Academic Journal of Applied Mathematical Sciences
ISSN(e): 2415-2188, ISSN(p): 2415-5225
Vol. 6, Issue. 7, pp: 80-84, 2020
URL: https://arpgweb.com/journal/journal/17

On The Ternary Quadratic Equation $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{z}^{2}+141$

A. Vijayasankar
Assistant Professor, Department of Mathematics, National College, Affiliated to Bharathidasan University, Trichy-620 001, Tamil Nadu, India

Sharadha Kumar (Corresponding Author)

Research Scholar, Department of Mathematics, National College, Affiliated to Bharathidasan University, Trichy-620 001, Tamil Nadu, India
Email: sharadhak12@gmail.com

M. A. Gopalan

Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy620 002, Tamil Nadu, India

Article History

Received: June 8, 2020
Revised: June 29, 2020
Accepted: July 5, 2020
Published: July 9, 2020
Copyright © 2020 ARPG
\& Author
This work is licensed under the Creative Commons Attribution International

(c) (1) CC

BY: Creative Commons Attribution License 4.0

Abstract

This article concerns with the method of determining different solutions in integers to $x^{2}+y^{2}=z^{2}+141$ by reducing it to $\beta^{2}=\mathrm{D} \alpha^{2}+141(\mathrm{D}>0$ and square - free) through employing transformations. A special case has been illustrated along with the corresponding properties. Also, given an integer solution, a process of obtaining sequence of integer solutions based on its given solution is exhibited.
Keywords: Ternary quadratic; Non-homogeneous quadratic; Integer solutions; Pell equation.

1. Introduction

It is well known that ternary second degree diophantine equations are rich in variety [1-15]. This paper presents different solutions in integers to the ternary quadratic equation $x^{2}+y^{2}=z^{2}+141$. Some properties among the solutions are exhibited. A generation formula for exhibiting solutions in integers is presented.

2. Method of Analysis

Consider the second degree equation with three variables

$$
\begin{equation*}
x^{2}+y^{2}=z^{2}+141 \tag{1}
\end{equation*}
$$

The introduction of the transformations

$$
\left.\begin{array}{l}
x=\left(2 k^{2}+20 k-21\right) \alpha, \tag{2}\\
z=\left(2 k^{2}+20 k-20\right) \alpha, k>0, \alpha \neq 0
\end{array}\right\}
$$

in (1) gives

$$
y^{2}=\left(4 k^{2}+40 k-41\right) \alpha^{2}+141
$$

which represents the positive pell equation. The initial positive integer solution to (3) is $\alpha_{0}=1, y_{0}=2 k+10$
To obtain the other integer solutions to (3), consider the corresponding pell equation

$$
\begin{equation*}
y^{2}=\left(4 k^{2}+40 k-41\right) \alpha^{2}+1 \tag{4}
\end{equation*}
$$

whose least positive integer solution is $\left(\tilde{\alpha}_{0}, \tilde{y}_{0}\right)$.
The general solution $\left(\tilde{\alpha}_{\mathrm{n}}, \tilde{\mathrm{y}}_{\mathrm{n}}\right)$ of (4) is given by
$\tilde{y}_{n}=\frac{1}{2} f_{n}$

$$
\begin{equation*}
\tilde{\alpha}_{n}=\frac{1}{2 \sqrt{4 k^{2}+40 k-41}} g_{n} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{n}=\left(\tilde{y}_{0}+\sqrt{4 k^{2}+40 k-41} \tilde{\alpha}_{0}\right)^{n+1}+\left(\tilde{y}_{0}-\sqrt{4 k^{2}+40 k-41} \tilde{\alpha}_{0}\right)^{n+1}, n=-1,0,1,2 \ldots \ldots \tag{6}
\end{equation*}
$$

$$
g_{n}=\left(\tilde{y}_{0}+\sqrt{4 k^{2}+40 k-41} \tilde{\alpha}_{0}\right)^{n+1}-\left(\tilde{y}_{0}-\sqrt{4 k^{2}+40 k-41} \tilde{\alpha}_{0}\right)^{n+1}, n=-1,0,1,2 \ldots \ldots .
$$

