuals ARCH Tests 

 Lag 

p-value of 

Weighted LB 

 

Lag 

p-value of 

Weighted LB Lag 

p-value of 

Weighted LM 

GARCH(2,0)-std 

1 0.9903 1 0.9835 3 0.9835 

8 1.0000 5 1.0000 5 1.0000 

14 1.0000 9 1.0000 7 1.0000 

 

However, about seventeen (17) different outliers were identified to have contaminated the residual series of 

ARIMA(21,1) model using the critical value, C =4 on the condition that n      Four (4) innovation outliers (IO), 

ten (10) additive outliers and three (3) temporary change. The outliers at a given are indicated as  follows:  IO (t = 

99), IO (t = 642), IO (t = 1671), IO (t = 1791), AO (t = 1656), AO (t = 1723), AO (t = 1739), AO (t = 1770), AO (t = 

1843), AO (t = 2263), AO (t = 2281), AO (t = 2562), AO (t = 2626), TC (t = 98), AO (t = 2559), TC (t = 1667) and 

TC(t = 2554) [Excepts Table V]. 
  

Table-V. Types of Outliers Identified 

 Type Ind(time) Coefhat(estimate) Tstat 

1 IO 99 -0.25260558 -10.126263 

2 IO 642 -0.14020952 -5.620614 

4 IO 1671 -0.09994872 -4.006669 

5 IO 1791 0.10771031 4.317810 

11 AO 1656 0.10786904 4.453514 

12 AO 1723 0.09917004 4.094364 

13 AO 1739 0.09980816 4.120710 

14 AO 1790 -0.09871167 -4.075440 

16 AO 1843 0.09746866 4.024121 

17 AO 2263 0.10332795 4.266029 

18 AO 2281 0.10065028 4.155478 

19 AO 2562 0.10020395 4.137050 

20 AO 2626 -0.10386669 -4.288272 

21 TC 98 -0.09207813 -4.344299 

3 AO 2559 -0.09636362 -4.043664 

51 TC 1667 0.09378011 4.497073 

23 TC 2554 0.08697699 4.190962 

   

Notably, in financial time series, it is assumed that the error is uncorrelated with it past value, and then all the 

outliers are classified as innovation outliers with a unified effect. An outlier adjusted series is obtained by removing 

the effects of outliers from the return series. For the purpose of argument, ARIMA(2,1,1) model is fitted to the 

outlier adjusted series. Evidence from ACF and PACF in Figures 9 and 10, Portmanteau-Q (PQ) statistics and 

Lagrange-Multiplier (LM) test statistics in Table VI show that heteroscedasticity exist. 
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Figure-9. ACF of Squares of Residuals of ARIMA(2,1,1) Model fitted to Outlier Adjusted Return Series of Diamond Bank 

 
Figure-10. PACF of Squares of Residuals of  ARIMA(2,1,1) Model fitted to Outlier 

 
 

Table-VI. ARCH Heteroscedasticity Test for Residuals of ARIMA(2,1,1) Model fitted to Outlier Adjusted Series of Diamond Bank 

Lag(Order) Portmanteau-Q Test p-value Lagrange -Multiplier Test p-value 

4 205           608.2           

8 298           291.4           

12 353           187.9           

16 443           137.3           

20 496           107.4            
 

24 518           88.8            
 

      *** significance at 5% level 
 

For the outlier adjusted series, the following models are considered: GARCH(1,0), GARCH(2,0), GARCH(1,1), 

EGARCH(1,1), GJR-GARCH(1,1) with respect to Normal(norm) and Student-t (std) distributions. GARCH(2,0)std 

and GJR-GARCH(1,1)-std were not successful in that the estimators of the parameters are not equal to the true 

parameters.  

Comparing the values of the information criteria of the eight models as indicated in Table VII, it is observed that 

GARCH(1,1)-std model has the smallest information criteria but its parameters are not significant. EGARCH(1,1)-

norm model has the second smallest information criteria but the second order of the autoregressive part of the mean 

equation is not significant. The next model with the smallest information criteria is EGARCH(1,1)-std having all its 

parameters significant. Based on the grounds of significance of the parameters and third smallest information 

criteria, EGARCH(1,1) model with respect to student-t distribution is chosen as the best fitting model for the outlier 

adjusted return series of Diamond bank.  

