Academic Journal of Applied Mathematical Sciences
ISSN(e): 2415-2188, ISSN(p): 2415-5225
Vol. 5, Issue. 6, pp: 69-75, 2019
URL: https://arpgweb.com/journal/journal/17

The Fekete-Szegö Problem for the Logarithmic Function of the Starlike and Convex Functions

Nizami Mustafa*
Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey

Muherrem C. Gündüz
Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey

Abstract

In this paper, we discuss the Fekete-Szegö functional $\overline{\overline{H_{2}}}(1, \mu)=\delta_{1} \delta_{3}-\mu \delta_{2}^{2}$ which is defined by coefficients of the function $g(z)=\log \left(\frac{f(z)}{z}\right)$ for the analytic and univalent function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$, $z \in U=\{z \in \square:|z|<1\}$, where μ is a real or complex number, and δ_{1}, δ_{2} and δ_{3} are the first three coefficients from the series expansion of the function $g(z)$. Our main purpose in this study is to find the upper bound for $\left|\delta_{1} \delta_{3}-\mu \delta_{2}^{2}\right|$, when $f \in S^{*}(\alpha)$ or $f \in C(\alpha)$, where $S^{*}(\alpha)$ and $C(\alpha)$ are, respectively, the class of starlike functions of order α and the class of convex functions of order α for $\alpha \in[0,1)$.
Keywords: Starlike function; Convex function; Fekete-Szegö functional; Logarithmic coefficient.
AMS Subject Classification: 30A10; 30C45; 30C50; 30C55.

cc) (4) CC BY: Creative Commons Attribution License 4.0

1. Introduction

Let $U=\{z \in \square:|z|<1\}$ and $H(U)$ be the analytic functions in U and A the subclass of $H(U)$ functions f having the power series expansion

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+\cdots=z+\sum_{n=2}^{\infty} a_{n} z^{n}, a_{n} \in \square \tag{1.1}
\end{equation*}
$$

normalized by $f(0)=0=f^{\prime}(0)-1$. Also, let's S be the subclass of A consisting also univalent functions.

The well-investigated subclasses of S are the class $S^{*}(\alpha)$ of starlike functions of order α and the class $C(\alpha)$ of convex functions of order $\alpha(\alpha \in[0,1))$, which given as follows

$$
S^{*}(\alpha)=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in U\right\}_{\text {and }} \quad C(\alpha)=\left\{f \in S: \operatorname{Re}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)>\alpha, z \in U\right\}
$$

The function classes $S^{*}(\alpha)$ and $C(\alpha)$ have been investigated rather extensively in Kim and Srivastava [1], Ravichandran, et al. [2], Srivastava, et al. [3] Xu, et al. [4] and the references therein.

For $\alpha=0$, we obtain well-known subclasses of analytic and univalent functions

$$
S^{*}=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in U\right\} \quad C=\left\{f \in S: \operatorname{Re}\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)>0, z \in U\right\},
$$

respectively, starlike and convex function classes [5-7].

It is easy to see that $S^{*}(\alpha) \subset S^{*}$ and $C(\alpha) \subset C$ for each $\alpha \in[0,1)$. Also, between of the classes $C(C(\alpha))_{\text {and }} S^{*}\left(S^{*}(\alpha)\right)$ is the relationship $f \in C \Leftrightarrow z f^{\prime} \in S^{*}\left(\text { or } f \in C(\alpha) \Leftrightarrow z f^{\prime} \in S^{*}(\alpha)\right)_{[5] .}$

Among the important tools in the theory of analytic functions are Hankel determinant, which defined by coefficients of the function $f \in S$ as $H_{q}(n)=\left|a_{j}\right|_{j=n, n+q-1}^{j=\overline{n, n+q-1}}, \quad a_{1}=1, n=1,2,3, \ldots, q=1,2,3, \ldots[8]$. Generally, these determinants was investigated by researchers with $q=2$. The functional $H_{2}(1)=a_{3}-a_{2}^{2}$ is known as the Fekete-Szegö functional and one usually considers the further generalized functional $H_{2}(1, \mu)=a_{3}-\mu a_{2}^{2}$, where μ is a number [9]. Finding upper bound for $\left|a_{3}-\mu a_{2}^{2}\right|$ is known as the Fekete-Szegö problem in the theory of analytic functions.

