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Abstract

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions of complex order in the
unit disk in complex plane. We obtain upper bound estimates for the initial three coefficients of the functions
belonging to this class. In this study, the Fekete-Szegd problem for this function class is also investigated.
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1. Introduction
Let A be the class of the functions in the form

0

f(z):z+a222+a323+~-=2+zan2n,

n-2 (1.1)

. » - U={zel:|7<1}
which are analytic in the open unit disk .

We denote by S the subclass of A consisting of functions which are also univalent in U . Some of the

important subclass of S is the class R(a, p) that is defined as follows

R(a, B)={f €S:Re[f'(2)+ Bzt "(2)]>a,zeU},a [0,1), 320

Gao and Zhou [1], have researched the class %(a, p) and showed some mapping properties of this subclass.
In the special case, we have subclass R(p)
R(B)={f eS:Re[f'(2)+p2t"(2)]>0,2eU}, 20
for ¢ =0
Early, by Altintas and Ozkan [2] were studied a subclass R(a.py) of analytic and bi-univalent functions

consisting of the functions f(2) which satisfy the conditions

feT |2+ pef"(2) -1 <azeU, fe[0.0],ar (0], 7 0" =0 — {0}
e

Here T is the class of the functions f (Z) in the form

f(z)=z-a,z2-az’---=z2-Yaz" a>0
2 3 n n
=2

which are analytic in the open unit disk U [2]. Found necessary and sufficient conditions for the functions
belonging to this class.

feS f!

€ has an inverse _ , which is defined by

fY(f(z)=zz¢€U, f(f_l(W))=W,WeD={WZ|W|<ro(f)},l’0(f)2%

It is well-known that (see, for example [3], every function

where f(w) =w-a,w’ +(2a; —a,)w’ — (5a; —5a,a, +a,)W' +--,we D .

feA fand f*

is said to be bi-univalent in U if both are univalent. Let > denote the class

of bi-univalent functions in Y given (1.1).

A function

*Corresponding Author
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In Lewin [4], showed that for every function feX of the form (1.1) the second coefficient satisfies the

<151 a,| <2
estimate |a2| S . In 1967, [5] conjectured that | 2| \/_ for feX

|a,|, namely, that |a,| <1.485

. In Tan [6], obtained the bound for

, which is the best known estimate for functions in the class 2 . In Kedzierawski
[7], proved the Brannan-Clunie conjecture for bi-starlike functions. Brannan and Taha [8], obtained estimates on the

|a,| and |ay|

initial coefficients for the functions in the classes of bi-starlike functions of order & and bi-convex
functions of order & .

The study of bi-univalent functions was revived, in recently years, by Srivastava, et al. [9], and a considerably
large number of sequels to the work of Srivastava, et al. [9], have appeared in the literature. In particular, several

. . _ . a|, and |a
results on coefficient estimates for the initial coefficients | 2| |a3| | 4|

2 [10-17].
Recently Deniz [18], and Kumar, et al. [19], both extended and improved the results of Brannan and Taha [8],
by generalizing their classes by means of the principle of subordination between analytic functions.

were proved for various subclasses of

: . : N - a|(n=23,..
Despite the numerous studies mentioned above, the problem of estimating the coefficients | ”|( )
for the general class functions 2 s still open [12].
: : : . . H,0)=a,-a; . .
One of the important tools in the theory of analytic functions is the functional which is

2
known as the Fekete-Szegd functional and one usually considers the further generalized functional 43— H, ,

2
where # is some real number [20]. Estimating for the upper bound of ‘ag ,uaz‘ is known as the Fekete-Szego
problem. In Keogh and Merkes [21], solved the Fekete-Szeg6 problem for the classes starlike and convex functions.

Someone can see the Fekete-Szegd problem for the classes of starlike functions of order ¢ and convex functions of

order & at special cases in the paper of Orhan, et al. [22]. On the other hand, recently [23], have obtained Fekete-
Szeg0 inequality for a subclass of bi-univalent functions. Also Zaprawa [24], Zaprawa [25], have studied on Fekete-
Szeg0 problem for some subclasses of bi-univalent functions. In special cases, he gave the Fekete-Szeg6 problem for

the subclasses bi-starlike functions of order & and bi-convex functions of order & .
Motivated by the aforementioned works, we define a new subclass of bi-univalent functions 2 as follows.

