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Abstract 
This paper introduces a new generalization of moment exponential (or length biased) distribution. The new model is 
referred to as generalized transmuted moment exponential distribution. This model contains some new existing 

distributions. Structural properties of the suggested distribution including closed forms for ordinary and incomplete 

moments, quantile and generating functions and Rényi entropy are derived. Maximum likelihood estimation is employed 

to obtain the parameter estimators of the new distribution. We illustrate the importance of the new model by means of 

three applications to real data sets. 

Keywords: Transmuted distribution; Generalized transmuted-G; The moment exponential; Moments; Order statistics; Maximum 

likelihood. 
 

 

1. Introduction 
In recent times, many generators have been proposed by extending some useful classical distributions. Such 

generated families of distributions have been extensively used for modeling and analyzing lifetime data in many 

applied sciences such as reliability, engineering, actuarial sciences, demography, economics, hydrology, biological 

studies, insurance, medicine and finance, among others. However, there still remain many real world phenomena 

involving data, which do not follow any of the classical statistical distributions. 

A class of distributions called transmuted distributions has been provided by Shaw and Buckley [1]. A random 

variable X is said to have a transmuted distribution, if its cumulative distribution function (cdf) is given by 

     1 , 1TF x G x G x        ,                                              (1) 
The probability density function (pdf) corresponding to (1) is given by 

     1 2Tf x G x g x      ,                                                          (2) 

where g(x) and G(x) are the pdf and cdf of base distribution. A more general form for (1) with two extra shape 

parameters, called generalized transmuted (GT) distribution, has been introduced by Nofal, et al. [2]. The cdf of GT 

distribution is defined by 

      1 ,      , 0. 
a b

GTF x G x G x a b          
                                            (3) 

The pdf corresponding to (3) is 

            1

1 .
a b

GTf x g x G x a a b G x 


         
                              (4) 

The exponential distribution is an important statistical model and widely applied in several fields [3]. Due to its 

benefit, various generalizations and extensions  of the exponential distribution are available in the literature such as;  

exponentiated exponential [4], beta exponential [5], beta generalized exponential distribution [6], moment 

exponential [7], exponentiated moment exponential [8], generalized exponentiated moment exponential [9], 
Marshall-Olkin generalized exponential [10], Marshall-Olkin length-biased exponential [11], exponential Slashed 

moment exponential [12], alpha power transformed extended exponential [13] exponentiated length biased 

exponential [14] and  Kumerswmay moment exponential [15], Weibull moment exponential [16] among others. 

The moment exponential (ME) (or length biased) distribution was proposed by Dara and Ahmad [7] and 

discussed hazard and reversed hazard rate functions with the next pdf: 
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2( ) ;         0 and >0xg x x xe   
                                  (5) 

The cdf corresponding to (5) is 

 ( ) 1 1 ;         0 and >0xG x x xe     
                               (6) 

Properties, extensions and applications of the ME distribution mentioned in the context of reliability analysis 

have been discussed by Dara and Ahmad [7].  

In this article we offer a new generalization of the ME distribution called the generalized transmuted moment 
exponential (GTME) distribution. The fundamental motivation of this generalization is  

i. Providing highly flexible life distribution which contains as sub models; some new existing distributions, 

ii. To permit different degrees of kurtosis and asymmetry and,  

iii. To provide significant improvement in data modeling.  

This article is orginzied as follows. We define the new distribution in Section 2. Section 3 contains some 

structrual properties of the new distribution. In Section 4, maximum likelihood estimators are derived and numerical 

study is given. Application to real data is provided in Section 5 and the article ends with a conclusion. 