In Koegh and Merkes [10], solved the Fekete-Szegö problem for the classes of starlike and convex functions for some real ${ }^{\mu}$. The Fekete-Szegö problem has been investigated by many mathematicians for several subclasses of analytic functions [8, 11-18].

It is well known that logarithmic coefficients $\delta_{n}, n=1,2,3, \ldots$ of a function $f \in S$ are defined by differentiation both sides of the following equality

$$
g(z)=\log \left(\frac{f(z)}{z}\right)=2 \sum_{n=1}^{\infty} \delta_{n} z^{n}
$$

and play a central role in the theory of analytic functions [19].
In Thomas and Derek [19]. By Thomas given sharp estimates for the modulus of the initial three coefficients of the function $g(z)$ when the function f belong to some subclass of the analytic and univalent functions.

Let $f \in S$. We define the determinants $\overline{\bar{H}}_{q}(n)=\mid \delta_{j} j_{j=n, n+q-1}^{j=\overline{n, n+q-1}}, n=1,2,3, \ldots, \quad q=1,2,3, \ldots$, where ${ }^{j} \delta_{j}$, $j=1,2,3,4, \ldots$ are the coefficients of the function g. The determinants $\overline{\bar{H}}_{q}(n)$ we next recall the logarithmic Hankel determinants of the function f. Also, we define the functional $\overline{\bar{H}}_{2}(1)=\delta_{1} \delta_{3}-\delta_{2}^{2}$, more general $\overline{\bar{H}}_{2}(1)=\delta_{1} \delta_{3}-\mu \delta_{2}^{2}$ for some number μ, which we will recall the Fekete-Szegö type functional of the function f. Finding upper bound for $\left|\delta_{1} \delta_{3}-\mu \delta_{2}^{2}\right|$, we will recall as the Fekete-Szegö type problem for the function f.

In this paper, we obtain the estimates for $\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right|$, while f is either in $S^{*}(\alpha)$ or in $C(\alpha)$.
In order to prove our main results, we need the following lemma [20] concerning functions in the class P , i. e. analytic functions $p_{\text {such that }} p(0)=1$ and $\operatorname{Re}(p(z))>0$ for all $z \in U$. That is, $p \in \mathrm{P}$ have the power series expansion as follows

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots, z \in U
$$

1.1. Lemma

Let $p \in \mathrm{P}$, then $\left|p_{n}\right| \leq 2_{\text {for every }} n=1,2,3, \ldots$. These inequalities are sharp for each $n=1,2,3, \ldots$. Moreover,

$$
\begin{aligned}
& \qquad 2 p_{2}=p_{1}^{2}+\left(4-p_{1}^{2}\right) x \\
& 4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-\left(4-p_{1}^{2}\right) p_{1} x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z \\
& \text { for some complex } x, z_{\text {with }}|x| \leq 1,|z| \leq 1
\end{aligned}
$$

2. Bounds of $\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right|$ for the Starlike Functions

In this section, we investigate Fekete-Szegö type problem for the function $f \in S^{*}(\alpha)$.

The logarithmic coefficients $\delta_{n}, n=1,2,3, \ldots$ of a function $f \in S$ are defined by the following equality with differentiation of both sides

$$
\begin{equation*}
\log \left(\frac{f(z)}{z}\right)=2 \sum_{n=1}^{\infty} \delta_{n} z^{n} \tag{2.1}
\end{equation*}
$$

and play a central role in the theory of analytic functions [19].