1.1. Definition

A function fek given by (1.1) is said to be in the class Sy(@. f.7)

Re{ 1 21+ ()1} > 0,20, €772~ (0] [0.1) 20
T

if the following conditions are satisfied

and

Re{l+1[g'<w)+/3wg"(w)—1]}>a,we D,rel’=0 -{0}, 2 <[0,1), 520
T

=

where the function 9

1.1.1. Remark

Taking 7 =1 in Definition 1.1, we have function class Sy(@ fl)=Hy(a f), @< [O'l)’ﬁ = O; that is,
f eH,(a,B) = Re(f'(2)+pzf"(2))>a,z€U and Re(g'(w)+Awg"(w))>a,we D,

g=1f"

where

1.1.2. Remark

Taking p=0 in Definition 1.1, we have function class Sy(e,0,7), @ e [0’1)’ rell =l _{0}

fe3,(a,0,7) Re{l+l[f’(z)—1]} >a,z2eU
T

; that is,

Re{1+%[g'(w)—1]} >a,weD,

and
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1.1.3. Remark
Taking p= O, 7 =1 Definition 1.1, we have function class 3s (@,02)= Ry (@,0), @< [0'1) ; that is,
f eR,(a,0) > Re(f'(z))>a,zeU and Re(g'(w))>a,we D,
where 9 = f_l.
1.1.4. Remark
Taking p=1 in Definition 1.1, we have function class Sy(alz), ae [0’1)’ rel’=0 _{0} ; that is,
fe3;(alr)e Re{l+1[ f'(z)+zf"(z) —1]} >a,2€eU
and '
Re{l+%[g'(w) +wg"(w) —1]} >a,wWe D,
where 9= T
1.1.5. Remark
Taking B :l, 7 =1 i Definition 1.1, we have function class 35 (@11)= Ry (@1), ae [0’1) ; that is,

feR,(0.]) & Re(f'(2)+2f"(2))>a,zeU and Re(g'(w)+wg"(w))>a,we D,

_ g1

where g="f .

The class Sy (e,0.1) =Ry (a,0) =Ny (a) were investigated by Grenander and Szeg6 [26], and by Caglar,
etal. [27].

Recently Frasin [28], investigated subclass \SE(a,ﬂ,l)=Hz(a,ﬂ),ae[O,l),ﬂ>0

2(1—05)?% <1

with condition

. He found estimates on two first coefficients for the functions in this class.
The object of the present paper is to find the upper bound estimates for the initial coefficients

,|a;| and |a . . 3 . . .
|a?| |a'°'| | 4| of the functions belonging to the class >z (e, .7) and its special cases. The Fekete-Szegd
problem for this function class is also investigated.

To prove our main results, we need require the following lemmas.

1.2. Lemma

|p”| <2n=123.. are sharp, where P is the family
of all functions p , analytic in U for which p(0)=1 and Re( p(Z)) >0(ze U), and
p(z) =1+ pz+p,2°+--,2€U

(See, for example, [29] If peP , then the estimates

1.2)

1.2.1. Lemma
(See, for example, [26] If the function peP is given by the series (1.2), then
2p, = p{ +(4-pf)x
4p; = p] +2(4-p7) px—(4-p?) pox* +2(4- p2)(2-|x[)2
z|<1

for some X and Z with |X|S1 and |

2. Coefficient Bound Estimates for the Function Class (@ /5:7)
In this section, we prove the following theorem on upper bound estimates for the initial three coefficients of the

function class Sz (a,ﬂ,z')l
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2.1. Theorem
Let the function f(2) given by (1.1) be in the class SZ(O"'B’T), @ E[O’l)’ ,Be[O,l], rell = _{0}.
Then,
A=Al e 0.0,
| |< 3(1+ 2,8)
)= 21 12
la,| < (L-a)[7] %, if |7]e[z,,+),
g (1+5)
o 20@+p)
where 7 8- (1+2p) and
Ql-a)lr
|a4|§2(1—||
+30)
Proof. Let f eSz(a,ﬂ,r),ae[O,l),,Be[O,l],reD*:D _{0} and 97 fﬁl.Then,
1+1[f'(z)+ﬂzf "(Z)—l]=a+(1—a) p(z)
v (2.1)
and
1 ’ 14
1+=[g'(w)+ Bwg" (W) —1] = a + (1 — ) q(w)
T (2.2)

where functions p(2) =1+ pz+ p,2° +--- and A(W) =1+ W+ W +---

Comparing the coefficients in (2.1) and (2.2), we have

are in the class P .

