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Abstract 

This article concerns with the method of determining different solutions in integers to 141zyx 222  by reducing it 

to  freesquareand0D141D 22    through employing transformations. A special case has been 

illustrated along with the corresponding properties. Also, given an integer solution, a process of obtaining sequence of 

integer solutions based on its given solution is exhibited. 

Keywords: Ternary quadratic; Non-homogeneous quadratic; Integer solutions; Pell equation. 
 

 

1. Introduction 
It is well known that ternary second degree diophantine equations are rich in variety [1-15]. This paper presents 

different solutions in integers to the ternary quadratic equation 
141222  zyx

. Some properties among the 
solutions are exhibited. A generation formula for exhibiting solutions in integers is presented.  

 

2. Method of Analysis 
Consider the second degree equation with three variables 

141222  zyx
                                                  (1) 

The introduction of the transformations 
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                                (2) 

in (1) gives 

  14141404 222  kky
                                 (3) 

which represents the positive pell equation. The initial positive integer solution to (3) is  
102,1 00  ky

 
To obtain the other integer solutions to (3), consider the corresponding pell equation 

  141404 222  kky
                                  (4) 

whose least positive integer solution is 
 00

~,~ y
. 

The general solution 
 nn y~,~

 of (4) is given by  

nn fy
2
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Employing the lemma of Brahmagupta between the solutions 
 00 , y

 and 
 nn y~,~

, the other solutions to (3) 
are represented by 

.....2,1,0,1,~~
001  nyy nnn 

                                           (7) 

  ,.....2,1,0,1,~41404~
0

2

01  nkkyyy nnn 
                              (8) 

To study the properties among the solutions, one has to go for particular values of k . For simplicity and brevity 

the choice 1k in (3), (4), (5) and (6) correspondingly leads to 
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nnn gf 32
2

1
1 

                                (9) 

nnn gfy 3
2

1
61 

                             (10) 

Substituting 1k  in (2) and using (9), we get 

nnn gfx 32
2

1
1 

                                         (11) 

nnn gfz 341                                                      (12) 
Thus, (10), (11) and (12) represent different positive solution in integers to (1). 

A few numerical examples are given in the following table 1 below: 

                                 
Table-1. Numerical Examples 

n  
1nx   1ny   1nz   

-1 1 12 2 

0 14 27 28 

1 55 96 110 

2 206 357 412 

3 769 1332 1538 

4 2870 4971 5740 

5 10711 18552 21422 

6 39974 69237 79948 

 

From the above table, one may generate Ramanujan numbers of second order from suitable values of  
yx,

 and 

z  
 

2.1. Illustration 
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Thus, 
125,221,629,650,725

are Ramanujan numbers of second order. 

Recurrence relations for 
yx,

 and z  are: 

.....1,0,1,04 123   nxxx nnn  

.....1,0,1,04 123   nyyy nnn  

.....1,0,1,04 123   nzzz nnn  
Some combinations between the solutions are given below: 

i. 
02 121   nnn xxy

 

ii. 
027 123   nnn xxy

 

iii. 
074 131   nnn xxy

 

iv. 
02 132   nnn xxy

 
 

Cubical integer: 

i. 

    123343 1883188
47

1
  nnnn xxxx

 

ii. 

    133353 6483648
188

1
  nnnn xxxx

 

iii. 

    113333 28328
47

1
  nnnn xyxy

 

iv. 

    123343 2883288
94

1
  nnnn xyyy

 
 

Bi-quadratic integer: 

i. 

    44181884846376
47

1 2

1244542
  nnnn xxxx

 

ii. 

    706886484120321504
188

1 2

1344642
  nnnn xxxx

 

iii. 

    441828494376
47

1 2

1144442
  nnnn xyxy

 

iv. 

    1767228842632752
94

1 2

1244542
  nnnn xyxy

 
 

Nasty number: 

i. 

 2232 10848564
47

1
  nn xx

 

ii. 

 2242 384482256
188

1
  nn xx

 

iii. 

 2222 1248564
47

1
  nn xy

 

iv. 

 2232 168481128
94

1
  nn xy

 
 

2.2. Remarkable Observations 
I. Choices of hyperbola with their solutions generated through the known solutions are in Table 2 below: 

 
Table-2. Hyperbola 

 Sl.no Hyperbola  
nn Y,X  

   1 
  265083 22  nn YX  

    2112 228,188   nnnn xxxx
 

  2 4241283 22  nn YX
 

    3113 2110,648   nnnn xxxx
 

  3 
  265083 22  nn YX  

    1111 224,28   nnnn yxxy
 

  4 
 

1060323 22  nn YX
 

    2112 254,288   nnnn yxxy
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II. Employing linear combination among the solutions other choices of parabola are presented in Table 3 

below: 
Table-3. Parabola 

 

 

 

 

 

 

 

 

 

 

2.3. Generation of Solutions 

Let 
 000 ,, zyx

 be a known solution of (1). 

Consider the second solution 
 111 ,, zyx

 of (1) to be 

010101 ,, zhzyhyxhx 
          (13) 

where h is a non-zero integer to be determined. 
Substituting (13) in (1) and simplifying, we get 

 0002 zyxh 
                         (14) 

Using (14) in (13), the second solution of (1) is represented in the matrix form as 

    tt
zyxMzyx 000111 ,,,, 

 

where  
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M

 and t  is the transpose 

The repetition of the above process leads to the general solution 
 111 ,,  nnn zyx

 of (1) in the matrix form as 
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where 
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in which 
 nn yx ,

 represents the general solution of the pell equation 12 22  XY . 

Thus, given an integer solution 
 000 ,, zyx

, one may generate sequence of integer solutions to the given 
equation based on the known solution through employing  (15). 

 

2.4. Remark 
In addition to (2), one may introduce the transformations 

    411
2

1
,611

2

1 22  kkzkkx
 

in (1) leading to  

  11k2y,2,1415k11ky 00

222  
 

Following the procedure presented above, another set of integer solutions to (1) are obtained. 

 

3. Conclusion 
This paper presents a set of integer solutions to the second order equation with three variables 

141222  zyx
. However, there may be other sets of solutions to (1) which is left as an exercise for the 

readers. 
 

Sl.no Parabola  
nn Y,X

 
  1 

  
26508141 2  nn YX

 
    212232 228,18894   nnnn xxxx

 
  2 424128564 2  nn YX

 
    312242 2110,648376   nnnn xxxx

 
  3 

  
26508141 2  nn YX

 
    112222 224,2894   nnnn yxxy

 
  4 106032282 2  nn YX

 
    212232 254,288188   nnnn yxxy
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