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Abstract 
This paper proposes and describes the acumen on alternate two covariates linear Cosine and Sine regression 

functions that possessed a noisy-wave or tone frequencies via wave-trend of actualized observations of regressors 

and responsive variable needed in fitting a wavy equation of trigonometry regression. The method of maximum 

likelihood was used in estimating parameters associated to the Cosine and Sine alternate functions via vector 

coefficients as well as their distributional and residual properties. The estimations obtained via the method were 

enthralled to the noisy-wave mesokurtic observations of babies’ rate of heartbeats exactly an hour after birth (HR1), 

two hours after birth (HR2) and three hours after birth (HR3). The implementation and illustrative application was via 

R using the heartbeat dataset. It was gleaned that the trigonometry equation line of    1 2 2 1+ cos HR sin HR    

optimally captured the wave observations and robustly outstripped the alternate Cosine and Sine equation line of 

   1 2 2 1+ sin HR cos HR   . 
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1. Introduction 
Regression analysis is a technique use in modeling the relationship(s) between response variable and 

predictor(s) or among predictors. This unknown connection could either be a linear or non-linear relationship 

depending on the transfer function [1, 2]. It is termed “simple regression” if the dependent variable is constrained to 

only a predictor and “multiple regression” if the formal is subjugated to two or more predictors [3]. The conventional 

methods of statistic and parameter (regression coefficients, model performance indexes, residual indexes, prediction 

error indexes, etc.) estimation ranges from Maximum Likelihood (ML), Least Squares (LS), Quasi- Likelihood (QL), 

Generalized Linear Model (GLM) etc. for parametric approach; method of sieves, difference sequence method, 

Ordinary differential Equations (ODEs) etc. for non-parametric approach and some amalgamated methods of both 

parametric and non-parametric that resulted in semi-parametric approach [4-7]. The main purpose of regression 

modeling is for generalization of studied relationship(s), prediction making, decision-making, diagnosis and to 

ascertain statistical property of the studied system [8, 9]. 

According to Hanley [10], a number of extensive studies had been carried-out on different forms of regression 

estimators to accommodate and recodify the assumptions of normality, independence and attached time factors to 

covariates. Among the few forms are ridge regression, seasonality regression analysis, Fourier regression, 

trigonometric series regression analysis, and smoothing splines regression [11-14]. All these mentioned forms are for 

demonstrating the dummy variables for estimation of seasonal effects in a time series, to penalize estimators in 

situation where the number of parameters estimated is strictly greater than the sample size, and to free the 

distributional property of the observations in non-parametric settings [15-17].      

Rigdon, et al. [18], propounded a Fourier trigonometric like regression and applied it to uniform time-varying 

public health surveillance disease data with the assertion of normality assumption, seasonality, and independence 

ascertained as well as the stationarity of the first and second order- Fourier regression like model.  

This paper presents a conspectus diversify approach by considering noisy-wave or tone frequencies observations 

of covariates without seasonality, uniform time varying (unequal spaced time intervals of unordered sequence of set 

of observations) of recording observations via a Gaussian density function. A two alternate Cosine and Sine linear 

equation functions (a trigonometry regression approach) will be formulated such the parametric method of maximum 

likelihood will adopted in estimating the Cosine and Sine alternate equations vector coefficient  noisy-wave 

mesokurtic observations as well as its distributional and residual traits.          

 

2.  Material and Method 
2.1. The Two Covariates Alternate Cosine and Sine Function Trigonometry Regression 

Given a linear regression model function with random error variables i ; 

( ) iY f X  
                                                                                                                               (1) 

For i are uncorrelated noisy-wave standardized random variables with mean zero and unity variance. 
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And,  

1 1 2 2( ) cos sini if X X X     
                                                                                          (2) 

Then,  

1 1 2 2cos sini i i iy X X      
                                                                                            (3) 

Alternatively; 

1 1 2 2sin cosi i i iy X X      
 

Where, 

iy 
 Is a 

1nby
 vector of responses. 

1 2,i iX X 
Is a 

1nby p 
 is full rank design matrix of the model. 

1 2, ,    
Is a 

1p by
 vector of coefficients. 

i 
 Is a 

1nby
 vector of random errors. 

&Cos Sin 
Are the trigonometry noisy-waves for the two covariates. 

