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Abstract 
We construct an ordinary differential equation representation of an impulsive system by a bijective transformation 

that structurally maps the solutions of the initial value problem of the impulsive differential equations to the 

solutions of the initial value problems of the ordinary differential equations. Established in this work is the 

relationship between impulsive differential equations and ordinary differential equations which play a fundamental 

role in qualitative analysis of the former. It is also established that an n-dimensional impulsive differential equation 

can be represented in terms of a 2n-dimensional ordinary differential equation. Figures are used to demonstrate the 

practicability of the methodology developed. 
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1. Introduction 
Various evolutionary processes from fields such as population dynamics, aeronautics and engineering are 

characterized by the fact that they undergo abrupt changes of state at certain moment of times between intervals of 

continuous evaluation. Since the duration of this changes are often very small compared to the total duration of the 

process, such changes can be reasonably well approximated as being instantaneous changes of state, or impulses. 

These processes tend to be more suitably modelled by impulsive differential equations, which allow for 

discontinuities in evaluation of the state. Impulsive differential 

equations are usually defined by a pair of equations, an ordinary differential equation to be satisfied during the 

continuous portion of evolution and a difference equation defining the discrete impulsive actions.  

Impulsive differential equations seem to have received very little attention not until in 1980s when interest in the 

area began to gather momentum. Among the earliest articles on impulsive differential equations was a seminar paper 

by Milman and Myshkis [1] where they considered differential equations with impulses occurring when certain 

spatio-temporal relations were satisfied [2-4]. 

Research into impulsive differential equations had culminated in the publishing of several monographs and 

articles [5-8]. These authors consider an impulsive differential equation to be an ordinary differential equation 

coupled with a difference equation to be satisfied at certain fixed or variable impulse times. The resulting solutions 

are thereby piecewise continuous with discontinuities occurring at these impulse times. This approach enabled them 

to apply many well established results for ordinary differential equations to these systems in order to develop the 

qualitative theory of impulsive differential equations which is still at its infancy. A few recent results in this new area 

can be found in [9-14]. 

Due to the nature of impulsive processes which are momentarily exposed to harsh impacts, their qualitative 

analysis is more complicated than that of ordinary differential equations. This work seeks to fill this gap by 

formulating a differential system that is equivalent to the impulsive system, thereby simplifying the analysis of the 

later. 

To help in our investigation, we will define some important concepts. 
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2. Definitions of Basic Terms/Concepts 
2.1. Ordinary Differential Equation 

Let a process evolve in a period of time T in an open set nT R  , where  T : a,b R.   Let n f :  R  be 

an at least a continuous mapping fulfilling local Lipchitzian condition in  nx R , t , x    . Then an initial value 

problem of a differential equation is given by  

0 0 0 0 0

x'( t ) f ( t ,x( t )), t T ,( t ,x(t))

x( t ) x , t T \S , ( t ,x )





   


  
        (1.1) 

 

Definition 1.1. (Fixed Point): n
0x R  is a fixed point of equation (1.1) if     a, b T   such that  0f t,x 0   

holds      0  t,x a, b x     and (a, b) is maximal with this property. Hence or otherwise, 0x  is a fixed point of 

equation (1.1) if the constant function    0x t x , t a, b    is a maximal solution of equation (1.1).  

 

Definition 1.2. (Impulsive Differential Equation): The usual model for the simplest case of an impulsive 

differential equation 

is as follows: 

Let a process evolve in a period of time T in an open set  nT R .    Let n f :  R  be at least a continuous 

mapping fulfilling local Lipschitzian condition in  nx R , t , x    . Let the real time sequence  
1k k

S t T



   be 

increasing without finite accumulation points. Let n ng :S R R   be continuous/Lipschitzian function in its variable 

kx ( t ,x )   . Then the controlling impulsive differentiable equation is given by 

 

k k k

0 0 0 0 0

x'( t ) f ( t ,x( t )), t T \S

x( t ) g( t ,x( t )), t S ,

x( t ) x , t T \S ,( t ,x ) 

  

   

   

         (1.2) 

 

Definition 1.3. (Motion): Let ( X ,d )  be a metric space. Let A X  and T R . For any fixed 0a A, t T ,   a 

mapping 

   0p:T a t X    is called a motion if  

i)  0 0p t ,a,t a ; 

ii)      1 2 0 1 2 2 0 2 1 0 1t ,t T , t t t , p t ,a,t p t , p t ,a,t ,t     . 