 
Table-VII. Output of  Heteroscedastic Models of Outlier Adjusted Return Series of Diamond Bank 

Model Parameter 

              Information Criteria 

Akaike Bayes 

Hannan-

Quinn 

GARCH(1,0)

-norm 

            

 4.3114  4.2983  4.3067 

                                           

              

                        

GARCH(1,0)

-std  

            

 4.3806  4.3653  4.3751 

                                           

              

                        

GARCH(2,0)

-norm  

            

 2.4014  2.3861  2.3959 

                                           

              

                             

GARCH 

(1,1)-norm 

            

 4.4722  4.4568  4.4666 
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GARCH(1,1)

-std  

            

 5.0285  5.0109  5.0285 

                            

              

                 

EGARCH 

(1,1)-norm 

            

 4.4886  4.4711  4.4823 

                                           

              

                                              

EGARCH(1,

1)-std  

            

 4.6156  4.5959  4.6085 

                                             

              

                                              

GJR-

GARCH(1,1)

-norm  

            

 4.4719  4.4544  4.4655 

                                        

              

                                      

          *** significance at 5% level 
 

The estimated EGARCH(1,1) model with respect to student-t distribution is presented in equation (16): 

                                                                        

    s.e:           (5.0   )        (0.0235)           (0.0064)             (0.0232) 

    t-ratio:       ( 34.3575)     ( 11.6466)      (2.6185)             (10.2434) 

p-value:      (0.0000)        (0.0000)           (0.0088)             (0.0000)                                                                     (16) 

          
                                        ( |    |    

 √           

          √  
)                      

                       

     s.e:               (0.0056)            (0.0137)       (0.0218)                                                       (4.4     ) 

     t-ratio:          ( 35.7613)        (24.7142)      ( 6.4568)                                                 (22280.9466) 

    p-value:          (0.0000)          (0.0000)        (0.0000)                                                       (0.0000) 

 

The selected model is adequate since all the p-values corresponding to weighted Ljung-Box Q statistics at lags 

1, 8 and 14 on Standardized Residuals, weighted Ljung-Box Q statistics at lags 1, 5 and 9 on Standardized Squared 

Residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are greater than 5% level of significance [see 

Table VIII]. 
 

Table-VIII. Diagnostic Checking for Heteroscedastic Models of Outlier Adjusted Return Series of Diamond Bank 

Model 

Standardized 

Residuals 

Standardized 

Squared 

Residuals ARCH Tests 

 Lag 

p-value of 

Weighted 

LB 

 

Lag 

p-value of 

Weighted 

LB Lag 

p-value of 

Weighted 

LM 

EGARCH(1,1)-std  

1 0.7966 1 0.9500 3 0.9493 

8 1.0000 5 1.0000 5 0.9995 

14 1.0000 9 1.0000 7 1.0000 

 

3.1. United Bank for Africa 
From Figures 11 and 12, both ACF and PACF indicate that mixed model could be entertained. The following 

models, ARIMA(0,1,1), ARIMA(0,1,2), ARIMA(1,1,1),  ARIMA (2,1,1) and ARIMA(2,1,2) are fitted tentatively. 
 

Figure-11. ACF of Return Series of United Bank for Africa 
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Figure-12. PACF of Return Series of United Bank for Africa 

 
From Table IX, ARIMA(0,1,2) model is selected based on the grounds of significance of the parameters and  

smallest AIC.  
 

Table-IX. ARIMA Models for Return Series of  United Bank for Africa 

Model 

Parameter Akaike Information 

Criteria (AIC)             

ARIMA(0,1,1)               8862.15 

ARIMA(0,1,2)                         -9067.16 

ARIMA(1,1,0)               8831.33 

ARIMA(1,1,1)                         8989.25 

ARIMA(2,1,0)                         9025.98 

ARIMA(2,1,2)                                   9063.38 
            *** significance at 5% level ; * significance at 1% level  

  

Evidence from Ljung-Box Q-statistics shows that ARIMA(0,1,2) model is adequate at 5% level of significance 

given the Q-statistic at Lags 1, 4, 8 and 24, that is, Q(1) = 0.0002, Q(4) = 0.1807, Q(8) =  8.9625 and Q(24) =  

23.662  with corresponding (P = 0.9882), (P = 0.9962), (P = 0.3455) and (P =  0.4811) respectively. 

Contrariwise, evidence from ACF and PACF in Figures 13 and 14, Portmanteau-Q (PQ) statistics and Lagrange-

Multiplier (LM) test statistics in Table X shows that heteroscedasticity exists. 
 

