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Abstract 
In this paper, we construct the real representation matrix of canonical hyperbolic quaternion matrices and give some 

properties in detail. Then, by means of the real representation, we study linear equations, the inverse and the 

generalized inverse of the canonical hyperbolic quaternion matrix and get some interesting results. 
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1. Introduction 
In 1843, Hamilton introduced the quaternion, which has the form of  

1 2 3 4= ,a a a i a j a k  
 

where  
2 2 2= = = 1, = = , = = , = =i j k ij ji k jk kj i ki ik j   

 

and 1 2 3 4, , ,a a a a
are real numbers. Since quaternions are non-commutative, they differ from complex numbers 

and real numbers. Quaternions and quaternion matrices play an important role in quaternionic quantum mechanics 

and field theory [1]. In 1849, the split quaternion(or coquaternion), which was found by James Cockle, is in the form 

of  

1 2 3 4= ,a a a i a j a k  
 

where  
2 2 2= 1, = = 1, = = , = = , = =i j k ij ji k jk kj i ki ik j    

 

and 1 2 3 4, , ,a a a a
are real numbers. Split quaternions are noncommutative, too. But split quaternion set contains 

zero-divisors, nilpotent elements and nontrivial idempotents [2, 3]. 

In 1892, Segre proposed modified quaternions so that commutative property in multiplication is possible [4]. In 

Catoni, et al. [5], the authors studied three three types of commutative quaternions: Elliptic quaternions, Parabolic 

quaternions and Hyperbolic quaternions. They are 4-dimensional like the set of quaternions, but contain zero-divisor 

and isotropic elements. Although commutative quaternion algebra theory is becoming more and more important in 

recent years and has many important applications in the areas of mathematics and physics [5-10], the current focus is 

mainly on canonical elliptic quaternions [11-14]. In these papers, H. Kösal and M. Tosun gave some properties of 

canonical elliptic quaternions and their fundamental matrices. After that, they investigated canonical elliptic 

quaternion matrices using properties of complex matrices. Then they defined the complex adjoint matrix(complex 

representation matrix) of canonical elliptic quaternion matrices and gave some of their properties. Recently, they 

proposed real matrix representations of canonical elliptic quaternions and their matrices and derived their algebraic 

properties and fundamental equations. 

As has been noticed, there is no paper that studied the theory on canonical hyperbolic quaternion matrices. In 

this paper, we will discuss canonical hyperbolic quaternion matrices. 

Let R denote the real number field and
= i j k  

hc
Q R R R R

denote the canonical hyperbolic quaternion set, 

where  
2 2 2= = = 1, = = , = = , = = .i j k ij ji k jk kj i ki ik j

 

For 1 2 3 4 1 2 3 4= , = ,a a a i a j a k b b b i b j b k      
hc

Q
 it is clear that 

1 1 2 2 3 3 4 4 2 1 1 2 4 3 3 4= = ( ) ( )ab ba a b a b a b a b a b a b a b a b i      
 

https://creativecommons.org/licenses/by/4.0/


Academic Journal of Applied Mathematical Sciences 

 

63 

1 3 3 1 2 4 4 2 4 1 1 4 2 3 3 2( ) ( ) .a b a b a b a b j a b a b a b a b k       
 

This paper is organized as follows. In Section 2, we construct the real representation of canonical hyperbolic 

quaternion matrices and systematically study its properties. In Section 3, we discuss the canonical hyperbolic 

quaternion linear equations and study the judgment and construction of solutions. Next, we give the necessary and 

sufficient condition for canonical hyperbolic quaternion matrix invertibility. Finally, we define a generalized inverse 

and initially discuss its existence and uniqueness. Some results are interesting. In Section 4, we give some 

conclusions. 

 

2. Real Representation of Canonical Hyperbolic Quaternion Matrices 
In this section, we define the real representation of canonical hyperbolic quaternion matrices and systematically 

study its properties. It is worth mentioning that, unlike other quaternions, the canonical hyperbolic quaternion is not 

the natural generalization of complex number. It is hard for its matrices to construct the complex representation and 

we only discuss the real representation. For real representations of quaternion matrices, split quaternion matrices and 

elliptic quaternion matrices, many results have been obtained [2, 3, 14-17] and their references for details). Inspired 

by them, we define the real representation of canonical hyperbolic quaternion matrices as follows. 

For any 1 2 3 4= , ( = 1,2, ,3,4),m n m n

lA A A i A j A k A l     
hc

Q R
we define its real representation matrix or real 

representation
RA as follows.  

1 2 3 4

2 1 4 3 4 4

3 4 1 2

4 3 2 1

.R m n

A A A A

A A A A
A

A A A A

A A A A



 
 
  
 
 
 

R

 (2.1) 

The set of all matrices shaped like (2.1) is denoted by
4 4m n

Rr . 