 

2. Generalized Transmuted Moment Exponential Distribution  
Here, we present the GTME distribution and its sub-models. So, a random variable X is said to have GTME 

distribution with vector parameters  where, 
 , , , a b  

if its cdf is defined by substituting (5), (6) in (3) as 
follows 

   ( ; ) 1 1 1 1 1 , 0,
a b

x xF x x x xe e     
                
                                       (7) 

and its pdf is as follows 

   
1

2( ; ) 1 1 (1 ) ( ) 1 1 , 0.x
a bx xf x xe x e a a b x xe

       
                                                    (8) 

Hence, we denote a random variable having the pdf (8) by X ~ GTME 
 , , , a b  

. Special sub-models of 

the GTME distribution are recorded in Table 1. 

 
Table-1. Sub-models of the GTME distribution 

No. Distribution 
 

a  b    
Author 

1 TME 
 

1 1   
New 

2 EME(a+b) 
 

a  b  
1- [8] 

3 EME(a) 
 

a  b  
0 [8] 

4 ME 
 

1 1 0 [9] 

 

The survival function (SF), and hazard rate function (HR) are, respectively, given by 

   ( ; ) 1 1 1 1 1 1 ,
a b

x xF x x xe e     
                
   

and, 

   

   

12 1 1 (1 ) ( ) 1 1

( ; ) .

1 1 1 1 1 1

a b
x x xx x a a b xe e e

h x
a b

x xx xe e

      



    

                 
 
               
   

Some descriptive pdf and hrf plots of GTME model are illustrated below for specific parameter choices of   
(see Figure 1). 
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Figure-1. (a) Plots of the pdf of the GTME distribution (b) Plots of the hrf the GTME distribution 

 
                                                (a)                                                                                (b) 

 

From Figure 1 (a), we conclude that pdf of GTME distribution can be uni-model and   right skewed. Also, the 

hrf of GTME distribution can be increasing, decreasing and up-side down as seen from Figure 1 (b). 

Lemma 1. The limit of the GTME density function is given by  

   

0

1 1

1

lim ( ; ) 0

lim ( ; ) 0

1 1lim ( ; ) 1 2 (1 ) ( ) 1 2

x

x

x

f x

f x

ba
f x e e a a b e







   





 







        
 

 
Proof. It is easy to demonstrate the result from the density function (8). 

Additionally, the limit of the GTME hazard function as xzero is zero and x ∞ is ∞ as seen below  

0
lim ( ; ) 0
x

h x 



 

lim ( ; )
x

h x 



 

It is straightforward to prove this result.  

 

3. Statistical Properties 
The statistical properties of the GTME distribution including moments, quantile function, incomplete moments, 

mode and Rényi entropy are discussed in the following sub-sections. 

 

3.1. Moments 
In this subsection, the rth moment about zero of X is derived. From (8), we can write 

   
1

2 1

0

1
2 1

0

1 2

1 1(1 ) 1 1 ( )

.

a b
r x x

r

a
r x x

x e x e dx

I

a x e x e dx a b

I

  
     


 

  




     



          





First, 

to obtain I1, we employ the binomial expansion, hence, 

2 1 ( 1)

1

0 0 0

1
(1 ) ( 1) .

i
i j r j i x

i j

a i
I a x e dx

i j

 


    

 

  
    

  
 

 
So, I1 is given by 

   

 
1 2

0 0

1 1 2
(1 ) .

  1

   

i ri

r j
i j

a i r j
I a

i j i






 
 

      
    

  


 
By similar way I2 is as follows 
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   

 
2 2

0 0

1 1 2
( ) .

     1

   

i ri

r j
i j

a b i r j
I a b

i j i






 
 

       
    

  


 

Then, r 
 can be written as  

 

 
 2

,
2 ,

1

r

r r j

A i j
r j

i
  

 
    


                                                                                                            (9) 

 
0 0 0 0

1 1
, (1 ) ( 1) ( ) ( 1)

       

i i
i i

i j i j

a i a b i
A i j a a b

i j i j
 

 

   

        
           

      
 

 
In particular, the mean and variance are as follows 

 

 
 1 3

,
3 ,

1
j

A i j
j

i





   


 
Then the variance is 

 

 
 

 

 
 

2

2

4 32

, ,
4 3

1 1
j j

A i j A i j
j j

i i


 
 

 
      

     
The coefficient of skewness (Sk) and coefficient of kurtosis (Ku) are obtained by using the well-known 

relationships. Table 2 contains values of mean (

/

1 ),variance 

 (
2 ), SK, and Ku of GTME distribution for certain values of parameters. 