Figure-13. ACF of Squared Residuals of ARIMA(0,1,2) Model 

 
 

Figure-14. PACF of Squared Residuals of ARIMA(0,1,2) Model 

 
 

Table-X. ARCH Heteroscedasticity Test for Residuals of ARIMA(0,1,2) Model fitted to Outlier 

Lag(Order) Portmanteau-Q Test p-value Lagrange -Multiplier Test p-value 

4 416           3604           

8 416           1547           

12 416           1025           

16 416           766           

20 416           611           

24 416           508           
             *** significance at 5% level 

                               

With the presence of heteroscedasticity identified in the residual series of ARIMA(0,1,2) model,  

heteroscedastic models such as GARCH(1,0), GARCH(2,0), GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) 

with respect to Normal (norm) and Student-t (std) distributions are entertained. Only GARCH(2,0)-norm was not 

successful due to convergence problem.  

Comparing the values of the information criteria of the successful models as indicated in Table XI, it is observed 

that among the models with significant parameters, GARCH(1,1) model under normal distribution has the smallest 
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information criteria and it is selected as the appropriate heteroscedastic model for the return series of United bank for 

Africa. 
 

Table-XI. Output of  Heteroscedastic Models of Return Series of United Bank for Africa 

Model Parameter 

          Information Criteria 

Akaike Bayes 

Hannan 

Quinn 

GARCH(

1,0)-norm 

               

 3.8921  3.8812  3.8882 

                                      

               

                           

      

GARCH(
1,0)-std  

               

 4.2841  4.2709  4.2793 

                                   

               

                        

GARCH(

2,0)-std  

               

 4.3103  4.2949  4.3047 

                            

               

                                 

  GARCH 

(1,1)-

norm 

               

 4.1635  4.1504  4.1588 

                                 

               

                                 

GARCH(
1,1)-std  

               

 4.4699  4.4545  4.4643 

                     

               

                        

EGARCH 

(1,1)-

norm 

               

 4.0782  4.0628  4.0726 

                        

               

                                          

EGARCH

(1,1)-std  

               

 4.3778  4.3603  4.3715 

                      

               

                                           

GJR-
GARCH(

1,1)-norm  

               

 4.1630  4.1476  4.1574 

                                 

               

                                          

GJR-

GARCH(
1,1)-std 

               

 4.4746  4.4570  4.4682 

                     

               

                              

 *** significance at 5% level 
 

The estimated GARCH(1,1) model with respect to normal distribution is shown in equation (17) 

                                                 

s.e:        (0.0000)          (0.0000)            (0.0001) 

 t-ratio: (3626.2)          (3625.2)            (3624.9) 

p-value:  (0.0000)      (0.0000)        (0.0000)                                                                      (17) 

   
                                     

                 
   

s.e:         (0.0000)              (0.0001)                 (0.0002) 

t-ratio:    (3627.6)                (3618.6)              (3609.5) 

  p-value:  (0.0000)             (0.0000)                (0.0000) 

 

The selected model is adequate since all the p-values corresponding to weighted Ljung-Box Q statistics at lags 

1, 5 and 9 on Standardized Residuals, weighted Ljung-Box Q statistics at lags 1, 5 and 9 on Standardized Squared 

Residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are greater than 5% level of significance [see 

Table XII]. The unconditional variance is computed to be 0.0083. 

 
Table-XII. Diagnostic Checking for Heteroscedastic Models of Return Series of United Bank for Africa 

Model 

Standardized  

Residuals 

Standardized Squared 

Residuals ARCH Tests 

 Lag 

p-value of 

Weighted LB 

 

Lag 

p-value of 

Weighted LB Lag 

p-value of 

Weighted LM 

  GARCH (1,1)-norm 

1 0.7702 1 0.958 3 0.9233 

5 0.1357 5 1.000 5 0.9992 

9 0.2781 9 1.000 7 1.0000 
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About twenty seven  (27) different outliers were found to have contaminated the residuals series of 

ARIMA(0,1,2) model using the critical value, C =4 on the condition that n      one (1) innovation outliers (IO), 

eleven (11) additive outliers (AO) and fifteen (15) temporary change (TC). The outliers at a given time are indicated 

as  follows:  IO (t = 1992), AO (t = 255), AO (t = 588), AO (t = 590), AO (t = 724), AO (t = 1059), AO (t = 1306), 

AO (t = 1990), AO (t = 1994), AO (t = 2391), AO (t = 2526), AO (t = 2001), TC (t = 258), TC (t = 586), TC (t = 

720), TC (t = 722) and TC(t = 743), TC(t = 745), TC(t =747), TC(t = 1057), TC(t = 1507), TC(t = 1727), TC(t = 

1988), TC(t = 1993), TC(t = 2212), TC(t = 2217), TC(t = 817), TC(t = 1986), TC(t = 726) and TC(t = 1989)  

[Excepts Table XIII]. 

