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Abstract 

If 31 2 4

1 2 3 42tD p p p p
  

 ，where 0s  or  1, 1 4sp s   are distinct odd primes，the system of indefinite 

equations in title only has positive integer solution only when  1

12 7 743 1,3
t

D t    or 2 2 22 3 5 7 17 743
t

D      

( 1,3,5,7)t  . 
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1. Introduction 
In recent years, the common solution of pell equations  

2 2

1

2 2

x D y k

y Dz m

  


                                                                                                                               (1) 

is a hot field in indefinite equations. When k=1 and m=1, the research results of the system focus on the scope 

and estimation of the solution, and the main conclusions are shown in Ljunggrenn [1], Pan, et al. [2]. When k=1 and 

m=4, for the solution of the system, the main conclusion is shown in  Chen [3], Hu and Han [4], Dong and Yang [5], 

Le Maohua [6], Chen [7], Cao zhenfu [8], Chen [9] when 1D
=2, When 1D

=6, it is shown in  Du and Li [10], Du, et 

al. [11], Ran [12], when 1D
=12, it is shown in the main conclusion [13-16]. When k=1 and m=25, the situation of 

the system is discussed in Zhao [17] when 1D
=23.  

In this paper, we deal with the solutions 
 ,x y

of the system of the indefinite equations 

 
2 2

2 2

104 1
1

25
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y Dz

  


 
                                     

 
And the following conclusions are obtained: 

Theorem If 
31 2 4

1 2 3 42 ,tD p p p p
  


，where 

0s 
 or 

 1, 1 4sp s 
 are distinct odd primes，t is a 

positive integer, and the solution of the indefinite system (1) is as follows:  

(i) D=2×7×743，the system (1) has non-trivial solutions (x,y,z)=(±530451,±52020,±510);  

(ii) D=2
3
×7×743时，the system (1) has non-trivial solutions (x,y,z)=(±530451,±52020,±255). 

(iii) D=2×54100801×108191201, the system (1) has non-trivial solutions 

(x,y,z)=(±585550569867227751, ±58498526893288080,±2
3×3

2×5×7×172×743). 

(iv) D=2
3
×54100801×108191201, the system (1) has non-trivial solutions  

(x,y,z)=(±585550569867227751,±58498526893288080,±2
2×3

2×5×7×172×743). 

(v) D=2
5
×54100801×108191201, the system (1) has non-trivial solutions 

(x,y,z)=(±585550569867227751,±58498526893288080,±2
2×3

2×5×7×172×743). 

(vi) D=2
7
×54100801×108191201, the system (1) has non-trivial solutions 

(x,y,z)=(±585550569867227751, ±58498526893288080, ±2
2×3

2×5×7×172×743).  

(v) Otherwise, the system (1) only has trivial solutions (x,y,z)=(±51, ±5,0). 

 

2. Preliminaries 
Lemma 1 Zhao [17] If p is an odd prime number, then the diophantine equation x

4
-py

2
=1 has no other positive 

integer solution except p=5, x=3, y=4 and p=29, x=99, y=1820. 

Lemma 2 Zhao [17] If a is a square number and a >1, the equation 
4 2 1ax by  has only one positive integer 

solution. 

Lemma 3   Zhao [17] If D is a non-square positive integer, then 
4 4 1x Dy   has at most two positive integer 

solutions. And the sufficient and necessary condition for the equation to have two groups of solutions is that D=1785 

or D=28560, or that 2x0 and 2y0 are squares, where (x0, y0) is the fundamental solution of the equation. 
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Lemma 4 If xn,yn is any integer solution of Pell equation x
2
-104y

2
=1, then xn,yn has the following properties: 
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(I) 1 mod 2 , 1 mod5 , 1 mod51 ,

0 mod51 , 0 mod102 , 1 mod102

0 mod 2 ,  1 mod 2 , 0 mod5 ,

0 mod51 , 5 mod51 ;

(II) , 1, , 1, , 5;

(III) , 1, ,
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      1 2 1 2 2 1 2 2

2 1 0 1 2 1 0 1

1, , , 51;

(IV) 102 , 1, 51, 102 , 0, 5.

n n n n

n n n n n n
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Lemma 5 If ( x1,y1) is the fundamental solution of Pell equation x

2
-104y

2
=1, and all integer solutions are 

(xn,yn),n∈Z. For any (xn,yn),it has the following properties: 

i) xn is square if and only if n=0; 

ii) 51

nx

 is square if and only if n=±1; 

iii) 5

ny

 is square if and only if n=0,1. 

