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Abstract

In this paper, we construct the real representation matrix of canonical hyperbolic quaternion matrices and give some
properties in detail. Then, by means of the real representation, we study linear equations, the inverse and the
generalized inverse of the canonical hyperbolic quaternion matrix and get some interesting results.
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1. Introduction
In 1843, Hamilton introduced the quaternion, which has the form of
a=a +a,i+a,j+ak,
where
i=j°=k>=-1ij=—ji=k, jk =—kj =i,ki=—ik = j

and &322 % % 3re real numbers. Since quaternions are non-commutative, they differ from complex numbers
and real numbers. Quaternions and quaternion matrices play an important role in quaternionic quantum mechanics
and field theory [1]. In 1849, the split quaternion(or coquaternion), which was found by James Cockle, is in the form
of
a=a +aji+a,j+ak,
where
i?=-1,j?=k?=1,ij=—ji=k, jk =—kj =—i,ki = —ik = j

and &% %% are real numbers. Split quaternions are noncommutative, too. But split quaternion set contains
zero-divisors, nilpotent elements and nontrivial idempotents [2, 3].

In 1892, Segre proposed modified quaternions so that commutative property in multiplication is possible [4]. In
Catoni, et al. [5], the authors studied three three types of commutative quaternions: Elliptic quaternions, Parabolic
quaternions and Hyperbolic quaternions. They are 4-dimensional like the set of quaternions, but contain zero-divisor
and isotropic elements. Although commutative quaternion algebra theory is becoming more and more important in
recent years and has many important applications in the areas of mathematics and physics [5-10], the current focus is
mainly on canonical elliptic quaternions [11-14]. In these papers, H. K&sal and M. Tosun gave some properties of
canonical elliptic quaternions and their fundamental matrices. After that, they investigated canonical elliptic
quaternion matrices using properties of complex matrices. Then they defined the complex adjoint matrix(complex
representation matrix) of canonical elliptic quaternion matrices and gave some of their properties. Recently, they
proposed real matrix representations of canonical elliptic quaternions and their matrices and derived their algebraic
properties and fundamental equations.

As has been noticed, there is no paper that studied the theory on canonical hyperbolic quaternion matrices. In
this paper, we will discuss canonical hyperbolic quaternion matrices.

Let R denote the real number field and Qe =R+Ri+R]
where

+RK denote the canonical hyperbolic quaternion set,

i?=j?=k’=1ij=ji=k, jk =kj =i,ki =ik = j.
For@ =& +ai+aj+akb=b+bi+bj+bkeQy, it is clear that
ab=ba=(ab +a,b, +ab, +a,b,)+(a,b, +ab, +a,b, +ab,)i
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+(ab, +ash +a,b, +a,0,) j+(a,b +ab, +a,b; +asb, )k.

This paper is organized as follows. In Section 2, we construct the real representation of canonical hyperbolic
quaternion matrices and systematically study its properties. In Section 3, we discuss the canonical hyperbolic
quaternion linear equations and study the judgment and construction of solutions. Next, we give the necessary and
sufficient condition for canonical hyperbolic quaternion matrix invertibility. Finally, we define a generalized inverse
and initially discuss its existence and uniqueness. Some results are interesting. In Section 4, we give some
conclusions.

2. Real Representation of Canonical Hyperbolic Quaternion Matrices

In this section, we define the real representation of canonical hyperbolic quaternion matrices and systematically
study its properties. It is worth mentioning that, unlike other quaternions, the canonical hyperbolic quaternion is not
the natural generalization of complex number. It is hard for its matrices to construct the complex representation and
we only discuss the real representation. For real representations of quaternion matrices, split quaternion matrices and
elliptic quaternion matrices, many results have been obtained [2, 3, 14-17] and their references for details). Inspired
by them, we define the real representation of canonical hyperbolic quaternion matrices as follows.

For any A=A +Al+AJ+AKeQ™, A cR™(1=1,2,34), we define its real representation matrix or real
representation A" as follows.

