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Abstract 
Using the Lorentz model and Hamiltonian systems without dissipation as an example, spectral methods for analyzing the 
dynamics of systems with chaotic behavior are considered. The insufficiency of the traditional approach to the study of 

perturbation dynamics based on an analysis of the roots of the classical spectral equation is discussed. It is proposed to 

study nonlinear systems using the method of constructing spectral equations with different eigenvalues, which allows one 

to take into account the randomness and multiplicity of states. The spectral features of instability and chaos for systems 

without dissipation are shown by the example of short-wave perturbations of a flow of a weakly ionized plasma gas. 

Keywords: Systems with chaotic dynamics; Instabilities of non-dissipative systems; Spectral analysis methods. 
 

 

1. Introduction 
A significant number of publications devoted to nonlinear dynamical systems with complex chaotic dynamics 

and various transient processes in them speaks of the relentless interest in these systems and methods for describing 

them [1-7]. 

One of the main methods for analyzing the complex dynamics and conditions of chaos is the calculation of 

Lyapunov indicators [3, 4].  Determining Lyapunov indicators is not an easy task, mainly implemented by numerical 

methods. In this article, the estimated spectral methods — the classic one and proposed modification of it — the 

method of various eigenvalues (VE) are considered. The capabilities of the methods are compared on a well-known 
model with chaotic dynamics - the Lorentz model.  

As a second example of a system with chaotic dynamics, author considers systems without dissipation, which 

are characterized by a high degree of nonequilibrium and in which instabilities and chaos are also associated with 

spectrum features. An example of such a system is the flow of a weakly ionized gas plasma in the approximation of 

high velocities and gradients, accompanied by various instabilities. Flows of weakly ionized plasma are formed upon 

the expiration of combustion products in the chambers of jet engines and were considered using various models in a 

number of sientific works [8-11].   

  

2. Classic Spectral Stability Analysis Method 
 Let the equations (1), describing the system studied for stability be a totality of nonlinear autonomous equations 

  


 aF
dt

da
ad t 

                                                                                                                               (1) 

The dynamics of perturbations of system (1) in this case is described by the equations  
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                                                                               (2) 

where  
   e a t 

 - elements of the evolutionary matrix 
 E e

, depending on dynamic variables 
 a

 

and time t.  
If all time derivatives in (1) are negative, then the perturbations decay and the system is Lyapunov stable. If at 

least one positive derivative exists, then the phase trajectories scatter, the system is unstable. The ratio of the signs of 

temporary derivatives also makes it possible to determine the possibility of chaotic behavior and the formation of 

complex localized structures in the phase space - attractors [2-5] (see fig.1 ) 
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Fig-1. Lorentz attractor for ―classical‖ parameter values  σ=10,b=8/3,  r=28. 

 
 

 Namely: if the signs of the eigenvalues (λ1 , λ2 , λ3)  - temporary derivatives (for three-dimensional systems) are 

  ,,),,() 321 Sgna
 

  ,,0),,() 321 Sgnb
                                                                                               ,   (3) 

  ,0,),,() 321 Sgnc
 

then the dynamic mode has a character, accordingly  

a – sustainable point; 

b – limit cycle; 

c – attractor (chaotic dynamics).  

I.e., chaotic behavior is characterized by the presence of a special saddle-focus point in the spectrum and is 

expressed in irregular unstable oscillations.  

Chaos is divided into dissipative and active. Dissipative chaos is associated with the presence of attracting 

centers in the phase plane and a decrease in the phase volume of the system (for example, chaos in the Lorentz 

model), with active chaos the phase trajectories scatter and the phase volume increases (see the Rössler model [4]). 

The condition of dissipativity-activity of chaos is the divergence of the velocity vector of the -system 

 zyxB ttt  ,,


 at the same time being one of the conditions of stability 

yx z
BB B

divB
x y z

 
  

  
                                                                                                                    (4) 

If  divB<0  phase volume decreases, trajectories approach each other - dissipative chaos. If  divB>0  then the 

phase volume increases, the paths scatter - the system is active. Condition (4) reduces to the condition 

idivB  , 

where i - eigenvalues.    
According to the classical spectral method, the signs of temporary derivatives in system (2) correspond to the 

signs of the roots of the spectral equation - (SE), 

which is a solvability condition for system (2) and has the form of a polynomial relative to the spectral 

parameter λ                    

, ,

1

det 0
n

n n i

i

i

D E a       



        
                                                                               (5) 

Therefore, classical spectral analysis reduces to an analysis of the signs of the roots of the spectral equation. 

