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Abstract

H, (L 1) = 6,8, — o’
In this paper, we discuss the Fekete-Szeg® functional 2( H ) 0103~ 140,

f(z)

z

which is defined by coefficients of

the function g(z)= IOQ[ J for the analytic and univalent function f (z)=z+a,z* +a,2° +---,

zeU ={Z el :|Z|<1}, where # is a real or complex number, and&,, &, and J, are the first three
coefficients from the series expansion of the function g (Z) . Our main purpose in this study is to find the upper
bound for|5l§3 —,u522|, when f €S™(a) or f €eC(x), where S™ (&) and C(«r) are, respectively, the class

of starlike functions of order & and the class of convex functions of order &¢ fora e [0,1) .
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1. Introduction
U ={ZED : |z|<1}

H H
Let and (U) be the analytic functions in U and A the subclass of (U)

functions f having the power series expansion

f(z)=z+a,2° +a,2° +a,2' +-=z+ ) 82", a, €l
n=2 , (1.1)

f(0)=0=1'(0)-1
normalized by ( ) ( ) . Also, let’s S be the subclass of A consisting also univalent
functions.

The well-investigated subclasses of S are the class S (a) of starlike functions of order & and the class
a (0,1
C (a) of convex functions of order & ( [ )) , which given as follows

' zf
S*(Ol)z{f esS: Re(n;(—(zz))j>a, ZEU} C(a)= feS:Re (f’—
and

. S (a Cla N o .
The function classes ( ) and ( ) have been investigated rather extensively in Kim and Srivastava [1],

Ravichandran, et al. [2], Srivastava, et al. [3] Xu, et al. [4] and the references therein.
For =0 , we obtain well-known subclasses of analytic and univalent functions

: _ (zf’(z))’
S*z{feS:Re(Zf (Z)J>O,ZGU} C= fes.ReW >0, zeU
and

f(z)

respectively, starlike and convex function classes [5-7].
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* * 1
It is easy to see that S (a)c S and C(a)CC for each @ E[O’ ) Also, between of the classes

C(C(a)) and S (S (a)) is the relationship feCoif'es (Orf eC(a)@Zf €S (a) ) [5].
Among the important tools in the theory of analytic functions are Hankel determinant, which defined by
‘ ‘j n,n+q- n,n+q-1

fE Jnn+ql a1 1 n= 123 .y q=1,2,3,...

coefficients of the function [8]. Generally,

= l p—y —_—
these determinants was investigated by researchers with q . The functional 2( ) %8 is known as the

H, (L 1) =a, - pg

Fekete-Szegd functional and one usually considers the further generalized functional

la, — 18|

, where

H is a number [9]. Finding upper bound for
analytic functions.

is known as the Fekete-Szegd problem in the theory of

In Koegh and Merkes [10], solved the Fekete-Szegd problem for the classes of starlike and convex functions for

some real # . The Fekete-Szeg6 problem has been investigated by many mathematicians for several subclasses of
analytic functions [8, 11-18].

It is well known that logarithmic coefficients 5”, n=123,.. of a function
differentiation both sides of the following equality

9(z)= Iog[ J 2}:52

fes are defined by

and play a central role in the theory of analytic functions [19].
In Thomas and Derek [19]. By Thomas given sharp estimates for the modulus of the initial three coefficients of

z
the function g ( ) when the function f belong to some subclass of the analytic and univalent functions.
‘ ‘j:n,n+q—1
Let fes . We define the determinants Hi=nnea-1 n=123.. q=1 2’3"", where !,
P Hq(n
1=12,34,... are the coefficients of the function 9 . The determinants = ) we next recall the logarithmic

(
H2(1)= 6,6, 67

Hankel determinants of the function f . Also, we define the functional , more general

H =0,0, — uo.
2( ) 19~ H% for some number 4 , which we will recall the Fekete-Szegd type functional of the function