 

Table-2. 

/ 2

1 , , 
Sk and Ku of GTME distribution 

4 , 3 , 2a b   
 

3 , 2a b 
,

4 
 

2 ,  1 ,  6a b   
 

   

2.102 0.952 0.535 /

1  
1  

0.562 0.141 0.062 2  
1.069 1.088 1.139 Sk  
5.024 5.056 5.168 Ku  
1.938 0.878 0.497 /

1  
0.5  

0.589 0.146 0.063 2  
1.014 1.052 1.136 Sk  
4.855 4.938 5.140 Ku  
1.609 0.729 0.420 /

1  
0.5  

0.482 0.123 0.056 2  
1.262 1.286 1.326 Sk  
5.769 5.780 5.811 Ku  
1.445 0.654 0.381 /

1  
1 

0.348 0.094 0.048 2  
1.329 1.406 1.465 Sk  
6.564 6.669 6.557 Ku  

From Table 2, we conclude that, as the values of a ,b  increase and 


decrease then the values of 

/

1  
and

2   are increasing, whereas, the values of SK and Ku are decreasing. As the values of  increase then the values 
/

1  
and

2  are decreasing, whereas, the values of SK and Ku are increasing. Also, we conclude that the 

distribution is skewed to right and leptokurtic. 
 

3.2. Incomplete Moments 

The sth incomplete moment of X, denoted by
 s t

, is given by 
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   
1

2 1

0

1
2 1

0

1 2

1 1(1 ) 1 1 ( )

,

a b
s x x

s

t
a

s x x
x e x e dx

J

a x e x e dx a b

J

  
     


 

  


  
 



           





where, J1 and J2 are obtained as follows 

   12 1

1

0 0 0

1
(1 ) 1 ,

  

ti
i i xj s j

i j

a i
J a x e dx

i j


  


  

 

  
    

  
 

 
which leads to  

    
 

1 2
0 0

1 2, 11
(1 ) .

  1

i si

s j
i j

s j i ta i
J a

i j i

  




 
 

     
    

  


 

where, 
  2, 1s j i t   

 is the lower incomplete gamma function. By similar way, J2 is obtained as 

follows  

    
 

2 2
0 0

1 2, 11
( ) .

     1

i si

s j
i j

s j i ta b i
J a b

i j i

  




 
 

      
    

  


 

Then, 
 s t

 of GTME distribution is given by 

   
    

 
2

1 2, 1
, ,

1

i s

s s j

s j i t
t A i j

i

  




 

   



                                                                           (10) 

where
  2, 1s j i t   

 and 
 ,A i j

as given above. The first incomplete moment of the GTME 

model,
 1 t

, can be obtained by setting  1s   in (10). 
Another application of the first incomplete moment is related to mean residual life and mean waiting time given 

by
   1 11 / R(t)m t t     and 

   1 11 / (t) ,m t t F     respectively. 

Note that: the sth complete moment of GTME distribution can be obtained ast  .  

 

3.3. Moments of the Residual and Reversed Residual Life  

The nth moment of the residual life (MRL),
 ( ) { },  = 1,2,... 

n

nm x E X x X x n  
uniquely determines 

F(x), see Navarro, et al. [17]. It is given by 

 

     

   

1

0

1 2

0

1
( ) ( )

1 ( )

2 1
         1 1 1 (1 ) ( ) 1 1  

1 ( ; )

2
          1 ,

1 ( ; )

n

n

t

n
l l n l x

l t

n
l l

l

m t x t dF x
F t

a bn x xt x e x e a a b x dxe
lF t

n
t M M

lF t

     










  





 


                         

 
   

  



 



where M1, and M2 are obtained as 

    
 

2

1 2
0 0

1 2, 11
(1 ) ,

  1

i n li

n l j
i j

n l j i ta i
M a

i j i

 


  

  
 

       
    

  


 
and 

    
 

2

2 2
0 0

1 2, 11
( ) .