 
Table-XIII. Types of Outliers Identified 

 type ind(time) coefhat tstat 

7 IO 1992 -1.28502933 -50.180476 

12 AO 255 -0.22086607 -9.215670 

14 AO 588 -0.42240432 -17.624884 

15 AO 590 -0.18565429 -7.746453 

16 AO 724 -0.26195514 -10.930118 

18 AO 1059 -0.21501218 -8.971416 

19 AO 1306 -0.20172914 -8.417179 

21 AO 1990 -0.30146512 -12.578678 

24 AO 1994 0.85624927 35.727130 

27 AO 2391 -0.12980376 -5.416082 

28 AO 2526 -0.18732654 -7.816228 

29 TC 258 0.08938516 5.150659 

32 TC 586 -0.17371521 -10.010027 

36 TC 720 -0.09820632 -5.658963 

37 TC 722 -0.12146766 -6.999356 

40 TC 743 -0.08686036 -5.005173 

41 TC 745 -0.08974508 -5.171399 

42 TC 747 -0.08980803 -5.175027 

43 TC 1057 -0.10201697 -0.10201697 

46 TC 1507 0.08901146 5.129125 

48 TC 1727 0.09046794 5.213053 

51 TC 1988 -0.14516399 -8.364815 

55 TC 1993 0.32569376 18.767519 

58 TC 2212 0.09073975 5.228715 

181 AO 2001 -0.12316896 -5.194574 

431 TC 2217 -0.08968031 -5.223304 

44 TC 2386 0.08645455 5.035424 

34 TC 817 0.08559737 5.031276 

35 TC 1986 0.08566229 5.035092 

30 TC 726 0.08504413 5.007596 

141 TC 1989 0.12691902 6.052727 

 

In financial time series, it is assumed that the error is uncorrelated with it past value, and then all the outliers are 

classified as innovation outliers with a unified effect. With the effects of outliers removed from the return series, a 

new series called outlier adjusted is obtained. For the purpose of argument, ARIMA(0,1,2) model did not fit well to 

the outlier adjusted series given that second order of parameter of the model is not significant. Consequently, 

ARIMA(2,1,0) model fitted well to the outlier adjusted series. Evidence from ACF and PACF in Figures 15 and 16, 

Portmanteau-Q (PQ) statistics and Lagrange-Multiplier (LM) test statistics in Table XIV show that 

heteroscedasticity exist. 

 
Figure-15. ACF of Squares of Residuals of ARIMA(2,1,0) Model fitted to Outlier Adjusted Return Series of United Bank for Africa 
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Figure-16. PACF of Squares of Residuals of ARIMA(2,1,0) Model fitted to Outlier Adjusted Return Series of United Bank for Africa 

 
Table-XIV. ARCH Heteroscedasticity Test for Residuals of ARIMA(2,1,0) Model fitted to Outlier Adjusted Series of United Bank for Africa 

Lag(Order) Portmanteau-Q Test p-value Lagrange -Multiplier Test p-value 

4 371           683           

8 511           321           

12 603           210           

16 642           155           

20 657           124            
 

24 686           101            
 

             *** significance at 5% level                                                                                                     
 

Having confirmed the presence of heteroscedasticity in the residual series of ARIMA(2,1,0) model fitted to 

outlier adjusted series of United Bank for Africa,  heteroscedastic models such as GARCH(1,0), GARCH(2,0), 

GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) with respect to Normal (norm) and Student-t (std) distributions 

are entertained.  GARCH(1,0)-norm was not successful due to convergence problem, a situation where the estimator 

of the parameter is not equal to the true parameter, that is, the estimator of the parameter does not converge to the 

true parameter.  

Comparing the values of the information criteria of the successful models as indicated in Table XV, it is 

observed that GJR-GARCH(1,1)-std has the smallest information criteria followed by GARCH(1,1)-std and 

EGARCH(1,1)-std respectively. However, the parameters of the mean equations of GJR-GARCH(1,1)-std and 

GARCH(1,1)-std are not significant while all the parameters of EGARCH(1,1)-std are significant. Therefore, based 

on the grounds of significance of the parameters, EGARCH(1,1) model with respect to student-t distribution is 

chosen as the appropriate heteroscedastic model for the outlier adjusted return series of United bank for Africa. 