Foo 6.5, — 53| f

. Finding upper bound for , we will recall as the Fekete-Szeg0 type problem for the function

5,5, S'(a) . C(a
In this paper, we obtain the estimates for ‘ 73721 while F'is either in () orin ( )
In order to prove our main results, we need the following lemma [20] concerning functions in the class P e

=1 R z))>
analytic functions P such that p(O) and e( p( )) 0 for all Z€U | That is, peP have the power
series expansion as follows

P(2)=1+pz+p2°+ P2+ ;oY

1.1. Lemma

Let pe P
Moreover,

|| <2 N=123.. N N=123..

, then for every . These inequalities are sharp for each

2p2 pl (4_ p12)x

4p, = p} +2(4- p7 ) pix—(4-p2) pox* +2(4-p7 ) (1-|X")2

0 2 g M1 <1

for some complex with

f ‘5153 - 522

2. Bounds o ‘ for the Starlike Functions

) ) ) _ . feS(a
In this section, we investigate Fekete-Szego type problem for the function ( ) .
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n=123 feS

The logarithmic coefficients 2 , "'+ of a function
differentiation of both sides

Iog[ j 225 z"

are defined by the following equality with

and play a central role in the theory of analytic functions [19]. @y
2.1. Theorem
Letthe function | (2) given by (L.1) be in the class S'(a) acl0l) L.
6,6, ~62|< (t-a)
proof Let | €5 (@) @<[01) o 0
Z: ((zz)) =a+(1-a)p(2) -

where peP .
From (2.2), we have

1+a,2+(2a,—a; )2° +(3a, ~3a,8,+8; ) 2° +--- =1+ (1-a)( pz+ p,2° + p,2° +---)
Comparing coefficients of Z , 2 and Zs,we get

2 =(1-a)p, 2,-3 =(1-a)p, 38, -3+ =(l-a)p,

Differentiating both sides of (2.1) and upon S|mpI|f|cat|on we have

a,2+(2a,—a; ) 2° +(38, —38,3, + a5 ) 2° ++-- = 25,2+ 45,2° + 65,2° +
Comparing the coefficients of Z for 2 N =123 , We get
a 1 1
51=?2’ 52:1(2613_6‘22), 53:6(3a4—3a2a3+a§). 04
Substituting the values 51, % and % from (2.4) in 6,9, 52 , We can write
2 _ 9 2
5,6, — 02 = 5(3614 —3a,a, +<312)—E(2a3 -a}) |
2
Also, using (2.3) in the expression 0,0, = 0; , We obtain
1-a)
5,0,~ 55 = ( 48) (4p,p;—3p3)
: 2.5)

We now use Lemma 1.1 to express the coefficients P and Ps in term of Py to obtain, after simplification,

p, =t X|:

E[O’ 2], setting | 6[0’1], and finally using the triangle

(1-a) E+(4—t2)t2§ +(4—t2)(12+t2)§2
48 |4 2 4

normalizing the coefficient Py so that
inequality,

\55 52\< (-

+2(4—t2)(l—§2)t} :=%¢(t,§) (say).
#(t,) Q={(t,£): te[0,2] and 5&[0,1]}

Now, we need to maximize the function in the square

#(t,$)

with respect to t and then s and equating to zero

(2’_1) 20 and ¢(O’O) =0 , both

It is easily verified that differentiating the function

. . 0,0 2,-1) _.
shows that the only admissible extremum points are ( ) or ( ) . Since
of these points are not the maximum points of the function.
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#(t.%)

Therefore, we must investigate the maximum of the function
For =0, s € [0’1] we have
$(0,£) =127 <12
For t=2 5 € [0’1] , We obtain
$(2,£)=4

Now, let ¢=0 and te [O’ 2] . Then,

on the boundary of the closed square Q.
(2.6)
@7)

t
t,0)=—(t*-8t* +32
9(10)= (¢ - +32)
By simple computation, we find
¢'(t,0)=t>-6t>+8 te[0,2]
t, =1.3054

