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Abstract 

In this paper, we discuss the Fekete-Szegö functional 
  2

2 1 3 21,H     
 which is defined by coefficients of 

the function  
 

log
f z

g z
z

 
  

 
 for the analytic and univalent function   2 3

2 3f z z a z a z    , 

 : 1z U z z    , where 


 is a real or complex number, and 1 , 2  and 3  are the first three 

coefficients from the series expansion of the function  g z . Our main purpose in this study is to find the upper 

bound for
2

1 3 2   , when  *f S   or  f C  , where  *S   and  C   are, respectively, the class 

of starlike functions of order   and the class of convex functions of order   for  0,1 . 
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1. Introduction 

Let 
 :  1U z z  

 and 
 H U

 be the analytic functions in U  and A  the subclass of 
 H U

 

functions 
f

 having the power series expansion 

  2 3 4

2 3 4

2

,  n

n n

n

f z z a z a z a z z a z a




        
,                                 (1.1) 

normalized by 
   0 0 0 1f f   

. Also, let’s S  be the subclass of  A  consisting also univalent 

functions.  

The well-investigated subclasses of S  are the class 
 *S 

 of starlike functions of order   and the class 

 C 
 of convex functions of order   

  0,1
, which given as follows 

 
 

 
* :  Re ,  

zf z
S f S z U

f z
 

   
      
     and 

 
  
 

:  Re ,  
zf z

C f S z U
f z

 

           
   . 

The function classes 
 *S 

 and 
 C 

 have been investigated rather extensively in Kim and Srivastava [1], 

Ravichandran, et al. [2], Srivastava, et al. [3] Xu, et al. [4] and the references therein.  

For 0  , we obtain well-known subclasses of analytic and univalent functions  

 

 
* :  Re 0,  

zf z
S f S z U

f z

   
      
     and 

  
 

:  Re 0,  
zf z

C f S z U
f z

           
   , 

respectively, starlike and convex function classes [5-7]. 
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It is easy to see that 
 * *S S 

 and 
 C C 

 for each 
 0,1

. Also, between of the classes 

  C C 
 and 

  * *S S 
 is the relationship 

*f C zf S  
 

    *or  f C zf S   
 [5]. 

Among the important tools in the theory of analytic functions are Hankel determinant, which defined by 

coefficients of the function 
f S

 as 
 

, 1

, 1

j n n q

q j j n n q
H n a

  

  


, 1=1a
, 

1,2,3,...,n   1, 2,3,...q 
 [8]. Generally, 

these determinants was investigated by researchers with 
2q 

. The functional 
  2

2 3 21H a a 
 is known as the 

Fekete-Szegö functional and one usually considers the further generalized functional  
  2

2 3 21,H a a  
, where 


 is a number [9]. Finding upper bound for 

2

3 2a a
 is known as the Fekete-Szegö problem in the theory of 

analytic functions.  

 

In Koegh and Merkes [10], solved the Fekete-Szegö problem for the classes of starlike and convex functions for 

some real 


. The Fekete-Szegö problem has been investigated by many mathematicians for several subclasses of 

analytic functions [8, 11-18]. 

It is well known that logarithmic coefficients n , 
1,2,3,...n 

 of a function 
f S

 are defined by 

differentiation both sides of the following equality 

 
 

1

log 2 n

n

n

f z
g z z

z






 
  

 


, 

and play a central role in the theory of analytic functions [19]. 

In Thomas and Derek [19]. By Thomas given sharp estimates for the modulus of the initial three coefficients of 

the function 
 g z

 when the function 
f

 belong to some subclass of the analytic and univalent functions. 

Let 
f S

. We define the determinants 
 

, 1

, 1

j n n q

q j j n n q
H n 

  

  


, 
1,2,3,...,n 

 
 1,2,3,...q 

, where j
, 

1,2,3,4,...j 
 are the coefficients of the function 

g
. The determinants 

 qH n
 we next recall the logarithmic 

Hankel determinants of the function 
f

. Also, we define the functional 
  2

2 1 3 21H    
, more general 

  2
2 1 3 21H    

 for some number 


, which we will recall the Fekete-Szegö type functional of the function 

f
. Finding upper bound for 

2

1 3 2  
, we will recall as the Fekete-Szegö type problem for the function 

f
.  