Equations for the eigenvectors of the evolutionary matrix   
  i k 

  and solutions of system (2), in this case, 

accordingly, have the form 

   

   

0

exp

im k im im k

i m im k k

e

a C t

   

  

  

  
                                                                                                           (6)  

In works [12, 13]  a number of methods are proposed for practical analysis of the stability of systems described 

by equations (1) demonstrated on tasks with different types of dynamics including chaotic. The essence of these 

methods is to determine by the coefficients of the dynamic equations (2) or by the coefficients of the spectral 

equation (4) the neutral surface - the boundary dividing the stability and instability regions in the parameter space.    
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Note the NSE method used below.                    

   а) The NSE method (neutrality, separation, exclusion) 

is based on spectral equation (4) and is implemented by the following scheme  
(λ = Re λ + iω,  ∆ λ = λ – λ cr ,  ∆ a s = a s – a s,cr ) 

1

2

( ,p, ) 0 ( ,p, ) 0 (p, ) 0 0
Re( )

( ,p, ) 0 (p, ) 0

НУ
s s s a

s У

cr cr s cr s z cr

D a D a S a D
a

i D a a D

 


    

          
             

             
   (7.1)                       , (7.2)                          ,  (7.3)                                 . (7.4) 

 (7.1) – neutrality - the condition that the real part of the roots of SE be equal to zero; 

(7,2) – separation of the spectral equation into two under the condition of neutrality;  

(7.3) – exclusion of frequency or one of the parameters from these equations 
 p

 and getting a neutral surface 
– S(p,as)  and critical frequency – ɷcr(p,as); 

(7.4)- indication of areas of stability - instability relative to a neutral surface. 

The NSE scheme is fully implemented for polynomial SE, the general conditions of neutrality (7.3) in this case 

have the form 

 

 
1 2

1 2
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s s s

cr s s

S a R D a D a
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   

 

  
 

                                                                                                                                                    .  

where R – resultant, а  NOD – largest common polynomial divisor of D1 and  D2  . 

A special case is the ―Hamiltonian‖ systems (systems without dissipation), the spectral equation (5) of which 

has the form:  

       

  1 2 3

1 2 3 ... 0n n n nD ib a ib           
                                                                                       (8) 

and the roots are purely imaginary, or pairwise symmetrical about the imaginary axis.    

In this case, purely imaginary roots of SE correspond to stable states, and the point of change of stability (i.e., 

the condition of neutrality) is the fusion of pairs of imaginary roots and the appearance of roots with symmetrical 

real parts i.e. the appearance of a saddle-focus (see fig. 2). I.e. the instabilities of such systems always have the 

character of chaotic oscillations. 
To determine the neutrality conditions in this case, a modified scheme of the NSE method is used. The 

modification consists in taking into account the frequency multiplicity at the neutral point i.e. replacing equations 

(7.2) in the NSE scheme (7) with equations 

D1i)n D(ip)=0 

D2(D1/                                                                                                                                                (9) 
Thus, the scheme (7) in which the equations for D1 and D2 have the form (9), is a modification of the NSE 

method for Hamiltonian systems.   

                                                          
Fig-2. Neutrality of ―Hamiltonian‖ systems 

 
 

The classical approach to spectral analysis is well applicable for linear systems (they can be reduced to one 

higher-order equation with one spectral parameter value). However, the application of the classical spectral method 

to nonlinear systems, especially to systems with chaotic dynamics, raises a number of questions: 
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  a) n-dimensional systems with chaotic dynamics are characterized by n number of real parameters - Lyapunov 

indicators, while the spectral method gives a smaller amount (for example, for three systems with chaos - 

three Lyapunov indicators and, according to the spectral method, one real root and two complex conjugate 
i.e. two real parameter); 

b) it follows from (6) that all components of the eigenvector are equally dependent on time, while in reality the 

behavior of the components is different. In traditional analysis, this is partially removed by a linear 

combination of eigenvectors (6); 

c) the classical approach indicates only the boundary of stability-instability (including the transition to chaos), 

but in reality there is an alternation of regions of regular and chaotic dynamics, i.e. several different 

dynamic modes. 

The above indicates the insufficiency of the spectral method (in the traditional version)  for describing systems 

with chaotic dynamics and the need for its modernization. 

Note that the L-criterion method [13] describes the dynamics of n - dimensional systems by n - real parameters. 