, Where b is a numerical solution of the equation
3 2 _ ! >
-6t +8—0, is a critical point of the function ¢(t,0). Since ¢(t’0) 0 when te[O,tO) and

¢'(t’ O) <0 when te (tO,Z] , the point b is @ maximum point of the function ¢(t’ 0) . So that,
max {#(t,0): te[0,2]} = 4(t,,0)

From this, we can easily verified that

. (2.8)
Finally, for ¢=1 and te [O’ 2] , We write

(t1) =412

. (n) — _
It is clear that 1=0 is a critical point for the function ¢(t'1). Since ¢ (0'1) =0 for n=123 and

¢ (0’1) * 0, ¢ (O’l) =-12< 0, then =0 is a maximum point for the function ¢(t'1) . Therefore,
max {$(t,1): te[0,2]} =¢(0,1)=12

(2.9)
From (2.6)-(2.10), we obtain
max{¢(t,¢): (t.5)eQf=max{4, 12, ¢(t,,0)} 2.10)
Since ¢(t°’0) <12 , from (2.11), we write

max{g(t,): (t.§)eQ}=12
Thus, the proof of Theorem 2.1 is completed.
Choosing & = 0 in Theorem 2.1, we arrive at the following result.

2.2. Corollary

Let the function f (Z) given by (1.1) be in the class S . Then,
1
|6,0,- 55| <=
4 .

‘5153 - 522

3. Bounds of ‘ for the Convex Functions

feCla
In this section, we investigate Fekete-Szego type problem for the function ( ) .

3.1. Theorem
Let the function f (Z) given by (1.1) be in the class C(a), @< [0’1). Then,
(1-a)’ (5a° —12a +24)

144(052 —2a+5)

16,0, 53 |<
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Proof. Let f eC(a), @ 6[0’1)
() s ama)e(

f’(Z) B (1:- )p( ) (3.1)
pel

. Then,

where the function

’
Replacing f (Z) (Zf ( )) and p(z) with their equivalent series expressions in (3.1), we have

o0

> n(n-1ja,z"* = (1—a)(1+ inanz“jxi p2z"
n=2 n=1

n=2
Upon simplification, we obtain

n(n-1)a,z"" = (1-a){pz+(p, +2pa,) 2" +(p, +2p,a, +3pa,) 2°
=2

n

+"'+(pn—1+2pn—2a2+3pn—3a3+'”+(n_l) plan—l)zn_l_'_”‘}'

(3.2)
Equating the coefficients of z" , n=123,. , We get
n(n-1)a, =(1-a)[ P,1+2P, ,2, +3P, a2+ +(N-1)pa,, | n=2,34,...
that is,
l-a &
a, = kp,_.a
n(n—l)kz_; " n=234.. 3
From (3.3), we have
l-a l-o l-«o
8 =" P 8 =——(P,+2p3,) & ="-(P;+2p,3,+3pa;)
2 , 6 , 2 . (3.4)
Substituting the values of 3, and % in the next equalities in (3.4), after simplifying, we get
l-«o l-a 2
a, :T[ p, +(1-a) pf], a, =7[2 p,+3(1-a) p,p, +(1-a) pf] 05

Considering the value of 3, from (3.4) and the values of 8 and 4 from (3.5) in (2.4), we obtain the
0, O. 0.

following expression for ~1, "2 and 3

1- 1- 1-
5 :T“ 3 5, :4—80‘[4p2 +(1-a)p?] &, :4—80‘[2p3 +(1-a)pp, |

2
Substituting the values of 51, %, and % from (3.6) in the expression 6,0; = 6; , We can write
5.8, - 67 _(-a) x[24p p, +4(1-a) p2p, ~16p: —(1-a)’ p“}
1¥3 2 2304 1M3 1 M2 2 1 . (37)