In this paper, we obtain the estimates for 

2

1 3 2  
, while 

f
 is either in 

 *S 
 or in 

 C 
.  

In order to prove our main results, we need the following lemma [20] concerning functions in the class  , i. e. 

analytic functions 
p

 such that 
 0 1p 

 and 
  Re 0p z 

 for all z U . That is, 
p

 have the power 

series expansion as follows     

  2 3

1 2 31p z p z p z p z    
, z U . 

 

1.1. Lemma  

Let 
p

, then 
2np 

 for every 
1,2,3,...n 

 . These inequalities are sharp for each 
1,2,3,...n 

.  

Moreover,  

 2 2

2 1 12 4p p p x  
, 

      23 2 2 2 2

3 1 1 1 1 1 14 2 4 4 2 4 1p p p p x p p x p x z       
 

for some complex 
,  x z

 with 
1x 

, 
1z 

.    

 

2. Bounds of 
2

1 3 2  
 for the Starlike Functions 

In this section, we investigate Fekete-Szegö type problem for the function 
 *f S 

. 
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The logarithmic coefficients n , 
1,2,3,...n 

 of a function 
f S

 are defined by the following equality with 

differentiation of both sides 

 

1

log 2 n

n

n

f z
z

z






 
 

 


,                                                                                      (2.1) 

and play a central role in the theory of analytic functions [19]. 

 

2.1. Theorem 

 Let the function 
 f z

 given by (1.1) be in the class 
 *S 

, 
 0,1

.  Then, 

 
2

2

1 3 2

1

4


  


 

. 

Proof. Let
 *f S 

, 
 0,1

. Then,  

 

 
   1

zf z
p z

f z
 


  

,                                                                                   (2.2) 

where 
p

.  

From (2.2), we have 

      2 2 3 3 2 3

2 3 2 4 2 3 2 1 2 31 2 3 3 1 1a z a a z a a a a z p z p z p z            
 

Comparing coefficients of z , 
2z  and 

3z , we get 

 2 11a p 
, 

 2

3 2 22 1a a p  
, 

 3

4 2 3 2 33 3 1a a a a p   
.            (2.3) 

Differentiating both sides of (2.1) and upon simplification, we have  

   2 2 3 3 2 3

2 3 2 4 2 3 2 1 2 32 3 3 2 4 6a z a a z a a a a z z z z           
 . 

Comparing the coefficients of 
nz  for n , 

1,2,3n 
, we get 

2
1

2

a
 

, 
 2

2 3 2

1
2

4
a a  

, 
 3

3 4 2 3 2

1
3 3

6
a a a a   

.                                    (2.4) 

 Substituting the values 1 , 2  and 3  from (2.4) in 

2

1 3 2  
, we can write 

   
2

2 3 22
1 3 2 4 2 3 2 3 2

1
3 3 2

12 16

a
a a a a a a       

. 

Also, using (2.3) in the expression 

2

1 3 2  
, we obtain 

 
 

2

2 2

1 3 2 1 3 2

1
4 3

48
p p p


  


  

.                                                                      (2.5) 

We now use Lemma 1.1 to express the coefficients 2p
 and 3p

 in term of 1p
 to obtain, after simplification, 

normalizing the coefficient 1p
 so that 

 1 0,2p t 
, setting 

 0,1x  
, and finally using the triangle 

inequality, 

      

   
 

 

2 2 2 2 24
2 2

1 3 2

2

2 2

4 4 121

48 4 2 4

1
                   2 4 1 : ,  (say).

48

t t t tt

t t t


   


  

    
   




   

 

Now, we need to maximize the function 
 ,t 

 in the square 
      , :  0,2  and 0,1t t    

.  

It is easily verified that differentiating the function 
 ,t 

 with respect to t  and then 


  and equating to zero 

shows that the only admissible extremum points are 
 0,0

 or 
 2, 1

. Since 
 2, 1 

 and 
 0,0 0 

, both 

of these points are not the maximum points of the function. 
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Therefore, we must investigate the maximum of the function 
 ,t 

 on the boundary of the closed square  . 