2.1. Theorem

Let the function $f(z)$ given by (1.1) be in the class $S^{*}(\alpha), \alpha \in[0,1)$. Then,

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{(1-\alpha)^{2}}{4}
$$

Proof. Let $f \in S^{*}(\alpha), \alpha \in[0,1)$. Then,

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\alpha+(1-\alpha) p(z) \tag{2.2}
\end{equation*}
$$

where $p \in \mathrm{P}$.
From (2.2), we have

$$
1+a_{2} z+\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\left(3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}\right) z^{3}+\cdots=1+(1-\alpha)\left(p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots\right)
$$

Comparing coefficients of z, z^{2} and z^{3}, we get

$$
\begin{equation*}
a_{2}=(1-\alpha) p_{1}, 2 a_{3}-a_{2}^{2}=(1-\alpha) p_{2}, 3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}=(1-\alpha) p_{3} \tag{2.3}
\end{equation*}
$$

Differentiating both sides of (2.1) and upon simplification, we have

$$
a_{2} z+\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\left(3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}\right) z^{3}+\cdots=2 \delta_{1} z+4 \delta_{2} z^{2}+6 \delta_{3} z^{3}+\cdots
$$

Comparing the coefficients of z^{n} for $\delta_{n}, n=1,2,3$, we get

$$
\begin{equation*}
\delta_{1}=\frac{a_{2}}{2}, \quad \delta_{2}=\frac{1}{4}\left(2 a_{3}-a_{2}^{2}\right) \quad \delta_{3}=\frac{1}{6}\left(3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}\right) . \tag{2.4}
\end{equation*}
$$

Substituting the values δ_{1}, δ_{2} and δ_{3} from (2.4) in $\delta_{1} \delta_{3}-\delta_{2}^{2}$, we can write

$$
\delta_{1} \delta_{3}-\delta_{2}^{2}=\frac{a_{2}}{12}\left(3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}\right)-\frac{1}{16}\left(2 a_{3}-a_{2}^{2}\right)^{2} .
$$

Also, using (2.3) in the expression $\delta_{1} \delta_{3}-\delta_{2}^{2}$, we obtain

$$
\begin{equation*}
\delta_{1} \delta_{3}-\delta_{2}^{2}=\frac{(1-\alpha)^{2}}{48}\left(4 p_{1} p_{3}-3 p_{2}^{2}\right) \tag{2.5}
\end{equation*}
$$

We now use Lemma 1.1 to express the coefficients p_{2} and p_{3} in term of p_{1} to obtain, after simplification, normalizing the coefficient p_{1} so that $p_{1}=t \in[0,2]$, setting $|x|=\xi \in[0,1]$, and finally using the triangle inequality,

$$
\begin{aligned}
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq & \frac{(1-\alpha)^{2}}{48}\left\{\frac{t^{4}}{4}+\frac{\left(4-t^{2}\right) t^{2} \xi}{2}+\frac{\left(4-t^{2}\right)\left(12+t^{2}\right)}{4} \xi^{2}\right. \\
& \left.+2\left(4-t^{2}\right)\left(1-\xi^{2}\right) t\right\}:=\frac{(1-\alpha)^{2}}{48} \phi(t, \xi) \text { (say). }
\end{aligned}
$$

Now, we need to maximize the function $\phi(t, \xi)$ in the square $\Omega=\{(t, \xi): t \in[0,2]$ and $\xi \in[0,1]\}$.
It is easily verified that differentiating the function $\phi(t, \xi)$ with respect to t and then ξ and equating to zero shows that the only admissible extremum points are $(0,0)$ or $(2,-1)$. Since $(2,-1) \notin \Omega$ and $\phi(0,0)=0$, both of these points are not the maximum points of the function.

Therefore, we must investigate the maximum of the function $\phi(t, \xi)$ on the boundary of the closed square Ω. For $t=0, \quad \xi \in[0,1]$ we have

$$
\begin{equation*}
\phi(0, \xi)=12 \xi^{2} \leq 12 \tag{2.6}
\end{equation*}
$$

For $t=2, \quad \xi \in[0,1]$, we obtain

$$
\begin{equation*}
\phi(2, \xi)=4 \tag{2.7}
\end{equation*}
$$

Now, let $\xi=0$ and $t \in[0,2]$. Then,

$$
\phi(t, 0)=\frac{t}{4}\left(t^{3}-8 t^{2}+32\right)
$$

By simple computation, we find

$$
\phi^{\prime}(t, 0)=t^{3}-6 t^{2}+8, t \in[0,2]
$$

From this, we can easily verified that $t_{0}=1.3054$, where t_{0} is a numerical solution of the equation $t^{3}-6 t^{2}+8=0$, is a critical point of the function $\phi(t, 0)$. Since $\phi^{\prime}(t, 0)>0$ when $t \in\left[0, t_{0}\right)$ and $\phi^{\prime}(t, 0)<0$ when $t \in\left(t_{0}, 2\right]$, the point t_{0} is a maximum point of the function $\phi(t, 0)$. So that,

$$
\begin{equation*}
\max \{\phi(t, 0): t \in[0,2]\}=\phi\left(t_{0}, 0\right) \tag{2.8}
\end{equation*}
$$