_1(1-a) b a = t(l-a) 0, & = t(l-a) o
T2 ™ * T sae2p) 2 M aaep 3
and
(l- ) ) (l- ) 3 t(l-a)
-a,=—->= 2a; —a, = -5 5 -, =——
2 2(1+ﬂ) ql a2 a3 3(1+ Zﬂ) q2 a2 + a2a3 a4 4(1+3ﬂ) q3. (2.4)
From the first equality of (2.3) and (2.4), we find
(l-a) b =a =_r(1—a)q
20+p) 7 20+p) (25)
Also, from the second equality of (2.3) and (2.4), considering (2.5), we get
l-a)? , l-a)
=gy ™ Terop P 2

Subtracting the third equality of (2.4) from the third equality .of (2.3) and considering (2.5) and (2.6), we can
easily obtain

YR L Co) S P R ) P
24(1+ p)1+2p) 8(1+3p) _ @.7)
In view of Lemma 1.2, since (see (2.5)) = _ql, we can write
2p, = p; +(4- pf)x, 4 2
20, =62 +(4-a2)y T hRT Zpl o)
(2.8)
and

4p, = p} +2(4-p7 ) px—(4-p?) px’ +2(4- pf)(1-|x )2,

4d, =0 +2(4-07 ) ay (407 oy’ +2(4-af ) (1-|y[ )w
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P, — s =%+M(x+ y)—w(xz+yz)+4_Tp12[(1—|x|2)z—(1—|y|2)wJ

x,y and z,w with |x|<1 |y|<1, |z|]<land |w|<1

(2.9)

for some

<2 2 =
Since | p1| , We may assume without any restriction that te [O’ ] , Where t | pl|.
From (2.5), we easily see that

1-a)l|
21+ )

|a,| < t, te[0,2]

SO
1+5 (2.10)

X =&, = .
Substituting the expression (2.8) in (2.6) and using triangle inequality, taking | | s |y| d , We can easily

obtain
[l <C.(O (s +7)+C.() =F (&) (2.11)

where

C.(t) = (1—a)|2'|(4—t2) >0 (1) :%tz >0

12(1+28) 4(1+ ) te[0.2]

Q={(&n): &nelo])

Now, we need to maximize the function F (5 77) on the closed square

Since the coefficients Cl(t) and C2 ® of the function F(f,n) is dependent to variable t, we must
t=0,t=2andt<(0,2)

investigate the maximum of F(&.m) respect to t taking into account these cases
Let t=0 Then, we write

l7|(1-a)
F(&n)=C00)(¢+n)=—"—"=(&+
(&.m)=C(0)(&+7) 3(1+2ﬂ)(§ 1)
It is clear that the maximum of the function F (5, 77) occurs at (5177) - (1’1) , and in this case
max {F (£,7): &n e[0,4]} = FLY) _2He-»
3(1+2p) _ 2.12)
For L= 2, the function F (5' 77) is a constant function as follows
1-a)’ |
F(&n7)=C,(2) A
(1+5) (2.13)
e( ,2) . .
Now, let . In this case, we can easily see that
max {F (&,7): &, €[0,1]} = F(L1) =2C,(1) +C, (1) 2.1
for all te (0’ 2) .
The function G: (0’ 2) — 0 , we will define as follows
G(t) = 2C,(t) + C, (1) 215)
for fixed value of el = _{0}

C,(t) and C, (1) (2.15), we obtain

G(t) = A(a,ﬂ; r)t2 + B(a,ﬂ;r)

Substituting the value

Where
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3(1L-a)? | ol 2(1+ BY’ N ol
12(1+28)(1+ B)° 31-a)(1+2p) (a'ﬂ’f)_—3(1+zﬂ) |