     1

i n li

n l j
i j

n l j i ta b i
M a b

i j i

 


  

  
 

        
    

  


 
 Hence, the nth MRL can be written as 

 
  

 

2

2

2, 1
( ) , , ,

1

n l

n n l j

n l j i t
m t D l i j

i

   

  

    



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where,  
 ,z t

 is the lower incomplete gamma function and    

   
2

0 0 0

1 1
, , 1 (1 ) ( ) .

       1 ( ; )

n i
l l

l i j

i n a a b
D l i j t a a b

j l i iF t


 





  

         
           

        


 
The mean inactivity time (MIT) or mean waiting time also called the mean reversed residual life function is 

given by 
 1( ) { },  

n
m x E X x X x  

and it represents the waiting time elapsed since the failure of an item 

on condition that this failure had occurred in (0 , X ). The MIT of the GTME distributions can be obtained easily by 

setting in the above equation.  

 

3.4. Quantile and Median 
The GTME distribution can be easily simulated by inverting cdf (7) as follows: if U follows uniform distribution 

on (0, 1), then 

   ( ) ( )1 1 ( ) 1 1 1 ( ) 0
a b

Q u Q uu Q u Q ue e    
                
                                             (11) 

By solving the nonlinear Equation (11), numerically, the GTME random variable X can be generated. The 

percentage points at 25%, 50% and 75% of some specific choices of the parameters are given in Table 3. 

 

Table-3. Percentage points for
, ,  and a b  

 

4 , 3 , 2a b   
 

3 , 2a b 
,

4 
 

2 ,  1 ,  6a b   
   

75% 50% 25% 75% 50% 25% 75% 50% 25% 1  
0.891 0.591 0.481 0.329 0.265 0.134 0.825 0.514 0.086 

0.678 0.273 0.156 0.606 0.277 0.027 0.855 0.578 0.141 0.5  
0.674 0.357 0.231 0.698 0.467 0. 351 0.935 0.769 0.305 1 

 

We detect from Table 3 that as the values of a, b increase and 


decrease, for fixed values of 
,

  the values of 
percentage points increase.  

 

3.5. Rényi Entropy 
Rényi entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty. For 

any real parameter 
0  and 1  

, the Rényi entropy is defined as  

   
1

log ;   0  and 1.
1

R

R

I f x dx  


  
 

 
Now using the density function (8), we obtain the integrated part as follows 

   
 

 2

0

1
1 1 (1 ) ( ) 1 1 .x

R

a bx xf x dx x e x e a a b x dxe
   


     




                  

 
 

By using the binomial expansion, then 

 

 
 

       2

, 0 0 0

1
1 (1 ) ( ) ,

       

                      

j
i j i i x jl l

i j lR

a bi j
f x dx a a b x e dx

i lj

    


  


    

 

     
       

    
 

which yields, 

 
   

 
1

( ) 1
( , , ) ,

                      

i

l

R

a b l
f x dx E i j l

j





 

 
 

   


  


 

where       

 
     2

, 0 0

1
( , , ) 1 (1 ) ( ) .

       

j
i j i il

i j l

a bi j
E i j l a a b

i lj




  


 

 

     
       

    


 

 

Therefore, the  Rényi entropy of GTME distribution is given by: 
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 
   

 

( ) 11
log ( , , ) .

11

                            

R

i
a b l

I E i j l
l

j

 


  

 
    

        

 
3.6. Order Statistics  

In this sub-section, we drive the single order statistics for GTME distribution. Let x1, x2,…,xn  be n independent 

and identically distributed GTME random variables. Further, let x(1), x(2),…,x (n) denote the order statistics from these 

n variables. Then, the pdf of the rth order statistic, say 
 :r nf x

, is given by  

       
1

: : 1 ,
r n r

r n r nf x c F x f x F x
 

         

where, 
   :

!
.