Let  

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
= , = , = .

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

t t t

t t t

t t t

t t t

t t t

I I I

I I I
Q S R

I I I

I I I

     
     
     
     
     
       

By simple computation, we can obtain the following properties.  

 

2.1. Theorem 

 Let
, , ,m n n sA B C    

hc hc
Q Q R

. Then 

 (1).  
( ) = , ( ) = , ( ) = ;R R R R R R R RA B A B A A AC A C  

 

(2).  
2 2 2

4= = = , = , = , = ;T T T

m m m m m m m m m mQ S R I Q Q R R S S
 

           (3). 
= = , = = , = = ;m m m m m m m m m m m m m m mR Q Q R S Q S S Q R S R R S Q

 

    (4)  . 
= , = , = .R R R R R R

m n m n m nQ A Q A R A R A S A S A
 

It is easy to verify that the following results are right. 

 

2.2. Theorem 

 For any 
4 4m nV R ,  

4 4 ,m n

m n m n m nV Q VQ R VR S VS    Rr
 

and it is the real representation matrix of the canonical hyperbolic quaternion matrix  

1
= ( , , , )( ) .

4

n

n

m m m m m n m n m n

n

n

I

I i
V I I i I j I k V Q VQ R VR S VS

I j

I k

 
 
   
 
 
   

Proof. PartitioningV into  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

=

V V V V

V V V V
V

V V V V

V V V V

 
 
 
 
 
   

and taking  

ˆ = ,m n m n m nV V Q VQ R VR S VS  
 

we can verify
4 4ˆ m nV Rr with  
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11 11 22 33 44 21 21 12 43 34
ˆ ˆ= , = ,V V V V V V V V V V     

 

31 31 42 13 24 41 41 32 23 14
ˆ ˆ= , = ,V V V V V V V V V V     

 

and V̂ is the real representation matrix of the canonical hyperbolic quaternion matrix 

11 21 31 11

1ˆ ˆ ˆ ˆ ˆ= = ( , , , ) .
4

n

n

m m m m

n

n

I

I i
V V V i V j V k I I i I j I k V

I j

I k

 
 
   
 
 
   W 

Further, we can also get the following construction method. 

 

2.3. Theorem 

 For any
4m nV R ,  

4 4( , , , ) .m n

m m mV Q V R V S V Rr
 

 

2.4. Theorem. 

 For any
4 4m nV R , 

4 4m nV Rr if and only if  

= = = .m n m n m nV Q VQ R VR S VS
 

A square matrix
n nA 

hc
Q

is said to be orthogonal matrix , if =TAA I and invertible matrix, if = =AB BA I for 

some
,n nB 

hc
Q

 where
TA is the transpose of A . For the above concepts, the following results can be easily 

verified.  

 

2.5. Theorem 

 Let
, , .m n n p n nA B U    

hc hc hc
Q Q Q

Then the following properties hold: 

(1). 
1 1 1( ) =AB B A  

 if A and B are invertible;1  

     (2).     
( ) = ( )T R R TA A

; 

     (3).     
( ) =T T TAB B A

; 

(4). U is a orthogonal matrix if and only if
RU is a orthogonal matrix.  

Proof. (1)and (2) can be easily verified. 

(3)From
(( ) ) = (( ) ) = ( ) = ( ) ( ) = ( ) ( ) = ( )T R R T R R T R T R T T R T R T T RAB AB A B B A B A B A

,we have 
( ) =T T TAB B A

. 

(4) IfU is a orthogonal matrix, i.e., =TUU I . By (1) of Theorem 2.1 and (2) of this theorem, we have 

4( ) = ( ) = =R T R R R T R

nU U U U I I
, that is,

RU is a orthogonal matrix, and vice versa.      

 

3. Some Applications of the Real Representation 
Various quaternion matrix equations have been studied in a large number of papers. In He, et al. [18], Structure 

[19], He, et al. [20], the authors discussed some quaternion matrix equation and equations by means of matrix 

decomposition, rank equality, real representation and so on. In Zhang, et al. [2], Jiang, et al. [21], the authors studied 

some split quaternion matrix equations by real or complex representation. In Kösal and Tosun [14], the authors 

proposed the real matrix representation of canonical elliptic quaternion matrices and considered their equations. In 

this section, we study some applications of the real representation, including linear equation, inverse and MP inverse. 

Let
, .m n mA b 

hc hc
Q Q

If linear equation  

=Ax b                             (3.1) 

has the solution
nx

hc
Q

, then we have  

=R R RA x b  
and therefore real linear equation  

= (1: 4 ,1)R RA y b m
 (3.2) 

has the solution
nyR

, where the symbol
( : , : )M i j k l

 represents the submatrix of M containing the 

intersection of rows i to
j

and columns k to l . 