Finally, for $\xi=1$ and $t \in[0,2]$, we write

$$
\phi(t, 1)=-\frac{t^{4}}{2}+12
$$

It is clear that $t=0$ is a critical point for the function $\phi(t, 1)$. Since $\phi^{(n)}(0,1)=0$ for $n=1,2,3$ and $\phi^{\prime v}(0,1) \neq 0 \quad \phi^{\prime \nu}(0,1)=-12<0$, then $t=0$ is a maximum point for the function $\phi(t, 1)$. Therefore,

$$
\begin{equation*}
\max \{\phi(\mathrm{t}, 1): t \in[0,2]\}=\phi(0,1)=12 \tag{2.9}
\end{equation*}
$$

From (2.6)-(2.10), we obtain

$$
\begin{equation*}
\max \{\phi(t, \xi):(t, \xi) \in \Omega\}=\max \left\{4,12, \phi\left(t_{0}, 0\right)\right\} \tag{2.10}
\end{equation*}
$$

Since $\phi\left(t_{0}, 0\right)<12$, from (2.11), we write

$$
\max \{\phi(t, \xi):(t, \xi) \in \Omega\}=12
$$

Thus, the proof of Theorem 2.1 is completed.
Choosing $\alpha=0$ in Theorem 2.1, we arrive at the following result.

2.2. Corollary

Let the function $f(z)$ given by (1.1) be in the class S^{*}. Then,

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{1}{4}
$$

3. Bounds of $\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right|$ for the Convex Functions

In this section, we investigate Fekete-Szegö type problem for the function $f \in C(\alpha)$.

3.1. Theorem

Let the function $f(z)$ given by (1.1) be in the class $C(\alpha), \alpha \in[0,1)$. Then,

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{(1-\alpha)^{2}\left(5 \alpha^{2}-12 \alpha+24\right)}{144\left(\alpha^{2}-2 \alpha+5\right)}
$$

Proof. Let $f \in C(\alpha), \alpha \in[0,1)$. Then,

$$
\begin{equation*}
\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=\alpha+(1-\alpha) p(z) \tag{3.1}
\end{equation*}
$$

where the function $p \in \mathrm{P}$.
Replacing $f^{\prime}(z),\left(z f^{\prime}(z)\right)^{\prime}$ and $p(z)$ with their equivalent series expressions in (3.1), we have

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}=(1-\alpha)\left(1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right) \times \sum_{n=1}^{\infty} p_{n} z^{n}
$$

Upon simplification, we obtain

$$
\begin{align*}
\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1} & =(1-\alpha)\left\{p_{1} z+\left(p_{2}+2 p_{1} a_{2}\right) z^{2}+\left(p_{3}+2 p_{2} a_{2}+3 p_{1} a_{3}\right) z^{3}\right. \\
& \left.+\cdots+\left(p_{n-1}+2 p_{n-2} a_{2}+3 p_{n-3} a_{3}+\cdots+(n-1) p_{1} a_{n-1}\right) z^{n-1}+\cdots\right\} \tag{3.2}
\end{align*}
$$

Equating the coefficients of $z^{n}, n=1,2,3, \ldots$, we get

$$
n(n-1) a_{n}=(1-\alpha)\left[p_{n-1}+2 p_{n-2} a_{2}+3 p_{n-3} a_{3}+\cdots+(n-1) p_{1} a_{n-1}\right], n=2,3,4, \cdots ;
$$

that is,

$$
\begin{equation*}
a_{n}=\frac{1-\alpha}{n(n-1)} \sum_{k=1}^{n-1} k p_{n-k} a_{k}, n=2,3,4, \ldots . \tag{3.3}
\end{equation*}
$$