To describe systems with chaotic dynamics, we formulate a method of various eigenvalues – VE. 
 

3. The VE Method 
First, we note the following: it is known that third-order systems reflect the main features of the dynamics of 

nonlinear systems, so further we will only talk about them. 

Suppose that in the equation for perturbations (2) the temporal derivatives are characterized by different spectral 

parameters λ, then the spectral equation for the three systems takes the form 

   
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
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     

     



                                           (9) 

 

Note that, the spectral equation in this case does not have the form of a polynomial relative to one spectral 

parameter, and is an algebraic function of three interdependent spectral parameters –λi .    

Assuming for example, 1 1 2,3,Re i        
  (chaos is instability with a saddle-like focus and irregular 

oscilations) from SE (6) after extracting the real and imaginary parts of the equation, we obtain: 

       

   

2 2

11 22 33 1 2 3

22 33 2 3

0

0

e e e A A A D

e e A A
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 

         

                                                            (10) 

From (10) for 1 , 
 we have  

   

   

2

3 2
1 2,3

22 33

2

1 11 1 22 33 2 3 1 11 1 1

4
,

2

, M , G

A A M M NG

e e N

N e e e A A e A D

 

    

   
 



          
                                      (11) 

Relations (11) give us three real parameters, two of which depend on the frequency -   and limitation for   - 

(
2 4 0M NG  ).  It is also possible to obtain similar (10, 11) equations for the cases   

2 2 3 3,Re Re        
. This gives an additional two more dynamic modes. The dependence of spectral 

parameters on frequency and additional dynamic modes form regions of instability and chaos.  

Let us demonstrate these methods on the Lorentz model system (classical spectral and VE).  

 

4. Lorentz Model 
The Lorentz problem is interesting in that the dynamic equations of a number of real physical systems are 

reduced to nonlinear equations of the Lorentz model: convection in a liquid layer heated from below, a single-mode 

laser, a water wheel, etc.  In addition, it clearly demonstrates the emergence of chaotic dynamics. The equations of 

the Lorentz model have the form Kuznetsov [4]; Shilnikov [7]. 

 t

t

t

x y x

y rx y xz

z bz xy

  

   

   
                                                                                                                                           (12) 

Where  x,y,z – dynamic quantities, 
, ,r b

 - parameters, and the controlling parameter that plays the sense of 

intensity is the parameter r> 0. 
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System (12) has three stationary solutions - stationary states ( x s , y s , z s )1 , ( x s , y s , z s )2 , zero and two 

symmetric (see fig. 1 stationary points) 

 

0 0

0 1) 0 ; 2,3) 1

0 0 1

t s s s

t s s s

t s s

x x x y

y y x bz b r

z z z r

   

        

    
                                                   (13) 

Linearization of system (12) relative to the solution 
 zyx ~,~,~

, for which any, including stationary, can be 
chosen, gives a system of equations for perturbations (2), where the evolution matrix is 

0

1E z x

y x b

 



 
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   
 
                                                                                                                               (14) 

The spectral equation and its coefficients in the stationary case are equal (
z z r  

) 
3 2

, , 1 2 3det 0E a a a               ; 

     2 2

1 2 31 , 1 , 1s s s sa b a b b z x a x x y b z   
                                    (15) 

The NSE method for SE (15) gives two critical (neutral) modes 

31) 0 , 0a  
                                                                                                                               (16) 

       
2

2 1 2 32) ,a a a a  
                                                                                                             (17) 

Mode (16) is realized for the first stationary state (zero point) and corresponds to its instability at 1r  ,  

eigenvalues (spectral parameters) in this case are equal 

 
2

1 2,3

1 1
, 1

2 2
b b r

 
 

  
       

                                                                               (18) 
 

Mode (17) is realized for the second and third stationary states and, for classical values of the Lorentz 

parameters, the critical values of frequency and parameter r are equal 

 
 3

9.62 , 24.7
1

cr cr

b
b r r

b

 
 



 
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                                                                       (19) 
At  r>rcr the second and third stationary states (stationary points in fig. 1) become unstable, while (r=rcr  

1 2,313,7 , 0 9.62i     
) the real part of the second and third eigenvalues becomes positive i.e. 

weakly growing chaotic oscillations appear.  For example, when 
3

1 2,324.8 13.62 , 1.902 10 9.636r i        
 . 