                                   1 1 2 2cos sini i iy X X      
 

 In matrix form;          

Y HB                                                                                                                                         (4) 

B Is the column vector of parameter to be estimated; H is the coefficient matrix of a square matrix; where the 

error term 
 20, I  

 

 

2.2. Maximum Likelihood Estimation Method of the Two Covariates Alternate Cosine and 

Sine Function 

Considering error random variables 
( )i  that are assumed independent and normally distributed with zero 

mean and unity variance, adopting the maximum likelihood estimation gives 

 
2

22

1

2

1
( ) exp

2
f 






 
  



                                                                                                    (5) 

Then,  

 
2

1 1 2 222

1
cos sin

2

1
( ) exp

2
i iiy X Xf   





  

 
  



                                                         (6) 

The maximum likelihood gives,  

1 2( ) ( ) ( )nL f f f     

 
2

1 1 2 22

1
2

1
cos sin

2

1
exp

2
i

n
n

i i

i

y X XL   
 

  
   
       

 
                                         (7) 

 

Taking the log of equation

 
 

2

1 1 2 2

1

cos sin1 1
2

2 2
ln ln ln

n
i i i

i

y X X
L n

  







   
 
 

    
                   (8) 

  

 1 1 2 2

1

cos sinln n
i i i

i

y X XL   

 

   
  

  


 
  Equating to zero gives, 

 1 1 2 2

1

cos sin 0
n

i i i

i

y X X  


   
                                                                                        (9) 

  

 1 1 2 2

1

11

cos sin
cos

ln n
i i i

i

i

y X X
X

L   

 

   
  

  


 
Equating to zero gives, 
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 1 1 1 2 2

1

cos cos sin 0
n

i i i i

i

X y X X  


   
                                                                (10) 

 1 1 2 2

2

12

cos sin
sin

ln n
i i i

i

i

y X X
X

L   

 

   
  

  


 
Equating to zero gives, 

 2 1 1 2 2

1

sin cos sin 0
n

i i i i

i

X y X X  


   
                                                                 (11) 

Expanding equations (7), (8) and (9) gives the system of equations; 

                   
1 1 2 2

1 1 1

cos sin 0
n n n

i i i

i i i

y n X X  
  

     

 

        2

1 1 1 1 2 1 2

1 1 1 1

cos cos cos cos sin 0
n n n n

i i i i i i

i i i i

y X X X X X  
   

      
        

        2

2 2 1 2 1 2 2

1 1 1 1

sin sin sin cos sin 0
n n n n

i i i i i i

i i i i

y X X X X X  
   

      
 

Re-arranging and converting to matrix form gives, 

 

 

 

      

      

1 2

1 1 1

2

1 1 1 1 1 2

1 1 1 1

2

2

2 2 2 1 2

1 1 1 1

cos sin

cos cos cos cos sin

sin sin sin cos sin

(12)

n n n

i i i

i i i

n n n n

i i i i i i

i i i i

n n n n

i i i i i i

i i i i

y n X X

y X X X X X

y X X X X X







  

   

   



   
   
    
    
    

     
   
   
   

  

   

   
 

      Where, 

      

      

 

 

 

1 2

1 1

2

1 1 1 2

1 1 1

2

2 2 1 2

1 1 1

1

1

1 1

1

2

2

1

cos sin

cos cos cos sin

sin sin cos sin

cos 13

sin

n n

i i

i i

n n n

i i i i

i i i

n n n

i i i i

i i i

n

i

i

n

i i

i

n

i i

i

n X X

X X X X

X X X X

y

B y X

y X







 

  

  









 

  
                   

    
   
   

 

  

  






 

 
1

T TB H H H y



                                                                                                                        (14) 

Where,

        

      

1 2

1 1

2

1 1 1 2

1 1 1

2

2 2 1 2

1 1 1

1

1

cos sin

cos cos cos sin

sin sin cos sin

n n

i i

i i

n n n

i i i i

i i i

n n n

i i i i

i i i

T

n X X

X X X X

X X X X

H H

 

  

  





 
 
 
 

  
 
 
 
 

 

  

  
        (15) 

                                                                                                  

 

 

1

1

1

2

1

cos

sin

n

i

i

n
T

i i

i

n

i i

i

y

H y y X

y X







 
 