 

3. Proof of Theorem   

proof：Since the fundamental solution of Pell equation x
2
-104y

2
=1 is

   1 1, 51,5x y 
, all integer solutions of 

pell equation are 
 104 51 5 104 , Z.

n

n nx y n   
 Thus: 

If 
   , , , ,n nx y z x y z

 is the integer solution to (1), then n  , 

      2 2 2 2 2 2

1 125 25 104 2601 25 51 5 51 5 2n n n n n n n n n n n ny y x y y x y x y x y y                     
 

By (1)                       
2 2 25nDz y 

 

Then           
 2

1 1 3n nDz y y                                              
 

case1 Let n  be odd, might as well
 2 1, Zn m m  

, At this point, equation (3) becomes： 
2

1 1 2 2 2 1 14n n m m m m m mDz y y y y x y x y      
                                                                                            (4) 

case1. 1 Let m  be odd, might as well 
 *2 ,m r r 

, At this point, equation (4) becomes： 
2

2 1 2 1 2 2 2 1 2 1 24 8r r r r r r r r rDz x y x y x y x x y    
                                                                                             (5) 

case 1.1.1 Let r be odd, might as well 
 2 1,r u u Z  

，At this point, equation (5) becomes： 
2

4 3 4 3 4 2 2 1 2 18 u u u u uDz x y x x y    
                                                                                                               (6) 

From lemma 5, 

2 1 4 3 2 1 4 3
4 2, , , ,

51 51 5 5

u u u u
u

x x y y
x   



 are two relatively prime，and 

2 1 4 3,
5 5

u uy y 

are odd，

2 1 4 3
4 2 , ,

51 51

u u
u

x x
x  



 are odd, namely 

2 1 4 3 2 1 4 3
4 2, , , ,

51 51 5 5

u u u u
u

x x y y
x   



 are two relatively odd prime. 

From lemma 5, if and only if u=0,1, 

2 1

51

ux 

is a square, and if and only if u=1, 

4 3

51

ux 

is a square; For any u∈Z, x4u-

2, 

4 1

5

uy 

 are not squares. If and only if u=1, 

2 1 4 3,
5 5

u uy y 

all are square numbers. So if u ≠0,1, 

2 1 4 3 2 1 4 3
4 2, , , ,

51 51 5 5

u u u u
u

x x y y
x   



are not squares. At this point, they have at least five different odd prime Numbers, 

so formula (6) is not true, so when u≠0,1, the system (1) has no solution. 

When u=0, equation (6) is    

2 3 2 2 3 3
22 5 51

51 5

x y
Dz x     

                                                                                                                    (7) 

However, 

2 2 23 3
2

530451
5201=7 743, =3 3467 10404 2 3 17

51 51 5

x y
x        ，
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Therefore, the right hand side of (7) contains five different odd prime Numbers, so formula (7) does not hold, 

and the system (1) has no solution. 

When u = 1, 
   

2 22 3 2 2 3

1 1 2 1 18 2 5 51 5201=2 7 743 2 5 51 =2 7 743 5 51Dz x y x x y             
. 

So when D=2×7×743, the system (1) has anontrivial solutions (x, y, z) = (+ 530451, + 52020, + 510); 

D=2
3
×7×743, (1) has a nontrivial solution (x, y, z) = (+ 530451, + 52020, + 255). 

case 1.1.2 If r is even, let 
 2 ,r v v 

, then equation (5) can be written into 
2

4 1 4 1 4 2 2 4 1 4 1 4 28 16v v v v v v v v v v vDz x y x x y x y x x x y    
                                                                             (8) 

From lemma 5, when v is even 

4 1 4 1
4 2, , , , ,

51 5 255

v v v
v v v

x y y
x x x 

 are two relatively prime, when v is odd

4 1 4 1
4 2, , , , ,

51 5 51 5

v v v v
v v

x y x y
x x 

 are two relatively prime. And when v is odd, 

4 1 4 1
4 2, , , , ,

5 51 51 51

v v v v
v v

y x x x
x x 

all are odd; 

when v is even, 

4 1 4 1
4 2, , , ,

5 51 51

v v v
v v

y x x
x x 

 all are odd;. 

From lemma 5, if and only if v=0, 

4 1
4 2, , ,

51

v
v v v

x
x x x

2 1

51

ux 

 are squares, and if and only if v=±1, 51

vx

is a 

square; For any v∈Z, x4u-2, 

4 1

5

vy 

 is not square. If and only if v=0, 1, 5

vy

is a square. So if v ≠0 and v is even 

4 1 4 1
4 2, , , ,

51 5

v v
v v v

x y
x x x  

are not squares. At this point, they have at least five different odd prime Numbers, so 

formula (8) is not true, so when u≠0,1, the system (1) has no solution. 

when v≠±1 and v is odd, 

4 1 4 1
4 2, , , ,

51 51 5

v v v
v v

x x y
x x  

 are not squares. At this point, they have at least five different odd 

prime Numbers, so formula (8) is not true, so when u≠0,1, the system (1) has no solution.  

So when v≠0, v≠±1 and v is even, the system (1) has no solution. 

when v=0, (8) can be written into 
2 3

0 0 1 116 0Dz x y x y      
, thus z=0, At this point, the system (1) 

only has ordinary solutions (x,y,z)= (±51,±5, 0). 

when v=0, (8) can be written into 
2

3 3 4 2 1 1

4 2 2 2 2

4 5 4

16 16 530451 52020 54100801 5201 51 5

2 3 17 3467 17 5 3 2 54100801 7 743 17 3 5

2 3 7 17 743 3467 54100801

Dz x y x x x y             

             

       , 

The right hand side of the above equation contains 6 odd prime Numbers, so the above formula is impossible. 