The coefficients of the spectral equation by the VE method  (9, 10)  for the evolution matrix (14) are equal (

 2 8
1

3
sx r  

 see 13) 

2 2

1 2 3

8 80
, , 0 , 20

3 3
s sA x A A D x     

                                                                            (20) 

 

According to the VE method there are three dynamic modes in this system (10,11): 

First dynamic mode  ( 1 1 2,3 2,3 2,3,Re i        
) 

1. 

2 2

1 2,3

8 64 1.5 4
16 , , 4 43 6 , 5

3 3
s cr

G
G x r   

 
       

                    (21) 

From the condition of neutrality ( 2 0 0G   
)follows the expression for the critical frequency - cr

, and 

the frequency interval in this mode follows from materiality α  and equal 
 0;8

. Dissipativity condition  

0i   

1 2 3

8 40
16 2

3 3
         
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in this mode is performed automatically. From the condition of materiality 

2,3
 follows the upper frequency limit 

 2

max

31 32
4 1.5 0 21 4 / 6 1

18 31
sG x r      

. 

It follows from (21) that at 5r   oscillations with frequencies arise and amplify in the system 
 max0 ; 

, and a combination of signs of eigenvalues corresponds to chaotic oscillations. The intervals of possible frequencies 

and the parameter r (which also include the boundary parameters according to classical analysis) indicate a certain 

set of states with chaotic oscillations. 

Second dynamic mode  ( 2 2 1,3 1,3 1,3,Re i        
) . From formulas (9, 10) it follows 

 
 

2 2 2

2 1,3

2

2 2 2

3 8 4 3(10 )
, , ,

22 2 22

30 8 / 3 1
, G 520 640 3 10 .

11 22

s s

s

s s

x M M NG x
N

N

x
M x x

 



     
  


     
 

                                (22) 

It follows from (22) that in the system for 
 1; 53r

 there are unstable oscillations depending on the 
frequency, which also lies in a limited range, this corresponds to instability at r>1 in the classical analysis. 

Combination of signs of eigenvalues (+,-,-)_indicates the absence of chaos in this mode.   

Third dynamic mode ( 3 3 1,2 1,2 1,2,Re i        
).From formulas (9,10 with 20 taken into account), we 

have 

                   

2 2
2

3 1,2

2 2 2

24 4 1
, , ,

9 2 9

1 20
(20 ) x ,

9 9

s
s

s s

x M M NG
N x

N

G M x

 



   
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  
                                  (23) 

From (23) it can be seen that this regime is realized in the range 
 1; 77r

 Instability occurs when 

2 24 9sx r  
 in the form of amplified oscillations in the frequency range 

 0 ; 80
, moreover, low-

frequency oscillations amplify faster. As in the second mode, the combination of the signs of the eigenvalues (+,-,-) 

indicates the absence of chaotic oscillations.  

 

5. Hamiltonian Systems           
As an example of a ―Hamiltonian‖ system — a system without dissipation, we consider the flow of a weakly 

ionized gas plasma in the approximation of high velocities and gradients.   

Flows of weakly ionized plasma are formed upon the expiration of combustion products in the chambers of jet 
engines and were considered using various models in a number of scientific works [8, 9, 11, 14].   

In works [10, 14, 15], a three-fluid hydrodynamics model is used to describe the flow of a weakly ionized gas 

plasma consisting of interacting electronic, ionic, and neutral components. On the basis of which a system of 

equations of motion is constructed for component velocities, mass and charge density.  

Also, in works [10, 14] results of a numerical flow study are presented, in Perevoznikov, et al. [15] flow 

stability is considered analytically. General activisation conditions under the influence of inhomogeneities, 

ionization, induced and external fields of various instabilities are obtained. In this paper, based on the results of [10, 

14, 15], the flow dynamics in the presence of high-frequency, high-gradient 
 , 1k

 perturbations is 
considered, and the flow acquires the properties of ―Hamiltonian‖ systems — systems without dissipation, and the 

spectral equation takes the form (8) ( see. [15]   

     
2 3 44 3 2

1 2 3 4( , ) 0D z k ik A ik A ik A ik A        
 

                                                                                                                                                                        (24) 
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Where  (
ik

),  k – Fourier transform parameter - dimensionless gradients,  

, ,e i sU
- dimensionless velocities of the electronic, ionic, and neutral components, me,a – 

particle mass of electronic and neutral components, T – dimensionless temperature, 
, 

 degree of ionization 
and relative electron concentration, accordingly [15].   