 
 

  
 
 
 
 






                                                                                                           (16) 

Since cosine of ix
 varies from sine of ix

, that is 
cos( ) sin( )i ix x
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                                 1 1 2 2sin cosi i i iy X X      
 

                                      1 1 2 2sin cosi i i iy X X      
 

When 1 1 2 2sin cosi i i iy X X      
 , the estimates of equation (13) becomes equation (17) below;   

      

      

 

 

 

1 2

1 1

2

1 1 1 2

1 1 1

2

2 2 1 2

1 1 1

1

1

1 1

1

2

2

1

sin cos

sin sin sin cos

cos cos sin

sin 17

cos cos

n n

i i

i i

n n n

i i i i

i i i

n n n

i i i i

i i i

n

i

i

n

i i

i

n

i i

i

n X X

X X X X

X X X X

y

B y X

y X







 

  

  









 

  
                   

    
   
   

 

  

  






 

 

2.3. Distributional Properties of the Two Covariates Trigonometric Regression 
From equation (14) 

 
1

T TB H H H y



 

Recall from equation (4),        
y HB  

 

So,                        
   

1
T TB H H H HB 



 
 

   
1

T T TH H H H B H 


 
 

TB H                                                                                                                                              (18) 

Taking expectation gives,     

( ) ( ) ( )TE B E B H E H 
                                                                                                              (19) 

   Recall
( ) 0E  

,        

( )E B B
 

So, mean of the estimate B is nothing but B     

Subtracting " "B from both sides of equation (14) gives 

TB B H          But,  
y HB  

 

 TB B H y HB  
 

 
1

T T TB B H y H HB H H H


   
 

 

2.4. The Dispersion Matrix of  B  

( )
T

V B E B B B B     
     

 
1

TE H H H
 

    

   
1 1

T T TE H H H H H H
  

    

   
1 1

( )T T TH H HE H H H
  

    

Recall      

2( )TE  
;                

   
1 1

2T TH H HH H H 
  

    

 
1

2( ) TV B H H 



                                                                                                            (20) 

     Where 

2

   is the variance of the error term 
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  This implies that,             
  

1
2, TB B H H 



 

Such tha

      

      

1 2

1 1

2

1 1 1 2

1 1 1

2

2 2 1 2

1 1 1

1

2

cos sin

cos cos cos sin

sin sin cos sin

( )

n n

i i

i i

n n n

i i i i

i i i

n n n

i i i i

i i i

n X X

X X X X

X X X X

V B 

 

  

  



 
 
 
 

  
 
 
 
 

 

  

  
 

                                                                                                                                                                  (21) 

For  1 1 2 2cos sini i i iy X X      
 

While 

       

       

1 2

1 1

2

1 1 1 2

1 1 1

2

2 2 1 2

1 1 1

1

2

sin cos

sin sin sin cos

cos cos sin cos

( )

n n

i i

i i

n n n

i i i i

i i i

n n n

i i i i

i i i

n X X

X X X X

X X X X

V B 

 

  

  



 
 
 
 
 
 
 
 
 

 

  

  
 

                                                                                                                                                                (22) 

For  1 1 2 2sin cosi i i iy X X      
 

 

2.5. Variance of the Error Term for the Two the Two Covariates Trigonometric Regression 

                               

 2
T T TE y y BH y

n p n p


 



 

 
 

Where " "n is the number of observations and 
" "p

is the number of parameter to be estimated. 

   

 

1

1 2 1

1

2
2

1

, , cos

sin

n

i

i

n
T

i i

i

n

i i

i

y

y y y X

y X

n p


  









 
 
 
 

  
 
 
 
 










                                                                              (23) 

 For 1 1 2 2cos sini i i iy X X      
 

   

 

1

1

1

2

1

1 2

2

sin

cos

, ,

n

i

i

n

i i

i

n

i i

i

T

y

y X

y X

y y

n p


  









 
 
 
 

  
 
 
 
 








                                                                               (24) 

For 1 1 2 2sin cosi i i iy X X      
 

 

2.6. Coefficient of Determination for the two Covariates Trigonometric Regression 
The coefficient of determination being denoted by; 



Academic Journal of Applied Mathematical Sciences 

 

145 

                                    