Therefor when v=1, the system (1) has no common solution. 

when v=-1, 

2 2 2 5 5
5 5 4 2 1 1 2 4

2 2

4 2 2 2 2 2 3

7 4 2 2 4 2

16 16 51 5
51 5

16 51 5 5201 54100801 108191201 108222408

=2 3 17 5 7 743 54100801 108191201 743 17 7 3 2

2 3 5 7 17 743 54100801 108191201 

x y
Dz x y x x x y x x            

      

           

       

   

   

   

    

 

 

 

2
7 2 2

2
5 2 2

2
3 2 2 2

2
3 2 2

2 54100801 108191201 3 5 7 17 743

=2 54100801 108191201 2 3 5 7 17 743

       =2 54100801 108191201 2 3 5 7 17 743

2 54100801 108191201 2 3 5 7 17 743

       

       

       

        

   

   
 

Therefore, 

When D=2×54100801×108191201,The system (1) has non-trivial solutions 

(x,y,z)=(±585550569867227751, ±58498526893288080, ±2
3×3

2×5×7×17
2×743); 

When D=2
3×54100801×108191201,The system (1) has non-trivial solutions 

(x,y,z)=(±585550569867227751, ±58498526893288080, ±2
2×3

2×5×7×17
2×743);  

When D=2
5×54100801×108191201,The system (1) has non-trivial solutions 

(x,y,z)=(±585550569867227751, ±58498526893288080, ±2×3
2×5×7×17

2×743);  
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When D=2
7×54100801×108191201,The system (1) has non-trivial solutions 

(x,y,z)=(±585550569867227751, ±58498526893288080, ±3
2×5×7×17

2×743);  

case 1.2  If m is odd, Modelled on the case 1.1, it can be proved that the equation (1) is only the common 

solution (x,y,z)= (±51,±5,0). 

case2  If n is even，by lemma4,
 1 1 1 mod 2n ny y  

, the right-hand side of equation (3) is odd, while the left-

hand side is even in the form of D, so the system (1) has no common solution. 

 

References 
[1] Ljunggrenn, W., 1941. "Litt om simuilane pellske ligninger." Norsk Mat Tidsskr, vol. 23, pp. 132-138.  

[2] Pan, J., Zhang, Y., and Zou, R., 1999. "The pell equations." Chinese Quartly Joural of Mathematics, vol. 

14, pp. 73-77.  

[3] Chen, 1998. "On the Diophantine equations." Journal of Central China Normal University, vol. 32, pp. 

137-140.  

[4] Hu, y. and Han, q., 2002. "Also talk about the indefinite equations equations." Journal of Central China 

Normal University, vol. 36, pp. 17-19.  

[5] Dong, p. and Yang, s., 2003. "On the Diophantine equations." Journal of North China University, vol. 4, 

pp. 98-100.  

[6] Le Maohua, 2004. "The common solution of simultaneous pell equations." Journal of Yantai Normal 

University, vol. 20, pp. 8-10.  

[7] Chen, 1990. "The common solution of simultaneous pell equations." Journal of Wuhan Normal University, 

vol. 1, pp. 8-12.  

[8] Cao zhenfu, 1986. "The common solution of simultaneous pell equations." Science Bulletin, vol. 31, p. 476.  

[9] Chen, 1994. "The common solution of simultaneous pell equations." Journal of Peking University, vol. 30, 

pp. 298-302.  

[10] Du, x. and Li, y., 2015. "The common solution of simultaneous pell equations." Journal of Anhui 

University, vol. 39, pp. 19-22.  

[11] Du, x., Guan, x., and Yang, h., 2014. "The common solution of simultaneous pell equations." Journal of 

Central China Normal University, vol. 48, pp. 310-313.  

[12] Ran, y., 2009. The discussion and study of integer solutions for a class of indefinite systems. Master's thesis 

from northwestern university. 

[13] Gao, L. and Li, G., 2016. "The common solution of simultaneous pell equations." Journal of Yan’an 

University, vol. 35, pp. 10-12.  

[14] Guo, J. and Du, X., 2015. "The common solution of simultaneous pell equations." Practice and 

Understanding of Mathematics, vol. 45, pp. 289-293.  

[15] Ran, Y., 2017. "On the Diophantine equations." Journal of Yan’an University, vol. 36, pp. 68-71.  

[16] Su xiaoyan, 2000. "The common solution of simultaneous pell equations." Journal of Zhangzhou Normal 

University: Natural Science, vol. 13, pp. 35-38.  

[17] Zhao, j., 2018. "On the Diophantine equations." Practice and Understanding of Mathematics, vol. 48, pp. 

255-259.  

 

http://arpgweb.com/?ic=journal&journal=17