Introducing a new variable 
/ sy ikU

, equation (24) is converted to the form 

  4 3 2

1 2 3 4 0D y y A y A y A y A     
                                                                                                 (26) 

where the coefficients 
/i sA A U

 accordingly equal 

 

2

1 2

2 2

3 4

2.5 1.5 ; 2 3 0.5 0.5
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e e e

e e e e

A U A U U

A U U U A U



 

     

    
                                                                               (27) 

And the notations of relative electronic velocity are introduced - eU
 and relative temperature 


                           

2~

~

;
~

/
~

se

a
see

U

T

m

m
UUU




 

, 

and also taken into account that ae mm /
<<1, and that in the absence of external fields and the proximity of the 

masses 
/ 1i am m 

, the velocity of the particles of the ionic component differs little from the velocity of the 
particles of the neutral component and, accordingly, the mass one, i.e. U i / U s  ~ 1. 

Values of 
/ skU iy  

, expressed through the roots of equation (26) depending on  eU
 and relative 

temperature 


, are given in tables 1, 2.   

                                                                                                                                                       

Table-1. The dependence of the roots of the spectral equation on relative electronic speed eU
 

/eU 
 1  2  3  

4  

0.1/1 0.860-i1.49 -0.860-i1.49 0.429+i0.165 -0.429+i0.165 

0.5/1 0.641-i1.61 -0.525-i1.6 0.538-i0.014 -0.538-i0.014 

1/1 0.612-i1.79 -0.612-i1.79 0.612-i0.21 -0.612-i0.21 

2/1 0.390-i2.21 -0.390-i2.21 0.636-i0.538 -0.636-i0.538 

2.4/1 0.076-i2.41 -0.076-i2.41 0.613-i0.643 -0.613-i0.643 

2.45/1 0-i2.55 0-i2.34 0.610-i0.655 -0.610-i0.655 

5/1 0-i2.90 0-i5.20 0.351-i0.952 -0.351-i0.952 

 

Table-2. The dependence of the roots of the spectral equation from relative temperature 


 

/eU 
 1  2  3  

4  

0.1/10 0.860-i2.358 -0.860-i2.358 i0.518 i1.549 

0.1/8 0.871-i1.223 -0.871-i1.223 i0.566 i1.244 

0.1/7 0.871-i2.161 -0.871-i2.161 i0.627 i 1.045 

0.1/6.355 0.866-i2.113 -0.866-i2.113 i0.765 i 0.811 

0.1/6.345 0.866-i2.112 -0.866-i2.112 i0.787+0.011 i0.787-0.011 

0.1/5 0.762-i2.499 -0.762-i2.499 i0.874+0.152 i0.874-0.152 
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 From tables 1, 2 it follows,  

а) that in a stream of weakly ionized three-component plasma there are high-gradient, high-frequency, chaotic 
oscillations, depending both on the relative electron velocity and temperature. 

At moderate temperatures and velocities, there are two types of chaotic oscillations that differ in frequency. 

With increase of temperature and electronic velocity, chaos disappears, first for some oscillations, then for others, 

passing into undamped oscillations of close frequencies in accordance with fig. 1.  

b) at neutral points (stability changes)    ( 1( / )eU  
(2.4/1 – 2.54/1) и ( 2( / )eU  

(0.1/6.3.55 – 0.1/6.345) 

the oscillation frequencies converge and are  accordingly reduced to the points  ,1сr 
-2.41   ,2сr 

0.787. 

 

6.   Conclusion  
 Proposed VE method gives a more complex picture of the dynamics in the Lorentz model than the classical 

spectral. 

 Chaos exists in the first dynamic mode at lower thresholds values of  r , than in classical linear theory. 

 The presence of intervals of possible frequencies and parameters and the multiplicity of dynamic modes 

indicates the existence of regions of instability and chaos, that is actually has a place in reality. 

 On the whole, the proposed method for studying the dynamics of nonlinear systems can be considered as 

additional to the methods based on calculations of Lyapunov indicators and classical spectral one.   

 The example of dynamics of short-wave, high-frequency perturbations in a stream of weakly ionized gas 

plasma is used to consider the conditions for the instability of ―Hamiltonian‖ systems — systems without 
dissipation. 

 It is shown that the instability condition in this case is the merging of pairs of imaginary roots and the 

formation of saddle-focus points in the phase space. And instabilities in such systems are realized in the form 

of chaotic oscillations. 

 The calculation of the plasma disturbance spectrum depending on the relative electronic velocity and 

temperature was given. 

 And the results obtained in this consideration can be useful in studying the properties of weakly ionized 

plasma flows in high nonequilibrium states. 
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