For 0t  , 
 0,1 

 we have 

  20, 12 12   
.                                                                                              (2.6) 

For 2t  , 
 0,1 

, we obtain  

 2, 4  
.                                                                                                              (2.7) 

Now, let 
0 

 and 
 0,2t

. Then, 

   3 2,0 8 32
4

t
t t t   

. 

By simple computation, we find  

  3 2,0 6 8t t t   
, 

 0,2t
. 

From this, we can easily verified that 0 1.3054t 
, where 0t  is a numerical solution of the equation 

3 26 8 0t t   , is a critical point of the function 
 ,0t

. Since 
 ,0 0t 

 when 
 00,t t

 and 

 ,0 0t 
 when 

 0 ,2t t
, the point 0t  is a maximum point of the function 

 ,0t
. So that, 

      0max ,0 :  0,2 ,0t t t  
.                                                                        (2.8) 

Finally, for 
1 

 and 
 0,2t

, we write 

 
4

,1 12
2

t
t   

. 

It is clear that 0t   is a critical point for the function 
 ,1t

. Since 
 ( ) 0,1 0n 

 for 
1,2,3n 

 and 

 0,1 0v 
, 

 0,1 12 0v   
, then 0t   is a maximum point for the function 

 ,1t
. Therefore, 

      max t,1 :  0,2 0,1 12t   
.                                                                    (2.9) 

From (2.6)-(2.10), we obtain 

       0max , :  , max 4,  12,  ,0t t t    
.                                               (2.10) 

Since 
 0 ,0 12t 

, from (2.11), we write 

    max , :  , 12t t    
. 

Thus, the proof of Theorem 2.1 is completed. 

Choosing 0   in Theorem 2.1, we arrive at the following result. 

 

2.2. Corollary  

Let the function 
 f z

 given by (1.1) be in the class 
*S .  Then, 

2

1 3 2

1

4
   

. 

3. Bounds of 
2

1 3 2  
 for the Convex Functions 

In this section, we investigate Fekete-Szegö type problem for the function 
 f C 

. 

 

3.1. Theorem 

 Let the function 
 f z

 given by (1.1) be in the class 
 C 

, 
 0,1

.  Then, 

   
 

2 2

2

1 3 2 2

1 5 12 24

144 2 5
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Proof. Let
 f C 

, 
 0,1

. Then, 

  
 

   1
zf z

p z
f z

 


  


,                                                                                              (3.1) 

where the function 
p

.  

Replacing 
 f z

, 
  zf z 

 and  
 p z

 with their equivalent series expressions in (3.1), we have  

   1 1

2 2 1

1 1 1n n n

n n n

n n n

n n a z na z p z
  

 

  

 
     

 
  

. 

Upon simplification, we obtain 

       

   

1 2 3

1 2 1 2 3 2 2 1 3

2

1

1 2 2 3 3 1 1

1 1 2 2 3

                          2 3 1 .

n

n

n

n

n n n n

n n a z p z p p a z p p a p a z

p p a p a n p a z










   

       

        



   (3.2) 

 Equating the coefficients of 
nz , 

1,2,3,...n 
 , we get 

     1 2 2 3 3 1 11 1 2 3 1n n n n nn n a p p a p a n p a             , 
2,3, 4,...n 

; 

that is, 

 

1

1

1

1

n

n n k k

k

a k p a
n n

 











, 
2,3, 4,...n 

 .                                          (3.3) 

From (3.3), we have  

2 1

1

2
a p




, 

 3 2 1 2

1
2

6
a p p a


 

, 

 4 3 2 2 1 3

1
2 3

12
a p p a p a


  

.               (3.4) 

Substituting the values of 2a
 and 3a

 in the next equalities in (3.4), after simplifying, we get 

  2

3 2 1

1
1

6
a p p





    

, 

   
2 3

4 3 1 2 1

1
2 3 1 1

24
a p p p p


 

      
 

.            (3.5) 

Considering the value of 2a
 from (3.4) and the values of 3a

 and 4a
 from (3.5) in (2.4), we obtain the 

following expression for 1 , 2  and 3   

1 1

1

4
p







, 

  2

2 2 1

1
4 1

48
p p


 


    

, 

 3 3 1 2

1
2 1

48
p p p


 


    

.           (3.6) 