 

Definition 1.4. (Family of Motions): The family S of motions is defined as A,TS P  , where  

   
0a,t 0P :  p X:T a t{     is a motion  0a,t }A T ;     

A,T a.t
( a,t ) A T

P :  P
 

  

such that within S, requirements (i) and (ii) of Definition 1.3 are fulfilled. 

 

Definition 1.5. (Dynamical System): The four-tuple {T,X,A,S} is called a dynamical system.  

 

Definition 1.6. (Bounded Motion): A motion p S of a dynamical system {T,X,A,S} is said to be bounded if 

there exist 0x X  and 0   such that   0 0d p t,a,t ,x   for all 0t t . 

 

Definition 1.7. (Continuation of Motion): Let  T ,X ,A,S  be a dynamical system and let 

 
0a,t 0p, p* P , a,t A T   . Then 

 p*  is a continuation of p if for 0t b c, p   is defined on 0[ t ,b ) , p* is defined on 0t ,c  and  

    0 0 0p t,a,t p* t,a,t , t t ,b   .  

 

Definition 1.8. (Composite Dynamical System): A dynamical system  T ,X ,A,S  is called a composite 

dynamical system 
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if given the metric space     j jX , d , X ,d j: 1 l     such that 
l

j
j 1

X X


  and j
1 j l

d max d
 

  (or any alternative for 

product metric like sum, Euclidean distance etc. may be used).  

 

Definition 1.9. (Diffeomorphism): Let n mf :R R , n m   be a bijective differentiable map.  f  is called a 

diffeomorphism 

if  f  and  f
−1

 are continuously differentiable (C
1
-diffeomorphism). If  f  &  f

−1
 are r-times continuously differentiable, 

then f  is C
r
-diffeomorphism and in the case of r = 1, f  is C

1
 diffeomorphism.  

 

2.2. Dynamical System 
A dynamical system is a concept in Mathematics where a fixed rule describes how a point in a geometrical 

space depend on time. Examples include the Mathematical model that describes the swinging of a clock pendulum, 

the flow of water in a pipe, etc. At any given time, a dynamical system has a state given by a set of real numbers (a 

vector) that can be represented by a point in an appropriate state space. Small changes in the state of the system 

create small changes in the numbers. The evolution rule of the dynamical system is a fixed rule that describes what 

future state follows from the current state. The rule is deterministic; in other words, for a given time interval only 

one future state follows from the current state [15-17]. In what follows, we will denote a dynamical system as a four-

tuple:  T ,X ,A,S , where T denotes time set, X  is the state space (a metric space with metric d), A is the set of 

initial states, and S denotes a family of motions. When  T R 0,1  , we speak of a continuous time dynamical 

system and when T N  we speak of a discrete time dynamical system. For any motion  0 0x x ,t S , we have 

 0 0 0 0x t ,x ,t x A X    and  0 0 0 1 1 0x t,x ,t X , t t ,t T ,t t    , where t1 may be finite or infinite. The set of 

motions S is obtained by varying  0 0t ,x  over T A .  A dynamical system is said to be autonomous if every 

 0 0x .,x ,t S  is defined on 0T t ,   such that for each 0t T  , there exist a motion  0 0x .,x ,t S   such that 

   0 0 0 0 0x t ;x ,t x t;x ,t , t      and   satisfying t T  . 

 
Figure-1. A trajectory of an impulsive differential equation 

 
 

3. Statement of the Problem  
Qualitative analysis has proved to be an important and useful tool to investigate the properties of solutions of 

differential equations, because it is able to analyze differential equations without solving analytically and 

numerically. The study of qualitative properties of differential equations has a long history, and qualitative theories 

have been developed for various equations such as ordinary differential equations, functional differential equations, 

integral equations, etc. Here we seek to find an equivalent representation of an impulsive differential equation by 

way of ordinary differential equations which makes qualitative analysis less cumbersome. This is done through some 

special dynamical system techniques. It is worthy to note that these aspects of investigations are at their infancy 

whereas their practical importance are highly rated.  