2

2

2

T

T

BH y n y
R

y y n y





 

   

 

1

2

1 2 1

1

2

12

2

, , cos

sin

n

i

i

n

i i

i

n

i i

i

T

y

y X ny

y X

R
y y ny

  







 
 
 
 

 
 
 
 
 









                                                                               (25) 
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For 1 1 2 2sin cosi i i iy X X      
 

 

3. Results 
The secondary dataset used in validating the obtained estimations above was the readings of rate of heartbeats of 

newly born babies in Lagos University Teaching Hospital (LUTH), a federal government owned hospital in Lagos 

state, Nigeria. These rate of heartbeats’ readings variability were recorded in three different time-frames (in hours); 

rate of heartbeats exactly after an hour after birth (HR1), rate of heartbeats exactly after two hours after birth (HR2) 

and rate of heartbeats exactly after three hours after birth (HR3). These readings were recorded for nine hundred and 

fifty (950) babies in the year 2017. These readings were examined and recorded via Electrocardiogram (ECG). HR1 

and HR2 are considered the two covariates (independent variables) because of the fact that the responses of HR3 rely 

solely upon the improved heartbeats of the first two hours after birth. 

 
Figure-1. The Noisy-Wave of Heartbeats of HR1 and HR2 

 
 

Figure-2. The Partial Cosine and Sine Wave Trend of HR1 and HR2 
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From Figure 1 and 2, the trend of the actual readings of the rate of heartbeats exactly one and two hours after 

birth, that is, HR1 and HR2 for the same level of four mesokurtics (Normal bell-curves) nature possessed. The Sine 

and Cosine plots of the two readings (the two covariates) revealed and actualized the possessed noisy-wave (Sine 

and Cosine waves) of the two examined observations of babies’ heartbeats. This suggested a wave particle duality of 

the heartbeats. In other words, the HR1, HR2 and HR3 heartbeats are noise or tone frequencies, that is, noisy data 

(noisy-wave) that requested a trigonometry (Cosine and Sine) transformation or Fourier transformation as an 

alternative to smoothing process or modeling.  
 

Table-1. Fitted Cosine and Sine equation of  
   1 2 2 1+ cos HR sin HR  

 

Parameter Estimate Std. Error t-value Pr.(>|t|) 

  58.6749     0.1112 527.647   < 0.0021 

1  -0.4261    0.1539   -2.769   0.0057  

2  
-0.0692    0.1525  -0.454   0.6501    

  
1.2220   0.0229  53.27    <0.0021 

Global Deviance:   17.802  

AIC:     5025.802  

SBC:     5045.228   

log Lik: -2508.901  

The Maximum Likelihood estimator is  281.132  

   3 2 1HR  =58.6749   0.4261 cos HR 0.0692  sin HR 
 

Such that,  
(1.2220 ,0.00052)  
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Table-2.  Fitted Cosine and Sine equation of  
   1 2 2 1+ sin HR cos HR  

 

Parameter Estimate Std. Error t-value Pr.(>|t|) 

   58.6837 0.1105 531.246 < 0.0021 

1  
0.0325 0.1586 0.205 0.8378 

2  -0.3650 0.1619 -2.255 0.0244  

  
1.2235 0.0229 53.33 <2e-16  

Global Deviance:   20.719   

AIC:     5028.719 

SBC:     5048.144 

log Lik: -2510.359  

The Maximum Likelihood estimator is  43.47365 

                 
   3 2 1HR  =58.6837  0.0325 sin HR 0.3650 cos HR 

 

Such that  
(1.2235 ,0.00052)  

Table.1 was subjected to the fitted function of 
   1 2 2 1+ cos HR sin HR  

, while table. 2 was based on

   1 2 2 1+ sin HR cos HR  
. It was deduced that the formal fitted equation robustly accommodated the 

wave like nature with improved model performance of (AIC: 5025.802; SBC: 5045.228) compare to a less model 

performance of (AIC: 5028.719; SBC: 5048.144) by the latter. Furthermore, the global aberrances from normal non-

trigonometry fitted line of the two alternate Cosine and Sine equations were relatively miniature in the two fitted 

equations, with a lesser miniature of global deviance of 17.802 in fitted 
   1 2 2 1+ cos HR sin HR  