We now use Lemma 1.1 to express the coefficients P2 and Ps in term of Py in the right hand side of (3.7), we
have

24p,p,+4(1-a) p; p, 16} —(1-a) p!
=(3-a%)p +2(3—a)(4-p7 ) pix—2(8+ p7 ) (4 - pf ) x* +12(4- pf)(1—|x|2) p,Z.
p=t<[0,2] X =¢e[0]]

Normalizing the coefficient Py so that
inequality to last equality, we obtain

[24p,p, +4(1-a) p7p, ~16p; —(1-a)’ pf
<(3-a?)t' +2(3-a)(4-t7 )P +2(t-2)(t-4)(4-t7) &
+12(4-t*)t=F(1,£) (say).

, setting , and finally using the triangle

(3.8)
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Where
F(t,&)=(3-a’)t* +2(3-a)(4-1* )P +2(t-2)(t-4) (41" ) £ +12(4-t°)t
0,2]x[0,1]

. - F(t, ,
We next maximize the function ( 5) on the closed rectangle [

F(t.<)

.(3.9)
. Differentiating the function

partially with respect to S , We get

R/ (t6)=2(4-t)[3-a)t r2(t-2)(t-4)¢]

Since R (t,§) =0 on the closed rectangle [O'Z]X[O’l] for all ¢ E[O’l), the function F (t’f) is an

, , . : , I N : 01
increasing function of 4 and hence it cannot have a maximum value at any point in the interior of the interval [ ]
. So that,

max {F (t,£): &£e[0,1]} =F(t,1)=9(t) (say)

(3.10)
for fixed te [0’ 2] .
In view of (3.10) and (3.9), after simplifying, we get
o(t)=—(a® —2a+5)t' +8(2—a)t’ +64 tef0,2] 1)

. . _ t _ 0,2 _
We now use elementary calculus to find the maximum of the function (/)( ) on the interval [ ] . By simple
computation, we find

(/)'(t)=—4t[(a2—2a+5)t2—4(2—a)]. 512

4(2-a)

t, = |
a®—2a+5 (it is easily

! — p—
Considering ¢ (t)—O from (3.12) we can easily see that L=0 and
verified that b€ (0’ 2) for all @< [0'1) ) are two admissible critical points for the function go(t).

We use the second derivative test to find extremum point of the function qp( ) Differentiating (3.12), we get

¢'(t)=12(~0 +2-5)t* +16(2-a) 613)

¢"(0)=16(2—-c)>0

From the equation (3.13), we can easily see that ; that is, the point L=0 is a

minimum point for the function qD(t).
. 4(2-a)
274l 2 . &
We now discuss the case a”—2a+5 . Using the value L in (3.13), after simplification, we obtain
9" (t,)=-32(2-a)<0

. t . .
Hence, by the second derivative test, go( ) has a local maximum value at the point E . Therefore,

max{p(t): te(0,2)}=p(t,)= 16(5a% ~120 + 24)

a2—2a+5 ) (314)
2)=16(3-a?)<16max(3—«a?)<48 t
Also, since (0( ) ( “ ) OS“<1( “ ) <¢( 2), the function qo(t) has the maximum

value on the interval [O, 2] in the point E .
Considering this fact, (3.14), (3.10) and (3.8), we get

16(5a* -12a + 24
‘24|01P3+4(1—“) pip, ~16p; ~(L-a)” pf (a2—2a+5 ) (3.15)

From the expression (3.7) and inequality (3.15), by simplification, we obtain
(1-a)’ (50* —12a +24)
144(a* - 20 +5)

<

16,0, 3;|<
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Thus, the proof of Theorem 3.1 is completed.
Choosing & = 0 in Theorem 3.1, we have the following result.

3.2. Corollary
Let the function f (Z) given by (1.1) be in the class C. Then,
1
5,0, — 02| < —
‘ 193 2‘ 30
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