Ala, Bi7) =

. : . . . . 0,2
Now, we must investigate the maximum of the function G(t) in the interval ( )
By simple computation, we can easily show

G'(t) = 2A(a, BiT)t

2(1+ BY j

| e[
Itis clear that © (D <0 i A(a, i) <0 - that is if 3(1-a)(1+2p) _

2(1+ B’
Ty =
Thus, the function G(t) is a decreasing function if |T| < (0’ %o ) where 31-a) (1+ 2’8) . Therefore,
2(1—a)|r|
ax{G(t):te(0,2)} =G(0+) =2C,(0) =————
3(1+ Zﬂ) 2.16)
Also, G'(t) 2 O | |_ “o ; that is, the function G(t) is an increasing function for |T| 2 TO.Therefore,
l-a)|r
ax{G(t):te(0,2)} =G(2-) =C,(2) :(1—”2'
(+p) 2.17)
Substituting the expressions (2.8) and (2.9) in (2.7) and using triangle inequality, taking |X| =< |y| -
can easily obtain that
2 <e®(¢+¢")+e. (¢ +6)+ a0 =4(¢.5) 19
where
1-a)(4—t%)(t—2
qu a)(4-t*)( ) _,
32 (1+ 3ﬂ)
, (1—a)(4—1%)|z|t[ 5]z| (01— ) (1+38) +3(1+ B) (1+ 28) ] -0
c = 2
) 48(1+ B)(1+2p8)(1+3p)
- 1 4-t?
e(t) = 1 a)|r| , a)|z'|( )201
16(1+3,B) 8(1+3,B) te [O, 2]

={(¢:6): Sis [0}

Since the coefficients Cl(t), ¢ ® and € ® of the function #(¢.5) is dependent to variable t, we must
=0,t=2andte(0,2)

Now, we need to maximize the function #(S.¢) on the closed square

. . . L t
investigate the maximum of ¢(é” g) respect to t taking into account these cases
Let us t= 0. Then, we write

M) = 1-a)l| 2)+ 1-a)|7|

4(1+3,B) 2(1+3,B)
In this case, we will examine the maximum of the function #(¢.¢) taking into account the sing of

AC.©) =680 -[4.C.0)]

By simple computation, we can easily see that

' —_ |T|(1
A () 2(1+35)

(& +¢

|r| (1- a)

§¢(§) 21+ 3,8)

and
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7| (1- )

"(€.9)=¢."(¢.9)=- (& Q
4.6 =. () =0 P ENTHEAT g =
Thus,
|r|(1—a)j2
A 0150/ = 0 ,
(é, g) (4(1+3ﬁ) ” and ¢§4’ (§O’§0)<O;

that is, (é,o’go) is a maximum point for the function ¢(§’G) where (Co,go) ©, 0). Therefore, in the
t=0
case

_ 1-a)||
maxi¢(¢,¢): ¢, €[0,1f§ =¢(0,0) =
{ S gE[ ]} 2(1+3ﬂ) | (2.19)
For L= 2, the function #(¢9) is a constant function as follows
1-a)||
#(¢.6)=Cy(2) =
: 2(1+3p) (2.20)

2
In the case te (0’ ) we will examine the maximum of the function #(¢.¢) taking into account the sign of

A9 =6, (.0) [0

By simple computation, we can easily see that

8, (£,6) =26,(1)¢ +¢, (1), 4. (£6) =2¢,(t)s +C, (1)

and
4. (§6) =9, ((.5)=0
4..(£9)=4.C.0)=2c,1).(.0) e
(go,go)z(—cz(t) L(t)]
Thus, 2¢,(t) 2¢,() is a critical point of the function #(S.¢) if (€0:50) EQ. We assume

that (Cor60) € Q. Since
A(é/o’go) = 4C12(t) >0 and ¢§§” (é/O’gO) = 2C1(t) < 0,

(40’ go) is a maximum point for the function ¢(§’ g) . Therefore,
_ - oy &M
max [§(16): (§16) € 2} = o) =0~ 5L S
for all te (0’ 2).
Hence, we can write
. > (0)
|a4| <inf {Cs(t) _Cz— ‘te (O’ 2)}
2¢,(t) . (2.21)
c; (1)
C3 (t) -
Now, we must investigate the infimum of the function 201( ) in the interval (0’ 2).
Since
_ _ _ 25(1-a)l7|
inf {Cg(t) te (O, 2)} - 54(1+ 3ﬁ) inf {Cz (t):te (O, 2)} =0 and
s RN _|d@-a)
sup{—c,(t):t (0,2)} =—inf {c,(t):t(0,2)} = H(1+35)
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inf {c3(t)—ﬂ't e(o,z)}<M