 

4. Methodology 
4.1. Transformation from Impulsive to Absolute Continuous Trajectory 

Certain traditional qualitative analysis of ordinary differential equations is based on the properties of the 

absolute continuous solutions. These methods cannot be transferred to impulsive differential equations. Moreover, 

the solution of an impulsive differential equation is based on two independent ”forces”. One is the normal dynamics 

of the process while the other is a dynamical impact called impulses. The impulses are short term high power 

impacts which make their contributions to the dynamical behaviour of the system. This implies that the analysis of 

an impulsive system means to study the interaction of the ”two forces” (external impact and the normal dynamics). 

The first step to this study is the introduction of a transformation of the impulsive trajectories into absolute 

continuous trajectories and absolute continuous trajectories to impulsive trajectories. First we explain the underlying 

assumptions.  

 

Assumption 4.1. Essentially, two assumptions will be used:  

i)  Bainov and his co-authors use the condition that the set of impulse points S does not have finite 

accumulation points. This means that in every compact subset of K T , K S T    is a finite set.  
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ii) The condition in item (i) can be reformulated as follows: For any compact set K T , the total variation of 

the solution  

 N
0

K
x: t , R ,Vx    . The second condition implies the first when the discontinuity points form a finite set in 

all compact sets K.  

Let  N
0x: t , R   be a solution of the initial value problem described in equation (1.2). By Assumption 4.1(i), 

we will have finite jump/impulse points in the interval 0 0t , t ,       provided that 0t ,    is closed and bounded, 

hence compact, and we transform the impulsive trajectory onto the absolute continuous trajectory 

0

n
0

s t
x̂ : t , x( s ) R





 
 





 . This is stated in the following theorem:  

 

Theorem 4.1.  Defining the mapping in item (ii) above by induction: 

Step 1. (a) Let 0 0 0 1t̂ : t and  : t  . We map 0 1 0 0
ˆt ,t t ,      using 0 1 0 0

ˆs t ,t t s t    mapping and  

    0 0 0 1
ˆx̂ s t  t : x s , s t ,t     .  

(b) Let the jump of    1 1 1 1x at t be j : x t 0 x t  0    . Then let 1 0 1t̂ : j   and let 

     0 1 0 1
ˆx̂ s :  1 s x t 0 s ,t          . The linear function with gradient = 1 fulfils 

0 0

0 1

x( t 0 ) s
x̂( s )

ˆx( t 0 ) s t

 


 
 . 

Step 2. Assume that x̂  has been defined on the interval   0 p

p 1

j 0
j

ˆ ˆt ,t and 




   are also defined.  

(a) We define the image of the trajectory x on the interval p p 1t ,t 



 as follows:  

Let p p p 1 p
ˆ: t t t    . We map p p 1 p p

ˆt ,t t ,
    

  using the mapping p p 1 p p p p
ˆ ˆs t ,t t s t t ,    

 
  and   

    p p p p 1
ˆx̂ s t  t : x s , s t ,t     

.  

(b) Let the jump of x at p 1t   be    p 1 p 1 p 1j x t 0 t 0 .x       Again, let p 1 p p 1 ̂t : j    and let 

     p p 1x̂ s : 1 s x t 0      p p 1
ˆs ,t   

    

This defines the absolute continuous trajectory for 0 kt ,t , for any kt S . Figure 2 shows the whole process. 

This construction will be very fundamental in our further discussions. 

Let us first analyse and make some inferences about this:  
 

Figure-2. The construction of the transformation of an impplusive trajectory to an absolute continuous one.  

 
 

Figure-3. The figure shows the function   with g defined in equation (3.15). We only presented the mapping on   interval. This already shows that 

the segments of straight lines have infinite crossing points 
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Figure-4. The Figure show three impulsive trajectories the jumps of which connect trajectories x and y into one trajectory while the segment of 

straight lines defined by jumps in trajectories y and zwill have a crossing point p hence these segment of straight lines cannot be obtained as 

solutionof adiffferential equation since the right side should have two different values 

 
 

 

Figure-5. The common points {p}=  of the segment of straight lines  and  can be separated by 

extruding one of the segment into an additional dimension with the help of flyover . the two curves one flyover connecting  and the 

segment   are obtainable as soultion of a differential equation 

 
 
Figure-6.  We creat a flyover for each curve in extra dimension so that the since the starting  points of the segment are different for each different 

segment the flyover will be different for each point in the segment   

 
 

In our result, we define the right side of the differential equation by using the gradients of the segments of 

straight lines connecting the left and right limits of the trajectory at impulse points. Let us consider the following 

case: This example shows that we cannot expect a unique gradient to any point of the region between j  and j ̂t 1 . 