1 ! !
r n

n
c

r n r


 
 By using the binomial expansion, then rth order statistic of GTME distribution 

is given by 

     
 

 

 

1

: :

0

12 1 1 1 1 1 1
  

                                                    (1 ) ( ) 1 1 .

r i
n r

i x

r n r n

i

a r i bn r x xf x c xe x xe e
i

b
xa a b x e

      

  

 






                         

        
 



 the kth 

moments of rth order statistics for GTME distribution is 

   
 

   

( ) 1

: :

0 0

1

12 1 1 1
  

            1 1 1 (1 ) ( ) 1 1

n r
ik k x

r n r n

i

r i

a r in r xc x e x e
i

b b
x xx a a b x dxe e

   

      


 



 

           

                     
   

 

 
By using the binomial expansion 

     

     

1
1( )

: :

0 0 0 0

11

0

12 1 1 1
       

1 1
               (1 ) ( )

                

n r r i l
i j r i j lk j m

r n r n

i j l m

x lk m

n r r i l
c

i j m

a r i j a r i b j
a a b x e

l l



    

 

   
   

   


  

      
       

    

           
      

     

  

dx
 

The kth moments of rth order statistics for GTME distribution is 

     

     

 

1
1( )

: :

0 0 0 0

12 1 1 1
       

1 1 2
               (1 ) ( )

                1

n r r i l
i j r i j lk j m

r n r n

i j l m

n r r i l
c

i j m

a r i j a r i b j k m
a a b

kl l l

    

 



   
   

   

      
       

    

              
      

        

  

2

       

m 

 
 

4.  Parameter Estimation 
In this section, the maximum likelihood (ML) estimators of the unknown parameters of the GTME model are 

derived. Also, numerical study is provided   

 

4.1. Maximum Likelihood Estimators  
In the statistical literature, various methodologies for parameter estimation were proposed while the ML method 

is the most commonly utilized. We investigate the estimation of the parameters of the GTME distribution by ML for 

complete data. Let, x1,..,xn be a random sample of size n of this distribution with set of  parameter vector  = (a, b, 

, ), then the log-likelihood function, say 
( )

can be written as  

    
1 1 1 1

( ) 2 ln ln 1 ln(1 ) ln (1 ) ( ) 1 ,
n n n n

b

i i i i

i i i i

n x x a z a a b z    
   

             
 

where, 
 1 ix

i iz x e
 

 
The partial derivatives of 

( ),
denoted by ln  are given by 
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 

 1

( ) 1ln
,

(1 ) ( ) 1

b
n

i

b
i i

a a b z

a a b z  

  


    


 

    
 1

1 ( ) ln 1 1ln
,

(1 ) ( ) 1

b
n

i i

b
i i

z a b z

b a a b z



 

    


    


 

 
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(1 ) 1ln
ln(1 ) ,
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b
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i

i b
i i i

z
z

a a a b z

 

  

  
  

    
 
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1

1 1 1

2 2
( )ln 2

1
1 (1 ) ( )

(1 )
.

(1 )

i ix x bn n n

i b b
i i i

i i i

i i

x e b a b x e zn
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z a a b z

 
 

   

  

  


   

    





  

 

The ML estimators of the model parameters are determined by solving the non-linear equations ln 0,  

ln 0,b   ln 0,a   and ln 0,    numerically by employing an iterative technique. 

 

4.2. Simulation Study 
Here, an empirical investigation is formed to evaluate the performance of ML estimate for GTME model by 

using R software. Behavior of estimates is assessed via biases and mean square errors (MSEs) for different sample 

sizes. The numerical example is characterized as follows: 

 1000 random samples of sizes n = 20, 40 and 100 are generated from GTME distribution. 

