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Abstract 
This paper studies the problem of finite-time stabilization of a class of switched linear time-varying delay systems. An 
event-triggered sampling mechanism and an event-triggered state feedback control are proposed. Based on Lyapunov-

like function method, linear matrix inequality technique and averaged dwell time method, sufficient conditions for 

switched delay systems under event-triggered state feedback control are given to ensure the finite-time stabilization of 

the switched delay systems. Finally, a numerical example is given to verify the validity of the proposed results. 

Keywords: Switched delay system; Event-triggered mechanism; Finite-time stable; Average dwell time. 
 

 

1. Introduction 
Switched systems are widely used in the practical engineering and have important research significance. The 

stability of the switched system is a fundamental problem in the theoretical study of the switching system [1-3]. Due 

to the existence of external disturbance, time delay, and uncertainty in the actual physical system, it is worth paying 

attention to study the control problem of switch system with delay. In Phat and Ratchagit [4], Stability and 

stabilization of switched linear discrete-time systems with interval time-varying delay was studied by Wang, et al. 

[5] analyzed the stability of switched delay systems with all subsystems unstable. We have noted that most of the 

previous work on the stability of systems was on the Lyapunov stability in infinite time intervals. However the 

behavior of some systems can only be defined within a limited time interval. In this case, it is necessary to study the 
finite time stability of the system [6-8]. In Yang, et al. [8], Yang at al. considered finite-time boundedness and 

stabilization of uncertain switched delayed neural networks of neutral type. In Xiang and Xiao [7], Xiang at al. dealt 

with finite-time stability and stabilization for switched linear systems. In Wang, et al. [6], finite-time stability for 

continuous-time switched systems in the presence of impulse effects was concerned. 

In sampling control system, generally adopt time-triggered mechanism, that is, periodic sampling controller is 

used to control the system. This traditional time-triggered mechanism is helpful to simplify the system performance 

analysis, but its preset sampling period may cause a waste of system resources. Therefore, in order to reduce the 

sampling update and network communication frequency of the controller, an event triggering strategy different from 

time triggering is proposed [9, 10]. In [9], Tallapragada at al. investigated on event triggered tracking for nonlinear 

systems. The work of Liu and Jiang [10] studied event-triggered control of nonlinear systems with state quantization. 

So far, the event triggering mechanism has made some theoretical achievements in the study of the stability of 

nonswitched systems. However, the problem of event triggering control for the switched delay system has yet to be 
solved. Therefore, in this study, we focus on finite-time stabilization for a class of switched systems with time-

varying delay. The main contributions of this paper lie in: (i) Develop event-triggered mechanism and design a 

controller. (ii) Sufficient conditions for unforced switched system with time-varying delay are presented.  (iii) The 

criterion of finite-time stabilization for switched systems under the event-triggered control is given. 

The paper is organized as follows. In Section 2, a description of switched systems, important definitions, event-

triggered condition and some necessary lemmas are given. Section 3 analyzes the finite-time stabilization of the 

switched system with time-varying delay. A numerical example is shown in Section 4 to illustrate the results. 

Section 5 gives the conclusion of this paper. 

Notation. represents the set of nonnegative integers.
nR and

n mR 

represent the n dimensional Euclidean space 

and the set of all n m real matrices respectively.
0( 0)X X 

is a real symmetric positive definite matrix (positive 

semi-definite matrix). min ( )A
and max ( )A

denote the minimum and maximum eigenvalues of matrix A, respectively. 

* represents the symmetric blocks in a matrix. 
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2. Preliminaries and System Specification 
Consider a class of linear switched systems with time-varying delay: 

 ( ) ( ) ( )( ) ( ) ( ( )) ( ),

( ) ( ) [ 0],
t d t tx t A x t A x t t B u t

x t t t h,
  


   

  
                                                                                              (1) 

where
nRtx )(

denotes the state vector,
mRtu )(

is the control input,
)(t

is a continuous initial function on

]0,[ h
.

)(t
represents the time-varying delay and satisfies 

.1ˆ)(0,)(0  htht  
 

where h and ĥ are positive constants. The switching signal is define as 
},,2,1{),0[:)( NMt 

which is 
a piecewise and right continuous constant function. N represents the number of subsystems. The corresponding 

switching sequence is 

}.,1,0,|,),,(,),,(;{ 000   kMititix kkk  

When
),,[ 1 kk ttt thik subsystem is activated. idii BAA ,,

are known constant matrices with appropriate 
dimensions. Bi has full column rank. 

In order to get the main results, we give the following definitions and lemmas. 