From (3.3), we have

$$
\begin{equation*}
a_{2}=\frac{1-\alpha}{2} p_{1}, a_{3}=\frac{1-\alpha}{6}\left(p_{2}+2 p_{1} a_{2}\right) \quad a_{4}=\frac{1-\alpha}{12}\left(p_{3}+2 p_{2} a_{2}+3 p_{1} a_{3}\right) . \tag{3.4}
\end{equation*}
$$

Substituting the values of ${ }^{a_{2}}$ and ${ }^{a_{3}}$ in the next equalities in (3.4), after simplifying, we get

$$
\begin{equation*}
a_{3}=\frac{1-\alpha}{6}\left[p_{2}+(1-\alpha) p_{1}^{2}\right] a_{4}=\frac{1-\alpha}{24}\left[2 p_{3}+3(1-\alpha) p_{1} p_{2}+(1-\alpha)^{2} p_{1}^{3}\right] . \tag{3.5}
\end{equation*}
$$

Considering the value of a_{2} from (3.4) and the values of a_{3} and a_{4} from (3.5) in (2.4), we obtain the following expression for δ_{1}, δ_{2} and δ_{3}

$$
\begin{equation*}
\delta_{1}=\frac{1-\alpha}{4} p_{1}, \quad \delta_{2}=\frac{1-\alpha}{48}\left[4 p_{2}+(1-\alpha) p_{1}^{2}\right] \quad \delta_{3}=\frac{1-\alpha}{48}\left[2 p_{3}+(1-\alpha) p_{1} p_{2}\right] . \tag{3.6}
\end{equation*}
$$

Substituting the values of δ_{1}, δ_{2} and δ_{3} from (3.6) in the expression $\delta_{1} \delta_{3}-\delta_{2}^{2}$, we can write

$$
\begin{equation*}
\delta_{1} \delta_{3}-\delta_{2}^{2}=\frac{(1-\alpha)^{2}}{2304} \times\left[24 p_{1} p_{3}+4(1-\alpha) p_{1}^{2} p_{2}-16 p_{2}^{2}-(1-\alpha)^{2} p_{1}^{4}\right] . \tag{3.7}
\end{equation*}
$$

We now use Lemma 1.1 to express the coefficients p_{2} and p_{3} in term of p_{1} in the right hand side of (3.7), we have

$$
\begin{aligned}
& 24 p_{1} p_{3}+4(1-\alpha) p_{1}^{2} p_{2}-16 p_{2}^{2}-(1-\alpha)^{2} p_{1}^{4} \\
& =\left(3-\alpha^{2}\right) p_{1}^{4}+2(3-\alpha)\left(4-p_{1}^{2}\right) p_{1}^{2} x-2\left(8+p_{1}^{2}\right)\left(4-p_{1}^{2}\right) x^{2}+12\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) p_{1} z
\end{aligned}
$$

Normalizing the coefficient p_{1} so that $p_{1}=t \in[0,2]$, setting $|x|=\xi \in[0,1]$, and finally using the triangle inequality to last equality, we obtain

$$
\begin{align*}
& \left|24 p_{1} p_{3}+4(1-\alpha) p_{1}^{2} p_{2}-16 p_{2}^{2}-(1-\alpha)^{2} p_{1}^{4}\right| \\
& \leq\left(3-\alpha^{2}\right) t^{4}+2(3-\alpha)\left(4-t^{2}\right) t^{2} \xi+2(t-2)(t-4)\left(4-t^{2}\right) \xi^{2} \\
& +12\left(4-t^{2}\right) t=F(t, \xi) \text { (say). } \tag{3.8}
\end{align*}
$$

Where

$$
\begin{equation*}
F(t, \xi)=\left(3-\alpha^{2}\right) t^{4}+2(3-\alpha)\left(4-t^{2}\right) t^{2} \xi+2(t-2)(t-4)\left(4-t^{2}\right) \xi^{2}+12\left(4-t^{2}\right) t \tag{3.9}
\end{equation*}
$$