Let  

 jg t , y : y sin y, y R   .          (4.1)  

This jump function will produce infinite overlapping segments of straight lines as figure 3 shows and we cannot 

define a function by using the segments of straight lines     j j 1
y R

ˆ, y , t ,sin y 


 
 

.  The general form of the 

problem is shown on Figure 4. Also note on the cited figure that two solutions may be merged into one. It is worth to 

note that impulsive dynamics can merge two solutions into one and it is known that a differential equation with 

continuous right side may have infinite set of different solutions for some initial value problems. Merging 

trajectories define an equivalence relation which classifies the solutions. This is an interesting and important feature 
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of impulsive differential equations. In the final analysis the asymptotic limits classify behavioural patterns. It is 

important to note that an impulse  n
ky R y g t , y    is uniquely determined by     n

k kg t , y , t , y S R  , hence 

an impulse cannot create two trajectories from one. The way out of the problem of defining a suitable right hand side 

to an ordinary differential equation is shown on Figure 5. The idea is to use flyover curves to remove the overlapping 

segments of straight lines. The segments of straight lines x ,x  
 

and y , y  
 

have a common point p . We have a 

separate connection by routing x ,x  
 

 through a curve passing over p y , y  
 

. Figure 6 shows the idea that 

actually each straight line segment can be routed through an individual route, at a cost of doubling the dimension of 

the space.  

The analysis here shows that the technique defined in Theorem 4.1 can be extended to an ordinary differential 

equation with right side measurable in t which we will construct in the next theorem. This will require the use of a 

”flyover” technique and to make it easy and simple, we will work with a space with double dimension. 

 

5. Results Obtained 
5.1. Construction of an Associated Ordinary Differential Equation from an Impulsive 

Differential Equation 
Let the impulsive differential equation be defined by equation (1.2). We will follow the steps of the construction 

of the absolute continuous trajectory of the Caratheodory type absolute continuous equations with a mapping 

connecting the two trajectories. 

As a preparatory step, we will establish a relationship between a set 

 j j j j 1S : t t R, t  t , j|       

of time point (impulse points) and sequences of intervals 

  c j j j j j j j 1
ˆ ˆ ˆ ˆS : t , t , R, t t , j|   
        ; 

  i j j 1 j j 1 j j j 1
ˆ ˆ ˆ ˆS : ,t ,t R, t| t , j    

       . 

Notation 5.1. Let us denote by  
j 0

j
ˆ ˆS : t




 , U j j

j 0

ˆS : t ,




   and O j j
j 0

ˆS : t ,




  the set of images of impulse 

points and unions of the intervals in cS  and its interior respectively. 

 

Definition 5.1. Let  U 0  : S t ,     be defined as follows: 

 k kt̂ : t   and  k k 1   0 : t  k      ; 

 
  


k k 1 k

k k k
k k

ˆt  t t t
ˆt : t  t ,t , k N .

t̂
 



 
     


 

Moreover, let  k k k 1: ( 0 ) t k          . 

 

Figure-7. the mappings  are represented on the figure. The figure shows the idea of the creation of an absolute continuous 

continuation of an impulsive function. We map the impulse points in to intervals and there we define mixer connecting the source to the target for 
each impulse 

 
 

Lemma 5.1. The mapping U 0:S t ,    is a bijective continuous mapping if the restriction of the inverse 

1 1
0 0 Oto [t , )\S, :[ t , )\S S      is a C

 homeomorphism with  

 
 k k

k k 1
k 1 k

ˆd t t
, t t ,t , k N.

dt t t

 





    


 

Note that here we are going to use a uniform difference j 1 jt̂ 1    since we work with 

   n n
j 1 kg t , y R , t , y S R     and the values of g vary along nR . However, g is continuous, hence the values are 

bounded on any compact subset of nR . These investigations work with pre-compact neighbourhoods, hence their 

closure is compact. Therefore continuity of g, and hence its local boundedness grant conditions for gradients in our 

investigations similar to the result of the construction in Theorem 4.1. 
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Lemma 5.2.  Let 
1

s( 1 s )e s (0,1)
d( s ):

0 y R\(0,1)


 




                    (4.2) 

Then d is an infinitely differentiable function on R and positive in (0, 1).  