2c,(t) - 54(1+3p) 2.22)
Therefore, from (2.19), (2.20) and (2.21), (2.22), we have
| < max { L-a)|r] | 25(1—a)|r|} _ -]
2(1+3ﬂ) 54(1+3ﬁ) 2(1+3ﬁ) . 2.23)

Thus, from (2.10) - (2.14), (2.16), (2.17) and (2.23) the proof of Theorem 2.1 is completed.
In the special cases from Theorem 2.1, we arrive at the following results.

2.2. Corollary
Let the function f(2) given by (1.1) be in the class Syl p1) = HZ(“"B), ae[O,l), ﬂe[o’l].Then,
l-a
|a2|S1_
+p
2
(i‘“)z, if ael0,a,],
lag| < (22113))
—-a) .
—if 1),
3128 @ €(2)
2(1+B)°
oy =1-———-"=-
where 3(1+2ﬂ) and
a |£1‘_“
Y17 2(1+3p)
2.3. Corollary
Let the function f(2) given by (1.1) be in the class 32(05,0,1')’ @ E[O’l)’ rel = _{0} . Then,
| <lel@-e)
-0 2| (0,7,),
as[<y 3
|z'|2 1-a)?, if |r|e[z,,+0),
2
T, =
where 3(1-a) and
1-a)l|
<= A0
|a4| - 2
2.4. Corollary
Let the function f(2) given by (1.1) be in the class Ss (@,0.1) = Ry (e,0) = Nz(a), @€ [0’1) . Then,

|la,|<1l-«
(l-a)’, if ae {0%}

lag| <
20-a) ae(
3

Wl
[EEN
N—

and

l-«a
<
|a4|_ 2
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2.5. Corollary
Let the function f(2) given by (1.1) be in the class SZ(a’l’ T), ae[O,l), rell = _{0} . Then,
)< l7|(1-a)
22
2“'% D it lele(0,r,),
|a3| = |T|2 (1_a)2
2 | if |r|e[ro,+oo),
8
Ty =
where 91-a) and
(l—a)|r|
<
| 4| - 8
2.6. Corollary
Let the function f(2) given by (1.1) be in the class Ss (e, 1,0) = Ry (a,l),7 @< [0’1) . Then,
<57
2

and

3. Fekete-Szegd Problem for the Function Class Sy(a fi7)
In this section, we will prove the following theorem on the Fekete-Szegd inequality of the function class

32(a1ﬂ17)_

3.1. Theorem
Let the function f(2) given by (1.1) be in the class Sz(a,ﬂ,r), * E[o’l)’ ﬂe[O,l], rell’= _{0} and
HEL Then,
2 %, if [1-4]e[0, 1),
e
|1—,U|W, if [1— u] e[y +),
__20+p)
here % 3 a-a) (1+28)
proof Let | € 3s(@ B,7), @ €[0.1), Be[01], rel =01 {0} uel

From (2.5) and (2.6), we find that
1-a)
_pa? = (1— ) ad 4 =&
a,—pa; =(1-u)a; 6L+ 25)

(pz_%)

(3.1)
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Substituting the expression (2.8) in (3.1) and using triangle inequality, taking |X| =0, |y| - , We can easily
obtain that
la, — wal| <d, (t) +d, (1) (0 +9) =y (6,9) 62
where
1 _ _ 32
d, (1) =[1- ||T|(—t >0 dz(t):|T|(1 “)(4 t )2
41+ )’ and 12(1+2p)

Q={(6.9): 6,9<[0,1]}

. : 0,9 .
Now, we need to maximize the function l//( ) on the closed square . Since

the coefficients dl(t) and dz(t) of the function 1//(0,3) is dependent to variable t, we must investigate the

maximum of 1/1(0, 19) respect to U taking into account these cases t=0 t=2andte (O’ 2).