 Certain values of parameters  , , ,a b   are selected as Set1= 1.5,4,3,-0.9, Set 2= 2,3.5,2.5,-0.5, Set 

3= 2.5,3,2, ,-1and Set4=(3,2,1,1). 

 For each n and for each set of parameters, ML estimates of  
, , ,a b 

 and   are obtained by iterative 

technique. 

 The biases and MSEs for each n are calculated (see Table 4). 
In general, we conclude that the MSEs for the estimates of the parameters decrease as the sample size increases. 

 
Table-4. MSE and Bias of GTME distribution 

                      

  Bias MSE Bias MSE Bias MSE Bias MSE 

20 0.526 0.277 1.423 2.025 0.673 0.453 0.613 0.376 

40 0.175 0.021 0.712 0.507 0.235 0.055 0.543 0.295 

100 0.103 0.013 0.236 0.056 0.114 0.013 0.243 0.059 

                        

  Bias MSE Bias MSE Bias MSE Bias MSE 

20 0.247 0.062 0.929 0.863 .8201 3.314 1.635 2.674 

40 0.204 0.042 0.456 0.208 0.986 0.973 0.968 0.937 

100 0.123 0.016 0.114 0.013 0.567 0.323 0.634 0.402 

                    

  Bias MSE Bias MSE Bias MSE Bias MSE 

20 0.277 0.077 0.715 0.511 0.517 0.267 0.439 0.193 

40 0.205 0.043 0.502 0.250 0.331 0.109 0.345 0.119 

100 0.150 0.023 0.219 0.078 0.189 0.036 0.237 0.056 

                 

  Bias MSE Bias MSE Bias MSE Bias MSE 

20 0.135 0.018 0.358 0.128 0.475 0.225 0.295 0.087 

40 0.112 0.012 0.233 0.055 0.367 0.135 0.187 0.034 

100 0.107 0.011 0.196 0.038 0.221 0.048 0.110 0.012 

 

5. Real Data Analysis 
In this section, three applications to real data sets are employed to illustrate the importance and potentiality of 

the GTME distribution. 

Data Set I: Waiting Times in a Bank 

The first data set consists of 100 observations on waiting time (inminutes) before the customer received service 

in a bank see [18]. 

Data Set II: March precipitation (in inches) 

The second data set and represents thirty successive values of March precipitation (in inches) in Minneapolis/St 

Paul see; [19] 

Data Set III: Exceedances of Wheaton River Flood 
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The third data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an 

analgesic and reported by Gross and Clark [20] 

First, we investigate the quality of adjustment of the GTME distribution when compared to some other models. 
For comparative study, we consider five models, namely ME, expinentiated ME (EME), Weibull ME (WME), 

Kumaraswamy exponentiated Burr XII distribution (KEBXII) pioneered by Mead and Afify [21] and transmuted 

exponentiated generalized Weibull (TExGW) as presented by Yousof, et al. [22]. We consider minus 2logL, Akaike 

information criterion (AIC), Corrected AIC Criterion (AICc), Bayesian information criterion (BIC) and Hannan-

Quinn information criterion (HQIC). The best distribution corresponds to smallest values of the regarded measures.  

Table 5, 6 and 7 contains ML estimates, the values of -2logL, AIC, BIC and HQIC statistics for the data set. 

From these results, it is evident that the GTME distribution is the best distribution for fitting these data set compared 

to other distributions considered here. It is a strong competitor to other distributions commonly used in literature for 

fitting lifetime data. 