 
Table-XV. Output of Heteroscedastic Models of Outlier Adjusted Return Series of United Bank for Africa 

Model Parameter 

             Information Criteria 

Akaike Bayes 

Hannan-

Quinn 

GARCH
(1,0)-std 

               

 4.4070  4.3916  4.4014 

                                           

               

                        

   

GARCH

(2,0)-
norm  

               

 4.4169  4.4015  4.4113 

                                

               

                                 

GARCH

(2,0)-std  

               

 4.4313  4.4137  4.4249 

                                          

               

                                 

  

GARCH 
(1,1)-

norm 

               

 4.4608  4.4455  4.4553 

                                

               

                              

GARCH
(1,1)-std  

               

 4.5781  4.5606  4.5718 

                         

               

                        

EGARC

H (1,1)-
norm 

               

 4.4686  4.4511  4.4623 

                                      

               

                                          

EGARC

H(1,1)-

std  

               

 4.5170  4.4972  4.5098 

                                            

               

                                            

GJR-

GARCH

(1,1)-
norm  

               

 4.4606  4.4430  4.4542 

                                        

               

                                          

GJR-                 4.5832  4.5634  4.5760 
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GARCH

(1,1)-std 
                         

               

                              

                     *** significance at 5% level 

 

The estimated EGARCH(1,1) model under student-t distribution is presented in (18): 

                                                                        
s.e:          (0.0000)          (0.0297)                   (0.0057)             (0.0310) 

 t-ratio:  ( 6.2398)         (5.6063)                   (5.1346)             ( 7.2660) 

p-value: (0.0000)         (0.0000)                   (0.0000)             (0.0000)                                                     (18) 

     
                                (|    |  

 √           

          √  
)               

   

s.e:            (0.0055)         (0.0190)        (0.0182)                                            (0.0006) 

t-ratio:        ( 67.2928)     (21.6638)     ( 2.3423)                                          (1646.3180) 

    p-value:     (0.0000)        0.0000)       (0.0192)                                           (0.0000) 

 

The selected model is adequate since all the p-values corresponding to weighted Ljung-Box Q statistics at lags 

1, 8 and 14 on Standardized Residuals, weighted Ljung-Box Q statistics at lags 1, 5 and 9 on Standardized Squared 

Residuals and weighted Lagrange Multiplier statistics at lags 3, 5 and 7 are greater than 5% level of significance [see 

Table XVI]. The computed unconditional variance is 0.0007. 

 
Table-XVI. Diagnostic Checking for Heteroscedastic Models of Outlier Adjusted Return Series of United Bank for Africa 

Model 

Standardized 

Residuals 

Standardized 

Squared Residuals ARCH Tests 

 Lag 

p-value of 

Weighted LB 

Lag p-value of 

Weighted LB Lag 

p-value of 

Weighted LM 

EGARCH(1,1)-

std 

1 0.3388 1 0.9020 3 0.8636 

8 1.0000 5 0.9992 5 0.9928 

14 0.9976 9 1.0000 7 0.9995 

 

4. Discussion 
ARIMA(2,1,1) model  is found to be adequate in modeling the linear dependence in both the outlier 

contaminated and outlier adjusted return series of Diamond bank.  With the presence of heteroscedasticity detected 

in the residuals of ARIMA(2,1,1) model, GARCH(2,0) model with respect to student-t distribution appeared to 

capture the heteroscedasticity in the outlier contaminated series and on the contrary, EGARCH(1,1) model is 

successful in capturing the heteroscedasticity  in the outlier adjusted return series. Hence, it is evident that the 

presence of outliers in the return series of Diamond Bank has substantial effects on the specification of 

heteroscedastic model. Specifically, on the efficiency of the model, it is observed that the conditional variance of 

GARCH(2,0) model collapses to 0.0000 instead of the unconditional variance, reason being that the constant term, 