On the other hand, if (3.2) has a solution 
nyR

, then we have  

= = (1: 4 ,1),R R R

n m n n mA Q y Q A Q Q y Q b m
 

= = (1: 4 ,1),R R R

n m n n mA R y R A R R y R b m
 

= = (1: 4 ,1),R R R

n m n n mA S y S A S S y S b m
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and then  

( , , , )R

n n nA y Q y R y S y
 

= ( (1: 4 ,1), (1: 4 ,1), (1: 4 ,1), (1: 4 ,1))R R R R

m m mb m Q b m R b m S b m
 

 = .Rb  

From Theorem 2.3, we know that
( , , , )n n ny Q y R y S y

is the real representation matrix of a canonical hyperbolic 

quaternion matrix(marked as x ), and obtain =Ax b .. 

In conclusion, we have the following result.  

 

3.1. Theorem 

 Let
, .m n mA b 

hc hc
Q Q

 Then equation (3.1) has a solution in
n

hc
Q

if and only if the real linear equation (3.2) has a 

solution in
4n

R . And if real linear equation (3.2) has the solution 
4nyR

, then  

( , , , )n n n nI I i I j I k y
 

is the solution of (3.1).  

For the inverse, we have the following result.  

 

3.2. Theorem 

 Let
.n nA 

hc
Q

 Then A is invertible if and only if
RA is invertible. And when A is invertible, 

1 1( ) = ( ) .R RA A 

 

Proof. If A is invertible, there exists
n nB 

hc
Q

such that =AB I . By (a) of Theorem 2.1, we have 

4= =R R R

nA B I I
, that is,

RA is invertible. 

If
RA is invertible, there exists

4 4n nB R  such that 4=R

nA B I
. By (4) of Theorem 2.1, we have  

4 4= = = .R R

n n n n n n n n nA Q BQ Q A Q Q BQ Q I Q I
 

Similarly, 4 4= , = .R R

n n n n n nA S BS I A R BR I
 So we can get  

4= .
4

R n n n n n n

n

B Q BQ S BS R BR
A I

  

 
By Theorem 2.2, we know that  

4

n n n n n nB Q BQ S BS R BR  

 

is the real representation matrix of a canonical hyperbolic quaternion matrix. We denote this matrix as B̂ and 

obtain 4
ˆ =R R

nA B I
, which can derive

ˆ = ,AB I  that is, A  is invertible.        W  

Through the above proof, if B is the inverse of
RA , we can verify that  

1
( , , , )( )

16

n

n

n n n n n n n n n n

n

n

I

I i
I I i I j I k B Q BQ S BS R BR

I j

I k

 
 
   
 
 
   

is the inverse of A . Through the above proof and the uniqueness of the inverse matrix, we can know that the 

inverse B of
RA  belongs to

4 4m n
Rr . And so we have  

1
( , , , )

4

n

n

n n n n

n

n

I

I i
I I i I j I k B

I j

I k

 
 
 
 
 
   

is the inverse of A .  

By the way, we can get the following interesting conclusion.  

 

3.3. Corollary 

 Let 
4 4 .n nD Rr  Then its inverse (if exists) also belongs to 

4 4n n
Rr , that is, D  and its inverse have the same 

structure.  

By summing up the above conclusions, we can naturally get the following result.  

 

3.4. Corollary  

Let 
, .n n nA b 

hc hc
Q Q

 Then the following are equivalent. 

(1). =Ax b  has a unique solution; 
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(2).   
RA  is invertible; 

(3).   A  is invertible; 

(4)  . 
( ) = 4Rrank A n

. 

By similar derivation, we can obtain the following further conclusions.  

 

3.5. Theorem 

 Let 
1 1 1, , .

n m m mm nA B C
   

hc hc hc
Q Q Q

 

(1) =AXB C  has a solution in 
1

n n

hc
Q

 if and only if real matrix equation =R R RA YB C  has a solution in 
4 4

1
n n

R

. 

(2) If =R R RA YB C  has the solution 
4 4

1
n n

Y


R , then  

1

1

1 1 1

1

1

1
( , , , )( )

16

n

n

n n n n n n n n n n

n

n

I

I i
I I i I j I k Y Q YQ S YS R YR

I j

I k

 
 
 

    
 
 
 
   

is the solution of =AXB C . 

(3) If =R R RA YB C  has the unique solution Y , then 
4 4

1
n n

Y


Rr  and  

1

1

1

1

1
( , , , )

4

n

n

n n n n

n

n

I

I i
I I i I j I k Y

I j

I k

 
 
 
 
 
 
 
   

is the unique solution of =AXB C .  

Next, we define a generalized inverse. Let 
.m nA 

hc
Q

 If 
n mX 

hc
Q

 satisfies the conditions  

( ). = , ( ). = , ( ).( ) = , ( ).( ) = ,T Ti AXA A ii XAX X iii AX AX iv XA XA
 (3.3) 

we call X  as T  Moore-Penrose( T -MP) inverse of A . 