A A A A
AR_ AZ Al A4 A3 €R4mx4n.
AA A A
A A A A 2.1)
The set of all matrices shaped like (2.1) is denoted by Rr*™*" |
Let
o1, 0 0 0 0 0 I, 0 0 I, O
I, 0 0 O 0 0 I, O 0 0 0 |
Qt: ’St: |R1:
0 0 0 I o1, 0O I, 0 0 O
0 0 I, O Il 0 0 O 01l 00
By simple computation, we can obtain the following properties.
2.1. Theorem
Let ABeQ, ™ CeQ,. ™ aeR Then
) (A+B)? = AR + BR, (¢ A)F = A%, (AC)® = ARCR;
(2) Q:\:Sri:RriZIAm’Q;:Qm'R:\:Rm'S;:Sm;

(3) RQO = QmRm = Sm’(?msm = SQO = Rm’SmRm = Rmsm :Qm;
4) Q,A%Q, = A%,R_AFR, = A%, S _ARS = A%,
It is easy to verify that the following results are right.

2.2. Theorem
Amx4|
ForanyVER ) n,
V+QVQ, +R VR +S VS eRr ™,
and it is the real representation matrix of the canonical hyperbolic quaternion matrix
|

n

V= %(lm, i g 1KV +Q,vQ, + R, VR, +S,VS,) II:I_ .
Ik
Proof. PartitioningV into
Vll VlZ Vl3 V14
V - VZ]. VZZ V23 V24
V31 V32 V33 V34
Vo Vo Viu Vg,

and taking
V=V+QVQ +RVR +S VS,

mx4n

i 4
we can verifyV € R wiith
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Vip =V +Vop +Vag V0,V =V +Vp +Vis V5,
Vy, =V, +V,, +Vis +V,,, Y, =V, +Vy, +V,, +V,,,

andV is the real representation matrix of the canonical hyperbolic quaternion matrix
|

n

o AR
V=V11+V21i+v3lj+vuk=%(Im,lmi,lmj,lmk)v e
j

n
Ik W
Further, we can also get the following construction method.

2.3. Theorem
For anyV eR™” ,
Vv,Q,V,R,V,S,V) e Rrtm™",

2.4. Theorem.
ForanyV € R™ Ve Rr'™ it and only if
V=Q\VQ, =R VR, =S VS,.
A square matrix € Qne s said to be orthogonal matrix , if AA" = I and invertible matrix, if AB=BA=1 for

nxn
someBthc * where A is the transpose of A. For the above concepts, the following results can be easily
verified.

2.5. Theorem

Let A€Qn" " B eQu™ U € Q™ Than the following properties hold:
(1). (AB)™ =B A™ it A and B are invertible:1
). (AT)* = (AY)T :
3). (AB)" =BT AT ;

(4). Y is a orthogonal matrix if and only ifUR is a orthogonal matrix.
Proof. (1)and (2) can be easily verified.
(3)From (AB))" = ((AB)")" = (A"B)" = (B") (A")' = (BT)"(A")" = (BTA")" \ 0 oy (AB)' =BTAT

(4) 1fY is a orthogonal matrix, i.e.,UUT =1, By (1) of Theorem 2.1 and (2) of this theorem, we have

R Ty\R - R RNT - R = A R . A .
Ut =utun) =I L that is,Y " is a orthogonal matrix, and vice versa.

3. Some Applications of the Real Representation

Various quaternion matrix equations have been studied in a large number of papers. In He, et al. [18], Structure
[19], He, et al. [20], the authors discussed some quaternion matrix equation and equations by means of matrix
decomposition, rank equality, real representation and so on. In Zhang, et al. [2], Jiang, et al. [21], the authors studied
some split quaternion matrix equations by real or complex representation. In Késal and Tosun [14], the authors
proposed the real matrix representation of canonical elliptic quaternion matrices and considered their equations. In
this section, we study some applications of the real representation, including linear equation, inverse and MP inverse.