 

Proof: (See [18-20]) 

 

Lemma 5.3.  Let 

1

n

n
1

y y B (0 )

m: y R y12 y R \B (0 )
y y

  


   
   

 

        (4.3) 

Then m is a differentiable homeomorphism, hence a diffeomorphism of   n
2R B 0 . Moreover, 

n nR R

1 if y 1
dm( y )

2 if y 1dy
y

 


 



            (4.4) 

Hence 

 

C

dm 2
dy

 . 

 

Proof: Step 1:        
1

1B 0
m y id y  y, y B 0     hence it is a C

–diffeomorphism in  1B 0 .  

Step 2: 
n

1 2 1

y1m: y R \B (0) 2 B (0)\B (0)
y y

 
    

 P P P P
 is a C  mapping, such that this is a differentiable 

continuation of m as defined on 1B (0) .  

Step 3:   
n

2m:R B (0)  is bijective: It is onto by the formula. If 
n

1 2 1 2y , y R and y y   then we have two cases:   

(a) 1 2y yP P P P: 1

1 1 1

y1 12 = 2
y y y

   
     

   P P P P P P
 2

1 2
2 2 2

y1 12 = 2 m( y ) m( y )
y y y

   
      

   P P P P P P
.  

(b) 1 2y = yP P P P: 1 1 1 2
1 2 2 1 2

1 1 1 1 2

1 1 12 2 2
y y y y12 = y y = y m( y ) m( y )

y y y y y

  
 
    

 

P P P P P P

P P P P P P P P P P
 by the assumption that 

1 2y y .  

  

The norm of 
C

dm
dy

 comes from the maximum of the norms of the derivatives of m. 

Verification: The mapping is defined in equation (4.3). We recall this definition. 

1m( y )= y, y B (0)    hence n ndm( y )
=I :R R

dy
 , the unit matrix. 

n
1

y1m( y ):= 2 , y R \B (0)
y y

 
   

 P P P P
. 

We will use the fact that this function is defined in terms of polar co-ordinates: The radius is defined by  

n
1

= y

1 1f ( ):= 2 = 2 y R \B (0);
y




  
     

   P P P P
 

n
1

y
e( y ):= y R \B (0),

y


P P
 

where e( y )  is a unit vector pointing to y. Note that   is a function of 
ny R , ( y ):= y P P and 

m( y )= f ( y )e( y ).P P  

Now we compute the derivative of m:  

n
1

dm( y ) df ( ) de( y )d
= e( y ) f ( ) y R \B (0);

dy d dy dy

 



    

T T

2 2 2

<y, y > <y, y >dm( y ) 1 1 1= 2 I =
dy y yy y y

  
         

P P P PP P P P P P
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T T

2 2

<y, y > <y, y >1 1 12 I
y y yy y

   
          

P P P P P PP P P P
 

n
1y R \B (0).   

 

As a preparation for the main estimation, we group the big parenthesis on the right side:  

T T

2 2

<y, y > <y, y >1 12 I =
y yy y

  
       

P P P PP P P P
 

T T

2 2

<y, y > <y, y >1 11 I
y yy y

   
           

P P P PP P P P
 

T

2

<y, y >
I

y

 
  

 P P
. 

 
We will now estimate the norms of the two terms on the right side. We use the following properties:     

 

Remark 5.1.  

(a) The operators 
T

2

<y, y >

yP P
 and 

T

2

<y, y >
I

y


P P
 are orthogonal projectors hence their operator norms are 1.  

(b) 10 1
y

 
P P

 by the selection 
n

1i R \B (0) .  

The estimates based on Remarks 3.2 are as follows:  

T T

2 2

<y, y > <y, y >1 11 I
y yy y

  
        

P P P PP P P P

T T

2 2

<y, y > <y, y >1 11 I
y yy y

  
        

P P P PP P P P

1 11 1 1=1;
y y

 
    

 P P P P
 

T

2

<y, y >
I 1.

y

 
   

 P P
 

From this, the statement of the lemma follows inevitably:  

dm( y )
=

dy

T T

2 2

<y, y > <y, y >1 1 1 22 I
y y y yy y

   
           

P P P P P P P PP P P P

n
1y R \B (0).   