Let Y  is the MP inverse of 
RA , that is, Y  satisfies the conditions  

( ). = , ( ). = , ( ).( ) = , ( ).( ) = .R R R R R T R R T Ri A YA A ii YA Y Y iii A Y A Y iv YA YA
 

From =R R RA YA A , we have  

=R R R

m n n m m n m nQ A Q Q YQ Q A Q Q A Q
 

and then 
=R R R

n mA Q YQ A A
. 

From 
( ) =R T RA Y A Y

, we have  

( ) = ( ) =R T R T R

m n n m m n n m m n n mQ A Q Q YQ Q A Q Q Y Q Q A Q Q YQ
 

and then 
( ) =R T R

n m n mA Q YQ A Q YQ
. 

For similar derivation, we have  

= ( ) = ,R R T R

n m n m n m n m n mQ YQ A Q YQ Q YQ and Q YQ A Q YQ A
 

that is, n mQ YQ
 is also a MP inverse of 

RA . For the same reason, n mS YS
 and n mR YR

 are both MP inverses of 
RA . 

It follows from the uniqueness of the MP inverse that  

= = = .n m n m n mY Q YQ S YS R YR
 

From Theorem 2.4, we have 
4 4n mY Rr . Let 

n mX 
hc

Q
 satisfy =RX Y , we can obtain that X  satisfies (3.3) 

and is the T -MP inverse of A . 

From the above discussion, we can get the following conclusion.  

 

3.6. Theorem  

Let 
.m nA 

hc
Q

 

(1). A  has a unique T -MP inverse. 

(2). 
† 4 4( )R n mA Rr

 and  
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†1
( , , , )( )

4

m

mR

n n n n

m

m

I

I i
I I i I j I k A

I j

I k

 
 
 
 
 
   

is the T -MP inverse of A .  

By the way, we can also get the following interesting conclusion. 

Corollary 3.3. Let 
4 4 .m nD Rr  Then D  and its MP inverse have the same structure.  

Fianlly, we give an example. Let 1 2 3 4=A A A i A j A k  
 with  

1 2

1 12 0 6 0 11
= , = ,

0 8 0 17 5 7
A A

    
   

     
 

3 4

0 9 8 6 13 5
= , = .

10 5 9 11 2 14
A A

    
   

      

We can get the MP inverse 
RA  is 

†( ) =RA
 

0.0077 0.0211 0.0143 0.0320 0.0124 0.0174 0.0131 0.0079

0.0137 0.0036 0.0142 0.0053 0.0019 0.0022 0.0359 0.0125

0.0123 0.0281 0.0330 0.0133 0.0240 0.0028 0.0025 0.0179

0.0143 0.0320 0.0077 0.0211 0.0131 0.0079 0.0124 0.017



   

  

 4

0.0142 0.0053 0.0137 0.0036 0.0359 0.0125 0.0019 0.0022

0.0330 0.0133 0.0123 0.0281 0.0025 0.0179 0.0240 0.0028

0.0124 0.0174 0.0131 0.0079 0.0077 0.0211 0.0143 0.0320

0.0019 0.0022 0.0359 0.0125 0.0137 0.0036 0.0142 0

   

  



    .0053

0.0240 0.0028 0.0025 0.0179 0.0123 0.0281 0.0330 0.0133

0.0131 0.0079 0.0124 0.0174 0.0143 0.0320 0.0077 0.0211

0.0359 0.0125 0.0019 0.0022 0.0142 0.0053 0.0137 0.0036

0.0025 0.0179 0.0240 0.0028 0.0330 0.0133 0.01

  



   

  

,

23 0.0281

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

which belongs to 
12 8.

Rr  The T -MP inverse of A  is 1 2 3 4X X i X j X k  
 with  

† †

1 2= ( ) (1: 3,1: 2), = ( ) (4 : 6,1: 2),R RX A X A
 

† †

3 4= ( ) (7 : 9,1: 2), = ( ) (10 :12,1: 2).R RX A X A
 

 

4. Conclusions  
In this paper, we construct the real representation of canonical hyperbolic quaternion matrices and 

systematically study its properties. Then, we discuss the canonical hyperbolic quaternion linear equations and study 

the judgment and construction of solutions. Next, we give the necessary and sufficient condition for canonical 

hyperbolic quaternion matrix invertibility. Finally, we define a generalized inverse and initially discuss its existence 

and uniqueness. Some results are interesting. 

We have only initially studied canonical hyperbolic quaternion matrices, and there are still a lot of problems 

worthy of further discussion. For example, rank, norm, determinant, etc. In the future work, we will pay more 

attention to the least squares problem. 
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