Lemma 1. [11]. For a given matrix
p mB R  with rank (B) = p, assume that

mmRX  is a symmetric matrix, 

then there exists a matrix
ppRX ˆ

such that BXBX ˆ , if and only if 

,
ˆ

ˆ

22

11 TV
X

X
VX














                                                                                                                                (2) 

where
ppRX 11

ˆ
and

.ˆ )()(
22

pmpmRX 
 

Lemma 2. (Jensen’s Inequality) For any matrix ,0,   Tnn MMRM scalars a and ,: bab   vector

Rbax ],[:
such that the integration concerned are well defined, then: 

   
T

b b b
T

a a a
x( s )ds M x( s )ds ( b a ) x ( s )Mx( s )ds.   

 

Lemma 3. Liu, et al. [11]. For any real vectors u,v and a symmetric positive matrix
Q

with compatible 

dimension, the following inequality holds: 

.1vQvQuuuvvu TTTT 
                                                                                                                     (3) 

Lemma 4.  For the given matrix 

,0
2212

1211 









SS

SS
S T

 

where
,, 22221111

TT SSSS 
the followings are equivalent: 

(1) 
;0,0 12

1

11122211   SSSSS T

 

(2) 
.0,0 12

1

22121122   TSSSSS
 

Definition 1. (Average dwell time [13]). For any switching signal
)(t

and
,012  tt
 let

),( 21 ttN indicate the 

switching number of
)(t

over
),( 21 tt

. If 

  ,/)(, 12021 attNttN  
                                                                                                                   (4) 

holds for constants
,0,00  aN 
then the positive constant a is called an average dwell time and 0N

is the 

chattering bound. Without loss of generality, we choose
.00 N
 

Definition 2. Lin, et al. [12]. Given three positive constants
Tcc ,, 21 with

,12 cc 
a positive definite matrix R 

and a switching signal
( ).t

The switched linear system (1) with
0)( tu

is said to be finite-time stable with respect 

to 1 2( )c ,c ,T ,R, ,
if 

     1 2
0

{ ( ) } [0 ].T T

h

sup x Rx c x t Rx t c , t ,T


 
  

    
                                                                        (5) 

Definition 3. Lin, et al. [12].  Given three positive constants
Tcc ,, 21 with

,12 cc 
and a positive definite matrix 

R. The switched system (1) with
0)( tu

is said to be uniformly finite-time stable with respect to
 1 2 ,c ,c ,T ,R

if 

condition (5) holds for any switching signal
).(t
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In this section, we aim to develop an event-triggered mechanism and construct a controller which can guarantee 

the finite-time stabilization of system (1). 

First, we develop the triggering condition based on the system state as follows: 
 

 

where ),()()( txtxte s  is the error signal of the latest sampling state and the current state of the system.

10  
is a given positive threshold.  

Because of the event triggering mechanism is used in the switched system, the system state
)(tx

is first 

transmitted to the event triggering mechanism, through the designed triggering mechanism, we can obtain that the 

state
)(tx

of the sampling system at the triggering time
 

0kst is
).( stx

Furthermore, the control signal is updated by 
calculation, and the discrete signal is converted into continuous signal by the zero order holder, which is 

implemented in the subsystem by the actuator. Assumed that there is no transmission delay in the feedback channel, 

that is, the triggering sampling, controller signal updating and control signal application are synchronous. When an 

event happens, the controller updates the latest state and switching information and holds the information until the 

next event happens. We have the following event-trigger instant sequence:
  ,

0



kst with
,1 ss tt
the next sampling 

instant 1st can be determined by 

}.)()(|inf{
22

1 txtettt ss                                                                                                        (6) 

Let
,00 tt 
without loss of generality, we assume that there is no Zeno behavior in this paper. Then

),,[ 1 kk ttt
the state feedback controller is set to 

( )( ) ( )t Su t K x t ,
                                                                                                                                    (7) 

where ( )tK is the controller gain. On the continuous sampling interval, the controller only updates the 
information of sampling time. Therefore, applying the state feedback controller (7) to the linear switched system (1), 

the closed-loop system can be obtained as follows: 

   ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )t t t d t t tx t A B K x t A x t t B K e t         
                                                         (8) 

 

3. Main Results 
Consider an unforced switched system with time-varying delay 

))(()()( ttxAtxAtx dii 
                                                                                                                   (9) 

In this subsection, we will give some sufficient conditions for finite-time stability of systems (9). 

Let 

       

1 1 1 1 1 1

2 2 2 2 2 2

1 2 3 4

, , ,

, , ,

i i i i i i

min i max i max i max i

P R PR Q R Q R R R R R

P P R Q .       