We next maximize the function $F(t, \xi)$ on the closed rectangle $[0,2] \times[0,1]$. Differentiating the function $F(t, \xi)$ partially with respect to ${ }^{\xi}$, we get

$$
F_{\xi}^{\prime}(t, \xi)=2\left(4-t^{2}\right)\left[(3-\alpha) t^{2}+2(t-2)(t-4) \xi\right]
$$

Since $F_{\xi}{ }^{\prime}(t, \xi) \geq 0$ on the closed rectangle $[0,2] \times[0,1]$ for all $\alpha \in[0,1)$, the function $F(t, \xi)$ is an increasing function of ξ and hence it cannot have a maximum value at any point in the interior of the interval $[0,1]$. So that,

$$
\begin{equation*}
\max \{F(t, \xi): \xi \in[0,1]\}=F(t, 1)=\varphi(t) \text { (say) } \tag{3.10}
\end{equation*}
$$

for fixed $t \in[0,2]$.
In view of (3.10) and (3.9), after simplifying, we get
$\varphi(t)=-\left(\alpha^{2}-2 \alpha+5\right) t^{4}+8(2-\alpha) t^{2}+64, t \in[0,2]$
We now use elementary calculus to find the maximum of the function $\varphi(t)$ on the interval $[0,2]$. By simple computation, we find

$$
\begin{equation*}
\varphi^{\prime}(t)=-4 t\left[\left(\alpha^{2}-2 \alpha+5\right) t^{2}-4(2-\alpha)\right] \tag{3.12}
\end{equation*}
$$

Considering $\varphi^{\prime}(t)=0$ from (3.12) we can easily see that $t_{1}=0$ and $t_{2}=\sqrt{\frac{4(2-\alpha)}{\alpha^{2}-2 \alpha+5}}$ (it is easily verified that $t_{2} \in(0,2)$ for all $\alpha \in[0,1)$) are two admissible critical points for the function $\varphi(t)$.

We use the second derivative test to find extremum point of the function $\varphi(t)$. Differentiating (3.12), we get
$\varphi^{\prime \prime}(t)=12\left(-\alpha^{2}+2 \alpha-5\right) t^{2}+16(2-\alpha)$.
From the equation (3.13), we can easily see that $\varphi^{\prime \prime}(0)=16(2-\alpha)>0$; that is, the point $t_{1}=0$ is a minimum point for the function $\varphi(t)$.

We now discuss the case $t_{2}=\sqrt{\frac{4(2-\alpha)}{\alpha^{2}-2 \alpha+5}}$. Using the value t_{2} in (3.13), after simplification, we obtain

$$
\varphi^{\prime \prime}\left(t_{2}\right)=-32(2-\alpha)<0
$$

Hence, by the second derivative test, $\varphi(t)$ has a local maximum value at the point t_{2}. Therefore,
$\max \{\varphi(t): t \in(0,2)\}=\varphi\left(t_{2}\right)=\frac{16\left(5 \alpha^{2}-12 \alpha+24\right)}{\alpha^{2}-2 \alpha+5}$
Also, since $\varphi(2)=16\left(3-\alpha^{2}\right) \leq 16 \max _{0 \leq \alpha<1}\left(3-\alpha^{2}\right) \leq 48<\varphi\left(t_{2}\right)$, the function $\varphi(t)$ has the maximum value on the interval $[0,2]$ in the point t_{2}.

Considering this fact, (3.14), (3.10) and (3.8), we get
$\left|24 p_{1} p_{3}+4(1-\alpha) p_{1}^{2} p_{2}-16 p_{2}^{2}-(1-\alpha)^{2} p_{1}^{4}\right| \leq \frac{16\left(5 \alpha^{2}-12 \alpha+24\right)}{\alpha^{2}-2 \alpha+5}$.
From the expression (3.7) and inequality (3.15), by simplification, we obtain

$$
\begin{equation*}
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{(1-\alpha)^{2}\left(5 \alpha^{2}-12 \alpha+24\right)}{144\left(\alpha^{2}-2 \alpha+5\right)} \tag{3.15}
\end{equation*}
$$

Thus, the proof of Theorem 3.1 is completed.
Choosing $\alpha=0$ in Theorem 3.1, we have the following result.