Let A€ Qn D€ Quc™ i linear equation
Ax=b (3.1)
has the solution * € Qre , then we have
ARXR - bR
and therefore real linear equation
ARy =bR(1:4m,1) (3.2)
has the solution?” < R , Where the symbol MG jk:) represents the submatrix of M containing the

intersection of rows | to J and columns K to! .

On the other hand, if (3.2) has a solution yeR’ , then we have
A'Q,y =Q,A"Q,Q,y = Q,b"(1:4m,1),
AR y=R A®R R y=R b*(1:4m,1),
ARS y =S A®S S y=S,b%(1:4m,1),
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and then
AR (len y’ Rn y’ Sn y)

= (b®(1:4m,1),Q,b"(1:4m,1),R b"(1:4m,1),S b®(1:4m,1))

=Db".
From Theorem 2.3, we know that(y'Qny’ R.Y:S.Y) is the real representation matrix of a canonical hyperbolic

quaternion matrix(marked as X ), and obtain AX=b
In conclusion, we have the following result.

3.1. Theorem
Let Ac Q™ beQy". Then equation (3.1) has a solution in Qu’ if and only if the real linear equation (3.2) has a

4n
solution in R™" . And if real linear equation (3.2) has the solution yeR , then

Iy, 11,3, 1K)y
is the solution of (3.1).
For the inverse, we have the following result.
3.2. Theorem
nxn -1\R _— Ry-1
LetAthc * Then A is invertible if and only if A% s invertible. And when A is invertible, (A7) =(AT)
Proof. IfAis invertible, there exists® Q@ such thatAB=1 By (a) of Theorem 2.1, we have

RpR — R —
ABT=17=Li thatis, A% is invertible.
R —
If A% is invertible, there exists B € R“™*" such that » B = o By (4) of Theorem 2.1, we have
AQ.BQ, =Q,A*Q.Q,BQ, =Q.1,Q=1,,.
R _ R _
ATS,BS, = L ATRBR, = L 56 wwe can get
AR B+Q,BQ, +S,BS, +R,BR,
4

Similarly,

4n*

By Theorem 2.2, we know that
B+Q,BQ, +S,BS, +R,BR,
4

is the real representation matrix of a canonical hyperbolic quaternion matrix. We denote this matrix as B and

RBAR — 5 _
obtain A B = Lan \which can derive AB =1 that is, A is invertible. W
Through the above proof, if B is the inverse of A" we can verify that
|

n

|1
%(In, il 1,k)(B+Q,BQ,+S,BS, +R.BR,) I”_
J

n

1.k
is the inverse of A . Through the above proof and the uniqueness of the inverse matrix, we can know that the

inverse B of A* belongs to Rr*™*" . And so we have
|

n

1 LIS P P P -
n J | i
Ink

is the inverse of A .
By the way, we can get the following interesting conclusion.

3.3. Corollary

Anx4 x . . .
Let DERI™™. Then its inverse (if exists) also belongs to Rr*™" “that is, D and its inverse have the same

structure.
By summing up the above conclusions, we can naturally get the following result.

3.4. Corollary
Let A<Qn D€ Qi Then the following are equivalent.
(1). AX=D has a unique solution;
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). A" is invertible;
(). A s invertible;
@) rank(A%) = 4n

By similar derivation, we can obtain the following further conclusions.

3.5. Theorem

Let Ae thmxn, Be thnlxm1 'C € thmxml'

nx

(1) AXB =C has a solution in Que * if and only if real matrix equation A“YB" =C" has a solution in R*""

() If ATYB® = C* has the solution Y € R™™ | then

n

1 L Inli
E(In, i1, 1 k)Y +QnYQn1 +SnYSnl + RnYRnl) Inl .
|n1k

is the solution of AXB=C
(3) If AYB® =C*¥ pas the unique solution Y , then Y € Rr*™™ and

l(In,lni,lnj,lnk)Y )
4 nlj
Inlk

is the unique solution of AXB=C

Next, we define a generalized inverse. Let A€Qu™ 1 X €Qu™ satisfies the conditions
(i).AXA = A, (ii).XAX = X, (iii).(AX)" = AX, (iv).(XA)" = XA, 3.3)

wecall X as T Moore-Penrose(T -MP) inverse of A
Let Y isthe MP inverse of A%, thatis, Y satisfies the conditions
(i). ARYAR = AR (i) YARY =Y, (iii).(ARY)T = ARY, (iv).(YAR)T = YAR.
From ATYA® = A® 'we have
Q.A*Q,Q,YQ,Q,AQ, =Q,AQ,
and then A" QYQ A" = A"