Substituting the values of 1 , 2  and 3  from (3.6) in the expression 

2

1 3 2  
, we can write 

 

 
   

2

22 2 2 4

1 3 2 1 3 1 2 2 1

1
24 4 1 16 1

2304
p p p p p p


    


        
 

.         (3.7) 

We now use Lemma 1.1 to express the coefficients 2p
 and 3p

 in term of 1p
 in the right hand side of (3.7), we 

have 

   

          

22 2 4

1 3 1 2 2 1

22 4 2 2 2 2 2 2

1 1 1 1 1 1 1

24 4 1 16 1

3 2 3 4 2 8 4 12 4 1 .

p p p p p p

p p p x p p x p x p z

 

 

    

          
 

Normalizing the coefficient 1p
 so that 

 1 0,2p t 
, setting 

 0,1x  
, and finally using the triangle 

inequality to last equality, we obtain 

   

        

   

22 2 4

1 3 1 2 2 1

2 4 2 2 2 2

2

24 4 1 16 1

3 2 3 4 2 2 4 4

12 4 ,  (say).

p p p p p p

t t t t t t

t t F t

 

   



    

        

  
                (3.8) 
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Where 

 

            2 4 2 2 2 2 2, 3 2 3 4 2 2 4 4 12 4F t t t t t t t t t              
. (3.9) 

We next maximize the function 
 ,F t 

 on the closed rectangle 
   0,2 0,1

. Differentiating the function 

 ,F t 
 partially with respect to 


, we get 

         2 2, 2 4 3 2 2 4F t t t t t            . 

Since 
 , 0F t  

 on the closed rectangle 
   0,2 0,1

 for all 
 0,1

, the function 
 ,F t 

 is an 

increasing function of 


 and hence it cannot have a maximum value at any point in the interior of the interval 
 0,1

. So that, 

        max , :  0,1 ,1 =  (say)F t F t t   
                                      (3.10) 

for fixed 
 0,2t

. 

In view of (3.10) and (3.9), after simplifying, we get 

     2 4 22 5 8 2 64t t t         
, 

 0,2t
.                       (3.11) 

We now use elementary calculus to find the maximum of the function 
 t

 on the interval 
 0,2

. By simple 

computation, we find  

     2 24 2 5 4 2t t t          
  .                                               (3.12) 

Considering 
  0t 

 from (3.12) we can easily see that 1 0t 
 and 

 
2 2

4 2

2 5
t



 




   (it is easily 

verified that 
 2 0,2t 

 for all 
 0,1

) are two admissible critical points for the function 
 t

. 

We use the second derivative test to find extremum point of the function 
 t

. Differentiating (3.12), we get 

     2 212 2 5 16 2t t         
.                                   (3.13) 

From the equation (3.13), we can easily see that 
   0 16 2 0    

; that is, the point 1 0t 
 is a 

minimum point for the function 
 t

. 

We now discuss the case 

 
2 2

4 2

2 5
t



 




  . Using the value 2t  in (3.13), after simplification, we obtain   

   2 32 2 0t     
 

Hence, by the second derivative test, 
 t

 has a local maximum value at the point 2t . Therefore,  

      
 2

2 2

16 5 12 24
max :  0,2

2 5
t t t

 
 

 

 
  

  .                                     (3.14) 

Also, since 
       2 2

2
0 1

2 16 3 16 max 3 48 t


   
 

     
, the function 

 t
 has the maximum 

value on the interval 
 0,2

 in the point 2t .  

Considering this fact,  (3.14), (3.10) and (3.8), we get  

   
 2

22 2 4

1 3 1 2 2 1 2

16 5 12 24
24 4 1 16 1

2 5
p p p p p p

 
 

 

 
     

  .                   (3.15) 

From the expression (3.7) and inequality (3.15), by simplification, we obtain  

   
 

2 2

2

1 3 2 2

1 5 12 24

144 2 5

  
  

 

  
 

 
. 
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Thus, the proof of Theorem 3.1 is completed. 

Choosing 0   in Theorem 3.1, we have the following result. 

 

3.2. Corollary 

 Let the function 
 f z

 given by (1.1) be in the class C .  Then, 

2

1 3 2

1

30
   

. 
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