 

Corollary 5.1.  The mapping m  fulfils a global Lipschitz condition with Lipschitz constant L=2 . Moreover it 

has a local Lipschitz property with Lipschitz constant n
loc,y 1

2L = , y R \B (0)
y

 
P P

.    

 

Corollary 5.2. The mapping  

d( s )m( y )
h ( s, y ):=

2d(0.5)


                                                                                                                             (4.5) 

 is a homeomorphism 
nR B (0) , fixed t (0,1)  , h (0, y )=h (1, y )=0  .   

Proof:. 
n

2m:R B (0) , and 
1

4d :[0,1] [0,e ]


 . Hence 
1

4
C C

1m =2, d =e =d( )
2



P P P P . From this follows that  

nd( s )m( y )
h ( s, y ):= < , ( s, y ) [0,1] R .

2d(0.5)


     

 

Lemma 5.4. >0 ( )>0     such that function 1h  fulfils the condition that  

10 h ( y )< ( ) y , y B .   P P                                                                                                                         (4.6) 

 

Lemma 5.5. Let  
n n n:( s, y , y ) [0,1] R R s( y y ) y R .                                                                                               (4.7) 

 If 1 2y y   and 
n n

1 1 1 2 2 2 1 1 1 2 2 2( s , y , y )= ( s , y , y ),( s , y , y ),( s , y , y ) [0,1] R R             then 1 2s =s .   
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Proof:. The situation is shown in figure 8. Let 1 2y y  .  Let 1 1 1 2 2 2 1 2p:= ( s , y , y )= ( s , y , y ), s ,s (0,1]      . Then 

the points 1 2 1 2{ y , y , p, y , y }   
 are in one plane Pl  and in this plane, the hyperplanes n n

j j 1
ˆ{ } R &{t } R    are 

represented by two parallel lines perpendicular to the time axes (see Figure 8). Let the coordinates of 

p=:( s( p ),u( p )) :  

i)  If 
n n( s( p ),u( p )) R R \[0,1) R    then no other 

nq [0,1) R   can be common since the coincidence of two 

straight lines with two different common points contradicts the fact that 1 2y y  .  

ii) We may assume that 1 2y y  . In the plane Pl  the vectors j 1 2( , y y )    and j 1 1 2
ˆ( t , y y ) 
   are parallel hence 

the triangles 1 2( y ,y p )  
and 1 2( y ,y p )    are similar (see figure 8).  

iii) Then the ratios fulfil:  

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

( s , y , y ) (0, y , y ) ( s , y , y ) (0, y , y )
=

(1, y , y ) ( s , y , y ) (1, y , y ) ( s , y , y )

   

   

       

       

 

 

P P P P

P P P P
                                                                       (4.8) 

 and using formula (4.7), we have that   

1 1 1 1 1 1 1 1 1 1( s , y , y ) (0,y , y )=( s ( y y ) y ) y =            1 1 1s ( y y ),   

1 1 1 1 1 1 1 1 1 1(1, y , y ) ( s , y , y )= y ( s ( y y ) y )=            1 1 1(1 s )( y y ),                                                           (4.9) 

2 2 2 2 2 2 2 2 2 2( s , y , y ) (0, y , y )=( s ( y y ) y ) y =            2 2 2s ( y y ),   

2 2 2 2 2 2 2 2 2 2(1, y , y ) ( s , y , y )= y ( s ( y y ) y )=            2 2 2(1 s )( y y ).    

   
 Putting these back into equation (4.8), we get  

1 1 1 1 2 2 2 2

1 21 1 1 2 2 2

s y y s s s y y
= = = .

1 s 1 s(1 s ) y y (1 s ) y y

   

   

 

    

P P P P

P P P P
                                                                                         (4.10) 

 

Equation (4.10) holds for 1 2 1 2s =s ,s ,s (0,1)  only. This completes the proof.  

 

Figure-8. THE figure shows the plane determined by two intersecting jump segments .The common points is

. 