Let L= 0. Then,

|Z’| (1-a)
3(1+2p) (0+9)

(6.9)=@D)

w(0,9)=d,(0)(0+9)=

It is clear that the maximum of the function 1//(6?, ‘9) occurs at
Therefore, in the case t=0

aX{!//(é’, 9):0,9¢e [0,1]} =y (L1 :M

3(1+2p) _ (33)
) is a constant function as follows
||r| 1-a)

@ oo

Now, let £ =2 In this case, 1//(0,9

w(6,9)=c,(t,2) =[L-

In the case te (O, 2), we can easily see that

ax{y(6,9):6,9€[0,1]} =y (L1) =d,(t)+2d,(t)

(3.5)
for all te(O,Z).
Let us define the function H :(0’2)_>D as follows
forfixedz-ED =t - {O}
Substituting the value dy(t) and d(t) in (3.6), we obtain
H(t)—C(a,,B,,u, )t +D(a,ﬂ,,u)’
where
-ayle 2(1+ )’ 2|| (1)
C(a, B, 1t —u|-——"L | D(q Bir)=E"H
(i) 4(L+p) b sal@r2p) | D)= 5. 2p)

. . . . : : 0,2
Now, we must investigate the maximum of the function H(®) in the interval ( )
By simple computation, we can easily show that

H'(t)=2C (a,ﬂ,y;r)t _

! .
We will examine the sign of the function H'(t) depending on the different cases of the sign of C (a, B u T)
as follows.

(1) Let us C(a’ﬁ”u;z—)zo.Then H'(t)zo,so H (1)

is an increasing function. Therefore,
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2 2
71 (-
max{H(t):te(O,Z)}=H(2—)=d1(2)=|1_ﬂ|||(—2)
(1+'8) . (3.7
(1) Let us C(a’ﬂ”u;r)<o.Then Hl(t)<0;that is, H(®) is a decreasing function. Therefore,
2|z|(1- )
maxiH(t):te(0,2);=H(0+)=2d,(0) = ——~
From (3.7) and (3.8), we conclude that
|r|2 (1-a)?
max{H(t):te(O,Z)}:|1—,u|ﬁ
( +'B) (3.9)
if |1—,u|2,u0 and
max{H(t):te(O,Z)}:M
3(1+ Zﬂ) (3.10)
2(1+ B)

ﬂ =
if|1—y|<yOMere ° 3lr|(l-a)(1+2p)

Thus, from (3.3), (3.4) and (3.9), (3.10), the proof of Theorem 3.1 is completed.
In the special cases from Theorem 2.1, we arrive at the following results.

3.2. Corollary

Let the function f(2) given by (1.1) be in the class 32(0{’0’7), ae[O,l), rell = _{0} and H el

. Then,
2|7|(1-a) .
- ~ f 1_ O! )
‘%—yaﬁ‘s 3 it f1—u<[0,11)

|l—,u||z'|2 A-a)* if L-pe[uy +=),

2

where 37|(1-a)
3.3. Corollary

Let the function f(2) given by (1.1) be in the class SZ(“’]" T)’, ae[O,l), rel’= _{0} and
HET Then,

2 2(1——05)|T|, if |1—,u|e[0,,uo),
‘aa—yaz‘s (1—&)2|T|2 i
sl i L= pd e[t o0),
ST (i—a)
where

Taking #=0 and 4= 1 in Theorem 3.1, we can easily arrive at the following result.

3.4. Corollary
Let the function f(2) given by (1.1) be in the class SZ(“”B’T), @ E[o’l)’ ﬂe[O,l], rell = _{0}.
Then,
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2(1—a)|r| )
—3(1+2ﬂ)1 if |r|e(0,z'0),
% aoapi
—, if |r|e[r0,+oo),
(1+5)
2(1+B)°
T, =
where 31-a) (1+2’B) and

5 2|T| (l-a)

o -] < 3(1+25)

3.4.1. Note

The first result of Corollary 3.3 confirms the second inequality of Theorem 2.1.

3.4.2. Remark
Numerous consequences of the results obtained in the Corollary 3.1, 3.2 and 3.3 can indeed be deduced by
specializing the various parameters involved.
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