     

  

   
                                                          (10) 

Theorem 1. For given a matrix ,0R and positive scalars
,,21 Tcc 
 if there exist positive definite symmetric 

matrices
,,, iii QRP
with appropriate dimensions for each ,Mi and positive scalars 1 2 3 4, , , , , 1,      

 such 

that 

,0

****

0***

00**

000)ˆ1(*

000









































i

i

i

i

diiiiii

T

iii

i

Q
h

R
h

R

Qh

APPQRPAAP







                                    (11)                                         

, , , , ,i j i j i jP P R R Q Q i j M      
                                                                                               (12) 

1 2 3 4 1 2 ,Tc ( h h ) c e       
                                                                                                                  (13) 

then, the system (9) is finite-time stable with respect to
 1 2c ,c ,T ,R,

 for any switching signal
)(t

with 

average dwell time a satisfying 

,)()(
22

txte 
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1 2 1 2 3 4( ) ( ( ))

*

a a

T ln
.

ln c ln c h h T


 

    
 

   
                                                                                     (14) 

 

Proof: Construct Lyapunov like function as follows: 

.)()()()()()()(
)(

dssxQsxdssxRsxtxPtxtV
t

tt
i

T
t

ht
i

T

i

T

i  


                                                                 (15) 

Taking the time derivative of (15) along solutions of system (9) gives 

                  

                 

           

1

T T T T T

i i i i i i i di di i

T T T T

i i i i

t t
T T T

i i i
t h t ( t )

V t V t x t P A A P x t x t P A x t t x t t A Px t

ˆx t R x t x t h R x t h x t Q x t ( h )x t t Q x t t

x t Px t x s R x s ds x s Q x s ds.


  

 

  
 

      

        

   
By Jensen’s 

Inequality, one has 

   

   

T
t t t

T

i i
t h t h t h

T
t t t

T

i i
t ( t ) t ( t ) t ( t )

x ( s )R x( s )ds x( s )ds R x( s )ds ,
h

x ( s )Q x( s )ds x( s )ds Q x( s )ds .
h  







  

  

  

  

  

  
 

So, we have 

( )

( ) ( ) ( )( ) ( ) ( ) ( ( ))

( ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) (1 ) ( ( )) ( ( ))

( ) ( ) (s) (s) (s

T T T

i i i i i i i di
T T T

di i i
T T T

i i i
t t t

T T T

i i
t h t h t t

V t V t x t P A A P x t x t P A x t t

x t t A Px t x t R x t
ˆx t h R x t h x t Q x t h x t t Q x t t

x t Px t x dsR x ds x
h h 

 


 
 


  

    

  

       

     ( )

( ) ( )

) (s)

( )( ) ( ) ( ) ( ( ))

( ( )) ( ) ( )

( ( ))(1 ) ( ( )) ( ) ( )

(s) (s)

t

i
t t

T T T

i i i i i i i i di
T T T

di i i
t t

T T

i i
t t t t

t t
T

i
t h t h

dsQ x ds

x t P A A P R Q P x t x t P A x t t

x t t A Px( t ) x t h R x t h

ˆx t t h Q x t t x s dsQ x s ds
h

x dsR x ds
h



 

 



 







 

 

      

    

    







 

 
( ) ( ),T

it t
                      (16) 

where  

( )
( ) [ ( ), ( ( )) ( ) ( ) ( ) ]

0 0 0

* (1 ) 0 0 0

* * 0 0

* * * 0

* * * *

t t
T T T T T T

t h t t
T

i i i i i i i i di

i

i

i

i

i

t x t x t t ,x t h , x s ds, x s ds ,

P A A P R Q P P A

ĥ Q

R
.

R
h

Q
h


 







 
  

    
 

  
 
 

 
 

 
 
 


  

 

 
From (11), we can obtain  

( ) ( ) < 0i iV t V t .
 

According to (12), (13) and (15), assume that
,)(,)( jtit kk 




we have 

),()(  kjki tVtV 
                                                                                                                                          (17) 

For any
),,0( Tt

let N indicate the switching number of
)(t

over
).,0( T

By iterative computation, we can 

further obtain 
( )

( )

( ) < ( )

( )

(0).

k

k

t t

k
t t

k

N T

V t e V t

e V t

e V













 



 

Recalling that
,/ aTN 
so we have 

).0()( VetV T

T

a 
                                                                                                                                          (18) 

On the other hand, 
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),()()()()()( 1min tRxtxtRxtxPtV TT

i  
                                                                                                     (19) 

   
,)(

)()(sup)()()(sup)()0()0()(

)()()()()0()0()0(

1432

0
max

0
maxmax

0

)0(

0

chh

RxxQhRxxRhRxxP

dssxQsxdssxRsxxPxV
T

h
i

T

h
i

T

i

i

T

h
i

T

i

T
















 

                        (20) 

where
,,,, 4321 
satisfied (10). Combine (18), (19) with (20), we can get 

1

1

2 3 4 1

1

( )
( ) ( )

(0)

( )

a

a

T

T

T

T

T

V t
x t Rx t

e V

e h h c
.