R T — R
From (ATY) =A Y,we have

(Q.A"Q,Q,YQ,)" =Q,(A"Q,Q,Y)'Q, =Q,A'Q,Q,YQ,
and then (A"QYQn)" = A'QYQ,
For similar derivation, we have
Q.YQ,A'Q,YQ, =Q.YQ, and (Q)YQ,A")’ =Q,YQ, A",

S.YSy and R,YR, are both MP inverses of

that is, Q.YQ, is also a MP inverse of A", For the same reason,
AR
It follows from the uniqueness of the MP inverse that
Y=QYQ, =SS, =RYR,.

nxm
From Theorem 2.4, we have Y € Rr™™ ot X €Qhe

and isthe T -MP inverse of A.
From the above discussion, we can get the following conclusion.

satisfy X" =Y | we can obtain that X satisfies (3.3)

3.6. Theorem
LEt A e thmxn .

(1). A hasaunique T -MP inverse.

Ry 4nx4m
@). (A7) €RT and
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m

1 o o Tl
Z(In,lnl,lnj,lnk)(AR)* L
Ik
is the T -MP inverse of A

By the way, we can also get the following interesting conclusion.
Corollary 3.3. Let DeRr

Fianlly, we give an example. Let A=A+ AI+AJ+AK with

(1 -12 0y, (-6 0 11
Ai_(o 8 OJ'AZ_(N 5 —7}

(0 -9 8) (-6 13 5
A3_(10 5 —9J'A“_(11 2 —14]'

We can get the MP inverse A" is (A7) =

0.0077 -0.0211 00143 00320 00124 00174 00131 0.0079
~0.0137 -0.0036 -0.0142 0.0053 0.0019 -0.0022 0.0359 0.0125
0.0123 00281 00330 00133 00240 -0.0028 -0.0025 -0.0179
0.0143 0.0320 00077 -0.0211 00131 0.0079 00124 0.0174
-0.0142 0.0053 -0.0137 -0.0036 0.0359 00125 0.0019 —0.0022
0.0330 00133 00123 00281 -0.0025 -0.0179 0.0240 -0.0028
00124 00174 00131 00079 00077 -0.0211 0.0143 0.0320
00019 -0.0022 00359 00125 -0.0137 -0.0036 -0.0142 0.0053
0.0240 -0.0028 -0.0025 -0.0179 0.0123 0.0281 0.0330 0.0133
00131 0.0079 00124 00174 00143 00320 00077 -0.0211
00359 00125 00019 -0.0022 -0.0142 0.0053 -0.0137 —0.0036
-0.0025 -0.0179 0.0240 -0.0028 0.0330 00133 00123 0.0281

which belongs to RT° The T -MP inverse of A is X+ X0+ Xg )+ Xk
X, = (A%)"(1:3,1:2), X, = (A®)"(4:6,1:2),
X, = (A")(7:9,1:2), X, = (A%)"(10:12,1: 2).

4mx4n

- Then D and its MP inverse have the same structure.

with

4. Conclusions

In this paper, we construct the real representation of canonical hyperbolic quaternion matrices and
systematically study its properties. Then, we discuss the canonical hyperbolic quaternion linear equations and study
the judgment and construction of solutions. Next, we give the necessary and sufficient condition for canonical
hyperbolic quaternion matrix invertibility. Finally, we define a generalized inverse and initially discuss its existence
and uniqueness. Some results are interesting.

We have only initially studied canonical hyperbolic quaternion matrices, and there are still a lot of problems
worthy of further discussion. For example, rank, norm, determinant, etc. In the future work, we will pay more
attention to the least squares problem.
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