 
 

 
Figure-9. The figure represents the flyover system placed on figure 3. These are the representations of a sinusoidal jump function g as defined in 

equation (3.15). The infinite set of crossing segments are separated by flyovers being different by the different starting points of the segments 
involved 
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Notation 5.2. The definition of   does not point to the jump function g. We need to express this fact for easy use 

so we introduce a notation to show this. The following relations hold: k k t k
k

y = y( t 0), y = y( t 0) g( t , y( t 0))     . 

Taking this into consideration: The definition (4.7) of   will be rewritten as  

nk
ˆ k k k 1g , ,t

k k 1
k 1 k

s
ˆ( s, y ):= g( ( ), y ) y , ( s, y ) [ ,t ) R , k N

t̂


   



   
 





    


. 

 

Figure 9 shows the separation of crossing points of the segments of intervals.  

 

Now we will define the mappings/differential equations needed for the main representation theorem.  

 

Let 
n n:R R   be a continuous mapping and let k k 1

ˆJ :=[ ,t ) R    be a non-empty bounded interval.  

 

Definition 5.2. Let 

n k
ˆ ˆ,g , ,t g , ,t

k k 1 k k 1
k 1 k

s
:( s, y ) J R s, ( s, y ),h , y

t̂
  


 



  

 


  
        

 

n n n
ˆ,g , ,t

k k 1
J R R ,( s, y ) J R , k ( s, y ,z )=  


       

ˆ,g , ,t nk k 1
ˆ,g , ,t

k k 1

( s,v )
( s, y ,z )= ( s,v ),( s, y ) J R

s

0 otherwise

 

 


 




  
 



                                                             (4.11) 

      

Lemma 5.6. The mapping  

n k
ˆ ˆ,g , ,t g , ,t

k k 1 k k 1
k 1 k

s
:( t , y ) J R t, ( t , y ),h , y

t̂
  


 



  

 


  
       

 

n n nJ R R ,( t, y ) J R , k N                                                                                                                         (4.12) 

 is one to one from n n nJ R J R R    .   

Proof: We will use k k 1
ˆa= and b=t   within this proof. Let 

n
1 1 2 2 1 1 2 2( t , y ),( t , y ) J R ,( t , y ) ( t , y )   . There are 

two cases: 

Case 1: g,a,b 1 1 g,a,b 2 2( t , y )= ( t , y )  . This case was discussed in Lemma 5.5 and it was proved that 1 2t =t :=  must 

hold. Then 1 2
a ah ( , y ) h ( , y )

b a b a 
  
 

 must hold since h  is defined in equation (4.5) as the product of a constant 

c d( t ) m( y )   and m  is one to one. 

Case 2: g,a,b 1 1 g,a,b 2 2( t , y ) ( t , y )  . Then the image of the two points are different.  

 

Figure-10. The figure shows the construction of the ordinary differential equation with right side measurable in t to the impulsive differential 

equation defined in equation (1.2). The mapping   plays a fundamental role in the sections of the base set   split up by the impulse time-

points/impulse points. The jump surfaces connected by a differential equation defined on the interval   to connect the sources and targets of the 

jumps 
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Figure-11. (The Mass Spectrometer): The figure represents an important application of merging solutions. Solutions are merged subject to the 

mass parameter. Since this property is valid for ODE-s with right side measurable in t, by our representation theorem (Theorem 3.6), impulsive 

differential equations have the same property 

 
 

Lemma 5.7. The ordinary differential equation  

ˆ,g , ,t
k k 1

(1,x , y )( t )= ( t,x( t ), y( t )), 


   

n n
0 0 0 0 0 0 0 k k 1

ˆ( x( t ), y( t ))=( x ,y ), ( t ,x , y ) [ ,t ) R R ,k N                                                                              (4.13) 

 has a unique solution.   

Proof:. The proof follows from Lemma 5.5. If 
n

0 0 0 0 0 0( t ,x , y )= ( t ,v ), v R   then the unique solution is 

0 0( t,v ),t a t <b   . Otherwise 0 0 0( t ,x , y )=0  hence the constant solution is unique.  

 

Now we are ready with the tools needed to formulate our basic representation theorem.  