 

 







   







 


                                                                                                    (21) 

If
,1
according (13) 

1

2 3 4 1

1

2

( )
( ) ( )

( )

T

T

V t
x t Rx t

e h h c

c .





  





 



                                                                                                          (22) 

If
,1
according (14) 





 ln

))ln(()ln( 143221 TchhcT

a




                                                                                           (23) 
Substituting (23) into (21) yields 

2

1432

21

1

1432

)(

)(
)()( ce

chh

c
e

chh
tRxtx TTT 




 









                                                          (24) 

According to Definition 2, the switched delay system (9) is finite-time stable with respect to 
).,,,,( 21 RTcc

The proof is completed here. 

Theorem 2.  For given a matrix ,0R and positive scalars
,,21 Tcc 
the system (8) is finite-time stable with 

respect to
 1 2c ,c ,T ,R,

for any switching signal
)(t

with average dwell time a satisfying (14), if there exist 

positive definite symmetric matrices
,,, iii QRP
with appropriate dimensions for each ,Mi and positive scalars

1 2 3 4, , , , , 1,      
such that (12), (13) and the following inequality hold: 

,0

*****

0****

00***

000**

0000)ˆ1(*

00011













































I

Q
h

R
h

R

Qh

YBAP

i

i

i

i

iidiii

i





                                                                (25) 

where 
11

11

22

T T T

i i i i i i i i i i i i

T i

i i i i i i i

i

P A A P R Q P B Y Y B I

P̂ ˆP V V , PB B P .
P̂

         

 
  

   

Furthermore, the controller gains are given by
1 ,i i i

ˆK P Y i M.  
 

Proof: Consider Lyapunov like function (15).  Taking the time derivative of (15) along solutions of system (8) 

gives 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),T T T T T T T T T

i i i i i i i i i i i i i i iV t V t t t x t PB K K B P x t x t PB K e t e t K B Px t        
  

                                                                                                                                                                   (26) 
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where i  is give by (11). 

According event-triggered condition (6), and Lemma 3, we can get 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ),

T T T T T T T

i i i i i i i i i i i i i i i

T

i

V t V t t t x t PB K K B P PB K K B P I x t

t t

   

 

      

 
                          (27) 

where 
11 0 0 0

0 1 0 0 0

0 0 0 0
,

0 0 0 0

0 0 0 0

i i di

i

i

i

i

i

P A

ˆ( h )Q

R

R
h

Q
h





 
 

  
 
 

 
 

 
 
 


                                                                                     (28) 

,11 IPBKKBPPBKKBPPQRPAAP i

T

i

T

iiiii

T

i

T

iiiiiiii

T

iiii  
 

Let i i i
ˆY PK .

 Using Lemma 4, 
,i i i i

ˆPB B P
 and (25) , we get  

0i . 
 

Other proofs are similar to those of Theorem 1, which is omitted here.   

 

4. Numerical Example 
In this section, a numerical example is given to illustrate the effectiveness of proposed Theorem. 

 Consider system (1) with two subsystems, and system matrix parameters are 

1 1 1

2 2 2

0 02 0 03 0 05 0 06 0 01 0

0 04 0 02 0 02 0 04 0 0 04

0 04 0 02 0 02 0 05 0 02 0

0 2 0 03 0 04 0 03 0 0 03

d

d

. . . . .
A ,A , B ,

. . . . .

. . . . .
A ,A , B ,

. . . . .

     
       

       

     
       

         
The values of other parameters are given as follows: 

.sin1.0)(,02.1,1.0,2.0ˆ,5.0,5.0,,10,30,1.0 21 tthhIRTcc  
 

Solving inequalities (12), (13) and (25), we obtain the following controller gains: 

.
18.73144.6727
6.760218.8503

,
11.55580.6618
2.782742.0815

21 



















 KK

 

Then, according to condition (14), 
1.9011.*

a a  
 We chose 

2.a 
 According Theorem 2, the system (8) is 

finite-time stable with respect to
).,,,,( 21 RTcc

 The switching signals of controlled system is shown in Fig. 1. Fig. 

2. depicts triggered instants. The system state is shown in Fig. 3.  
 

Fig-1. Switching signals 
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Fig-2. Event-triggered instants 

 
 

Fig-3. System state responses 

 
 

5. Conclusion 
In this paper, we propose an event-triggered sampling mechanism and a state feedback control for switched 

linear time-varying delay systems. Different from time-triggered control systems, event-triggered control systems 

will not be updated until some error signal exceeds a well-set threshold. Sufficient conditions have been formed to 

guarantee the finite-time stabilization of the switched delay systems. Finally, a numerical example has been given to 

verify the effectiveness of proposed Theorem. 
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