3.2. Corollary

Let the function $f(z)$ given by (1.1) be in the class C. Then,

$$
\left|\delta_{1} \delta_{3}-\delta_{2}^{2}\right| \leq \frac{1}{30}
$$

References

[1] Kim, Y. C. and Srivastava, H. M., 2008. "Some subordination properties for spirallike functions." Appl. Math. Comput., vol. 203, pp. 838-842.
[2] Ravichandran, V., Polatoglu, Y., Bolcal, M., and A., S., 2005. "Certain subclasses of starlike and convex functions of complex order. Hacettepe." J. Math. Stat., vol. 34, pp. 9-15.
[3] Srivastava, H. M., Xu, Q. H., and Wu, G. P., 2010. "Coefficient estimates for certain subclasses of spirallike functions of complex order." Appl. Math. Lett., vol. 23, pp. 763-768.
[4] Xu, Q. H., Cai, Q. M., and Srivastava, H. M., 2013. "Sharp coefficient estimates for certain subclasses of starlike functions of complex order." Appl. Math. Comput., vol. 225, pp. 43-49.
[5] Duren, P. L., 1983. Univalent Functions. Grundlehren der Mathematischen Wissenschaften. New York: Springer-Verlag. p. 259.
[6] Goodman, A. W., 1983. Univalent functions. Washington: Polygonal.
[7] Srivastava, H. M. and Owa, S., 1992. Editors, current topics in analytic function theory. Singapore: Word Scientific.
[8] Noonan, J. W. and Thomas, D. K., 1976. "On the second Hankel determinant of areally mean valent functions." T. Amer. Math. Soc., vol. 223, pp. 337-346.
[9] Fekete, M. and Szegö, G., 1933. "Eine Bemerkung uber ungerade schlichte Funktionen." J. London Math. Soc., vol. 8, pp. 85-89.
[10] Koegh, F. R. and Merkes, E. P., 1969. "A coefficient inequality for certain classes of analytic functions." P Amer. Math. Soc., vol. 20, pp. 8-12.
[11] Caglar, M. and Aslan, S., 2016. "Fekete-Szegö inequalities for subclasses of bi- univalent functions satisfying subordinate condition." In International Conference on Advances in Natural and Applied Sciences, 21-23 April 2016. Antalya. Turkey, AIP Conference Proceedings 2016. p. 1726.
[12] Doha, E. H., 1994. "The first and second kind Chebyshev coefficients of the moments of the general order derivative of an infinitely differentiable function." Intern. J. Comput. Math., vol. 51, pp. 21-35.
[13] Frasin, B. A. and Aouf, M. K., 2011. "New subclasses of bi-univalent functions." Appl. Math. Let., vol. 24, pp. 1569-1573.
[14] Mustafa, N., 2017. "Fekete-Szegö problem for certain subclass of analytic and bi-univalent functions." Journal of Scientific and Engineering, vol. 4, pp. 390-400.
[15] Mustafa, N. and Akbulut, E., 2018. "Application of the second Chebyshev polinomials to coefficient estimates of analytic functions." Journal of Scientific and Engineering Research, vol. 5, pp. 143-148.
[16] Mustafa, N. and Akbulut, E., 2019. "Application of the second kind Chebyshev polinomial to the FeketeSzegö problem of certain class analytic functions." Journal of Scientific and Engineering Research, vol. 6, pp. 154-163.
[17] Orhan, H., Deniz, E., and Raducanu, D., 2010. "The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains." Comput. Math. Appl., vol. 59, pp. 283-295.
[18] Zaprawa, P., 2014. "On the Fekete-Szegö problem for classes of bi-univalent functions." Bull Belg Math Soc Simon Stevin, vol. 21, pp. 169-178.
[19] Thomas and Derek, K., 2018. "On the coefficients of gamma-starlike functions." J. Korean Math. Soc., vol. 55, pp. 175-184.
[20] Libera, R. J. and Zlotkiewics, E. J., 1982. "Early coefficients of the inverse of a regular convex function." Proc. Amer. Math. Soc., vol. 85, pp. 225-230.