 

Let the impulsive differential equation (1.2) be defined. Let 0 0
ˆ:[ t , ) [ t , )     be defined as constructed in 

Definition 5.1 together with 
1

U 0: [ t , ).  S  

 

Definition 5.3. We define an ordinary differential equation with right side measurable in t , continuous or 

Lipschitzian in ( x, y )  for each fixed t , to the impulsive differential equation (1.2) as follows:  

 

n n
ˆ k k k 1 k,g , ,t

k k k 1

( f ( ( t ),x ),0), ( ( t ),x,0) {0}

0 ( ( t ),x, y ) {0}

( t ,x, y ):= 1ˆ( t ,x, y ) ( t ,x, y ) [ ,t ) R R , k N , :=
k 

  

 


   


  


 



    



                                              (4.14) 

 

Theorem 5.1. The solution of the initial value problem of the differential equation with right side 
n n

0( t,x, y ),( t,x, y ) [t , ) R R      given as 

( x ( t ), y ( t ))= ( t,x( t ), y( t ))  ; 

1 1 1 n
0 0 0 0 0 0 0( x( ( s )), y( ( s )))=( x ,y ),( ( s ),x , y ) R                                                                                (4.15) 

exists and is unique provided that the solution of the initial value problem 0 0x( s )= x  of the impulsive differentiable 

equation (1.2) exists and is unique. Moreover, the trajectory of solution  x, y of initial value problems 

0 0 0s S,( s ,x ,0) 0    satisfies the condition that 
1

0x( ( t )),t [ s , )    is a solution of the impulsive differential 

equation (1.2).   

Proof: The statement of the theorem follows from the construction, Lemma 5.7 and Definition 5.3.  

Again, let us consider a solution x  of equation (1.1) with an initial condition  0x t u  and another solution y, 

with an initial value problem  0y t v . We are interested in the behaviour of the difference: 

      0h t : y t x t , t t ,    , where both solutions exist and are defined on the interval 0 t , . Using equation 

(1.1), we have  

 

           h' t : y' t x' t f t, y t f t,x t      
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       
  

    
f t , x t

f t ,x t h t f t ,x t h t r t ,h t
x


   


,                    (4.16) 

 

where  

 

0
h 0

r( t ,h )
lim 0, t [ t , ).

h



    

 

Lemma 3.8. Let an ordinary differentiable equation be given as equation (4.16). Let 

c j j j j j j j 1
ˆ ˆ ˆ ˆ:={[ t , )| [ t , ) R, t < <t , j }     S  be given. Then  

j 1

j j 0 s s

s=0

ˆ ˆS :={ t | t :=t ( t ), j }



    

fulfils the conditions of Definition 5.1. Hence,   and the corresponding impulsive differentiable equation can be 

constructed.   

 

5.2. Interpretation of Equivalent Formulation 
An ordinary differential equation with right side measurable in t  has been defined in definition (3.11) to the 

impulsive differential equation (1.2) and it is proved in theorem (5.1) that the constructed ordinary differential 

equation inherits its qualitative properties from the impulsive system and vice versa. 

The construction of the ordinary differential equation which is shown on Figure 10 has the following 

interpretation: The right sides of the impulsive differential equations are used in the sections j j[ t , ), j  . A 

mixer/connector between the separated trajectories is defined in the sections j j 1[ ,t ], j    . These mixers are 

defined to correctly connect the trajectories back, and it is guaranteed that the solutions are unique in each j j 1[ ,t ] 

. Hence, the mixer acts as a switch-box. The solution offered however results in an increased dimensional differential 

equation. The mixer is constructed freely up to a large extent of the impulse function 
n

k k k k kg( t , y ),( t , y ),( t ,g( t , y )) { t } R , k     . Note that the mixer is a Lipschitian function in y  for each 

fixed t  if g  is Lipschitian in y  and continuous if g  is continuous in y  for any fixed t . Our construction is fully 

determined in the subspace where the impulsive process moves and the additional dimensions are needed to uniquely 

well define a right side to the trajectories. 

 

6. Conclusion 
To establish a structural relationship between ordinary differential equations having special mathematical 

mixture of dynamical systems and the impulsive differential equations.  The qualitative properties of the constructed 

ordinary differential equation is the same as that of the impulsive system under consideration. The differential 

equations obtained here have locally unique solutions which may not possess global uniqueness.  The qualitative 

properties of impulsive systems are inherited by the associated ordinary differential equations and vice versa. The 

practical importance of this is shown in the example of the mass spectrometer (figure 11) for the processing of rice, 

wheat, etc. 
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