 

compare to a global deviance of 17.802  in fitted 
   1 2 2 1+ sin HR cos HR  

.  In collaboration with the 

stated claims, the coefficient of 1 , which was the estimated coefficient of the rate of heartbeats exactly after an 

hour after birth (HR1) in the formal equation hinted to be the most significant co-variate in the contributing factor to 

the next stability of heartbeats of babies in the next three hours and more after birth. This is due to its P-

value=0.0057 being strictly far away from the 5% chance of error. In the latter, it was the coefficient of 2 for rate 

of heartbeats exactly after an hour after birth (HR2) with P-value=0.0244 that was greater than the P-value=0.0057 of 

the latter. 

 

Figure-3. The Residual Deviance of the fitted Equations of 
   1 2 2 1+ cos HR sin HR  

and 

   1 2 2 1+ sin HR cos HR  
 

 
It was noted that the two alternate fitted functions of Cosine and Sine yielded the same residual indexes in terms 

of the estimated quantiles density, QQ-plot and approximately the same the observed and estimated frequencies. 
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Table-3. Centile of the Cosine and Sine alternate equation lines 

Centiles  1 2+ cos HR  
 

    
 2 1sin HR

 

 1 2+ sin HR  
 

   
 2 1cos HR

 
% of cases below  0.4 centile is   0 0 

% of cases below  10 centile is   6 6.1053 

% of cases below  50 centile is   54.4211 54.42105 

% of cases below  90 centile is   92.5263 92.8421 

% of cases below  99.6 centile is   97.1579 96.9474 

 

Centile otherwise known as percentile has been one of the values of a statistical variable that divides the 

distribution of the variable into 100 groups having equal frequencies. The 99.6 percent of the values in the function

   1 2 2 1+ cos HR sin HR  
lies at 97.1579 centile, capturing and explaining the wave nature of the 

covariates above the 99.6 percent of the values in the function 
   1 2 2 1+ sin HR cos HR  

 that lies at 

96.9474 centile in capturing and explaining the wave nature of the system.  

 
Table-4. Summary of the Quantile Residuals Cosine and Sine alternate equation Functions 

 
            Keys: FCC=Filliben Correlation Coefficient   

 

Table. 4 divulged the approximately equivalence of the residual variance of the two alternate wave nature of 

Cosine and Sine equations as well as the same residual location parameter of positive effect by  

   1 2 2 1+ cos HR sin HR  
, whereas  

   1 2 2 1+ sin HR cos HR  
adopted the negative effect of 

location parameter. In addition, the two alternate equations were not affected by skewedness (outliers), since their 

skewedness coefficients of 1.5899 and 1.5633 respectively are < 3. The Filliben Correlation Coefficient (FCC), 

which is use as test statistic for normal probability correlation coefficient of composite hypothesized for normality 

(non-normal) test; since its coefficient 0.940r   for the two equations, it implies the noisy data indicated a length  

of lower tail (symmetric shorter-tailed) of 94% with 5% level of significant as maintained by Filliben [19]. The Cox-

Snell residual and Cragg-Uhler coefficients of (0.85 and 0.54) and (0.85 and 0.54) respectively  for assessing the 

goodness-of-fit for the heartbeats’ regression hinted the formal fitted function accommodated the wave nature of the 

heartbeat of the babies to 85% and the latter was able to explain to 54% . The two residual indexes are alternate 

index for the Pseudo-
2R .     

 

4. Conclusion 
From the anteceding, it is necessary to do ascertain the wavy trend of regressors (covariates) to throe the level of 

noisy and frequency tone. By doing so, it allows a clear-cut whether the distributional property of the noise is a 

trigonometry (Cosine, Sine) of two or more covariates linear regression. The rate of heartbeats exactly after an hour, 

exactly after two hours and exactly three hours after birth followed a noisy Cosine and Sine wave nature 

trigonometry regression. The alternate Cosine and Sine two covariates was subjected to the heartbeats’ observations 

such that the fitted equation of 
   1 2 2 1+ cos HR sin HR  

captured the wave nature than the alternate 

function of 
   1 2 2 1+ sin HR cos HR  

.  It is to be noted that this research could be extended to more than 

two co-variates linear trigonometry regression, that is generalized multiple trigonometry regression. 
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