 
Table-5. Analytical results of the GTME model and other competing models for data I  

Parameters Distributions 

ME EME WME TExGW KEBXII GTME 

 ̂ 0.202 5.13 1.542 0.313 0.338 1.093 

 ̂ - 3.80 0.812 1.036 15.245 22.082 

 ̂ - - 2.515 1.803 54.744 0.228 

 ̂ - - - 0.069 1.574 -0.047 

  - - - - 0.4 - 

-2logL 700.7 666.52 635.2 634.43 1437.88 634.34 

KS 0.8948 0.793 0.1988 0.2914 0.2765 0.15784 

AIC 702.70 670.55 670.55 642.43  1448 640.347 

BIC 705.31 675.76 675.76 652.851 1461 648.162 

AICc 702.74 670.67 670.67 643.54 1449 640.942 

HQIC 703.75 672.66 672.66 646.453 1453 643.855 

P-value 0.1032 0.037 0.1012 0. 044 0.1304 0.160 

 
Table-6. Analytical results of the GTME model and other competing models for data II 

Parameters Distributions 

ME EME WME TExGW KEBXII GTME 

 ̂ 1.194 0.885 1.753 0.313 0.123 1.631 

 ̂ - - 0.952 1.036 68.429 6.811 

 ̂ - 1.983 0.623 1.803 1551 1.613 

 ̂ - - - 0.069 0.152 -0.094 

  - - - - 5.175 - 

-2logL 78.48 613.22 80.28 77.21 491.3 76.13 

KS 0.8645 0.892 0.1831 0.2386 0.1852 0.16419 

AIC 84.477 617.22 86.287 85.209 501.312 84.167 

BIC 89.681 620.02 90.491 90.814 508.318 88.772 

AICc 85.401 617.66 86.09 86.809 503.812 85.067 

HQIC 85.822 618.11 87.632 87.002 503.553 85.16 

P-value 0.1055 0.108 0.0169 0.0261 0.1048 0.1108 

 
Table-7. Analytical results of the GTME model and other competing models for data III  

Parameters Distributions 

ME EME WME TExGW KEBXII GTME 

 ̂ - 0.876 0.232 0.119 1.427 16.875 

 ̂ - - 4.374 1.173 0.313 0.024 

 ̂ 1.047 2.38 70.155 2.793 81.996 2.784 

 ̂ - - - 0.203 3.63 -0.98 

  - - - - 3.292 - 

-2logL 52.42 42.52 47.03 40.082 203.86 31.45 

KS 0.6829 0.5819 0.4795 0.5241 0.5961 0.1745 

AIC 54.412 53.023 214.84 48.082 213.868 37.447 

BIC 55.408 56.01 48.506 52.065 218.847 40.435 

AICc 54.634 58.23 47.22 50.749 218.154 38.947 

HQIC 54.607 53.606 47.22 48.86 214.84 38.03 

P-value 0.0211 0.0101 0.0201 0.0105 0.0439 0.0955 
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Based on Table 5, 6 and 7, it is clear that GTME distribution provides the overall best fit and therefore could be 

chosen as the more adequate model than other models for explaining the considered data set. More information can 

be provided in Figures 3, 5 and 7. Also QQ- plots and PP-plots are shown in Figures 4, 6 and 8 for the three real 
data. 

 
Figure-3. Estimated pdf, cdf, and sf of GTME model for data Set I 

 
 

Figure-4. PP plot and QQ plot of GTME model for data Set I 

 
 

Figure-5. Estimated pdf, cdf, and sf of GTME model for data Set II 
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Figure-6. PP plot and QQ plot of GTME model for data Set II 

 
 

Figure-7. Estimated pdf, cdf, and sf of GTME model for data Set III 

 
 

Figure-8. PP plot and QQ plot of GTME model for data Set III 
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From Figures 3 4 5 6 7 8, we conclude that the GTME distribution provides better fits the other competitive 

models. We wish that the proposed model may be an alternative model for a wider range of statistical research. 

 

6. Concluding Remarks 
In this paper, we study the so-called a generalized transmuted moment exponential distribution. The GTME 

model includes moment exponential, and exponentiated moment exponential distributions and at the same time 

transmuted moment exponential as new model.   Some structural properties of the GTME distribution are derived. 

Estimation of the population parameters is achieved via maximum likelihood procedure. Simulation study and 

application to real data sets are provided. 
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