        . While the conditional variance of EGARCH(1,1) model actually converges to unconditional variance 

of 0.0006. Thus EGARCH(1,1) model appears to be more efficient than GARCH(2,0) model. The practical 

implication of ARIMA(2,1,1) model is that the return at present day depends on its past two day’s values and the 

previous day error term. Also, the presence of heteroscedasticity in the residual series of ARIMA(2,1,1) model 

implies that assumption of constant variance is violated thereby providing a more pragmatic reason for entertaining 

heteroscedastic model. For EGARCH(1,1) model, The coefficient of ARCH parameter (also called coefficient of 

volatility clustering) is negative implying that negative changes are followed by negative changes. The coefficient of 

GARCH parameter (also known as persistence parameter) which is about 0.9731 is very high and close to one, 

implying that volatility clustering will continue for a long time. The coefficient of the leverage effect being 

significant indicates that leverage effect exists in the return series and its positive nature implies that any unexpected 

increase in the return series would increase the volatility more than any unexpected decrease of the same magnitude. 

For the return series of the United Bank for Africa, ARIMA(0,1,2) model  is adequate in modeling the linear 

dependence in the outlier contaminated while ARIMA(2,1,0) model was appropriate for  outlier adjusted return 

series of United Bank for Africa. However, with the presence of heteroscedasticity in the residual series of 

ARIMA(2,1,0) model, GARCH(1,1) model with respect to normal distribution successfully captured the 

heteroscedasticity in the outlier contaminated series while on the other hand,  EGARCH(1,1) model  with respect to 

student-t distribution adequately modeled the heteroscedasticity in the outlier adjusted series. Therefore, it is 

apparent that the presence of outliers in the return series of United Bank for Africa has substantial effects on the 

model specification. Particularly, on the efficiency of the model, it is found that the unconditional variance of 

EGARCH(1,1) model, 0.0007 is far smaller than the unconditional variance of GARCH(1,1) model, 0.0083;  

indicating  that  EGARCH(1,1) model is more efficient than GARCH(1,1) model. The practical implication of 

ARIMA(2,1,0) model is that the current day return depends on  its past two day’s values and the previous day shock. 

But the presence of heteroscedasticity in its residual series implied the violation of assumption of constant variance. 

For EGARCH(1,1) model,  The coefficient of ARCH parameter (also called coefficient of volatility clustering) is 

positive implying that positive changes are followed by positive changes. The coefficient of GARCH parameter (also 

known as persistence parameter) which is about 0.9485 is very high and close to one, implying that volatility 
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clustering will continue for a long time. The coefficient of the leverage effect being significant indicates that 

leverage effect exists in the return series and its negative nature implies that any unexpected decrease in the return 

series would decrease the volatility more than any unexpected decrease of the same magnitude. 

Generally, the implication of considering the presence of outliers in this study is to ensure proper and correct 

model specification and efficiency. 

The findings of this study agree with the works of [8-11] that heteroscedasticity exists in the stock returns of 

Nigerian banks and could be captured by GARCH-type models but differ in a way that it considers the presence of 

outliers and shows that with outliers, heteroscedastic models are misspecified and their estimators are less efficient. 

 

5. Conclusion 
Outliers being common attributes of every time series adversely influenced the detection and modeling of 

heteroscedasticity. It is in this view that this study traced the effects of outliers on heteroscedastic models 

specification and efficiency of estimators. Based on the results of our findings, for return series of Diamond bank;  

GARCH(2,0) model with respect to student-t error distribution fitted well to the outlier contaminated series while 

EGARCH(1,1) model with respect to student-t error distribution fitted successfully to the outlier adjusted series. 

Also, with the unconditional variance being the measure of efficiency, the conditional variance of GARCH(2,0) 

model failed to converge to the unconditional variance, instead converges to zero. Conversely, the conditional 

variance of EGARCH(1,1) model actually converges to the unconditional variance thereby showing to be superior in 

efficiency to GARCH(2,0) model. 

For the return series of United bank for Africa; GARCH(1,1) model under normal error distribution adequately 

expressed the heteroscedasticity  in the outlier contaminated series. On the other hand, EGARCH(1,1) under student-

t error distribution was suitable for outlier adjusted series. The conditional variances for each of GARCH(1,1) model 

and EGARCH(1,1) model converge to respective unconditional variances with EGARCH(1,1) model showing to be 

more efficient. Therefore, it could be deduced that the presence of outliers in time series have an adverse effect in 

heteroscedasticity modeling.  

The effects of outliers on heteroscedasticity forecasting should be considered for further study. Also, The 

approach of estimating initially a model for the conditional variance and then obtains the conditional outliers using 

the resulting estimated conditional standard deviations is recommended.   
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