Employing the lemma of Brahmagupta between the solutions $\left(\alpha_{0}, y_{0}\right)$ and $\left(\tilde{\alpha}_{n}, \tilde{y}_{n}\right)$, the other solutions to (3) are represented by

$$
\begin{align*}
& \alpha_{n+1}=\alpha_{0} \tilde{y}_{n}+y_{0} \tilde{\alpha}_{n}, n=-1,0,1,2 \ldots \tag{7}\\
& y_{n+1}=y_{0} \tilde{y}_{n}+\left(4 k^{2}+40 k-41\right) \alpha_{0} \tilde{\alpha}_{n}, n=-1,0,1,2, \ldots \ldots \tag{8}
\end{align*}
$$

To study the properties among the solutions, one has to go for particular values of k. For simplicity and brevity the choice $k=1_{\text {in (3), (4), (5) and (6) correspondingly leads to }}$

$$
\begin{gathered}
y^{2}=3 \alpha^{2}+141, \alpha_{0}=1, y_{0}=12 \\
y^{2}=3 \alpha^{2}+1, \tilde{\alpha}_{0}=1, \tilde{y}_{0}=2 \\
\tilde{y}_{n}=\frac{1}{2} f_{n}, f_{n}=\left[(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}\right] \\
\tilde{\alpha}_{n}=\frac{1}{2 \sqrt{3}} g_{n}, g_{n}=\left[(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{n+1}\right], n=-1,0,1 \ldots \ldots . .
\end{gathered}
$$

$\alpha_{n+1}=\frac{1}{2} f_{n}+2 \sqrt{3} g_{n}$
$y_{n+1}=6 f_{n}+\frac{1}{2} \sqrt{3} g_{n}$
Substituting $k=1$ in (2) and using (9), we get
$x_{n+1}=\frac{1}{2} f_{n}+2 \sqrt{3} g_{n}$
$z_{n+1}=f_{n}+4 \sqrt{3} g_{n}$
Thus, (10), (11) and (12) represent different positive solution in integers to (1).
A few numerical examples are given in the following table 1 below:

Table-1. Numerical Examples			
\mathbf{n}	$\mathbf{x}_{\mathbf{n + 1}}$	$\mathbf{y}_{\mathbf{n + 1}}$	$\mathbf{z}_{\mathbf{n + 1}}$
-1	1	12	2
0	14	27	28
1	55	96	110
2	206	357	412
3	769	1332	1538
4	2870	4971	5740
5	10711	18552	21422
6	39974	69237	79948

From the above table, one may generate Ramanujan numbers of second order from suitable values of x, y and z

2.1. Illustration

$$
\begin{aligned}
& y_{2}=96=2 * 48=4 * 24=6 * 16=8 * 12 \\
& \quad=25^{2}-23^{2}=14^{2}-10^{2}=11^{2}-5^{2}=10^{2}-2^{2} \\
& 25^{2}-23^{2}=14^{2}-10^{2} \Rightarrow 25^{2}+10^{2}=23^{2}+14^{2}=725 \\
& 25^{2}-23^{2}=11^{2}-5^{2} \Rightarrow 25^{2}+5^{2}=23^{2}+11^{2}=650 \\
& 25^{2}-23^{2}=10^{2}-2^{2} \Rightarrow 25^{2}+2^{2}=23^{2}+10^{2}=629 \\
& 14^{2}-10^{2}=11^{2}-5^{2} \Rightarrow 14^{2}+5^{2}=10^{2}+11^{2}=221 \\
& 11^{2}-5^{2}=10^{2}-2^{2} \Rightarrow 11^{2}+2^{2}=5^{2}+10^{2}=125
\end{aligned}
$$

Thus, $725,650,629,221,125$ are Ramanujan numbers of second order.
Recurrence relations for x, y and z are:

$$
\begin{aligned}
& x_{n+3}-4 x_{n+2}+x_{n+1}=0, n=-1,0,1 \ldots . . \\
& y_{n+3}-4 y_{n+2}+y_{n+1}=0, n=-1,0,1 \ldots . \\
& z_{n+3}-4 z_{n+2}+z_{n+1}=0, n=-1,0,1 \ldots . .
\end{aligned}
$$

Some combinations between the solutions are given below:
i. $y_{n+1}-x_{n+2}+2 x_{n+1}=0$
ii. $y_{n+3}-7 x_{n+2}+2 x_{n+1}=0$
iii.
$4 y_{n+1}-x_{n+3}+7 x_{n+1}=0$
$2 y_{n+2}-x_{n+3}+x_{n+1}=0$
Cubical integer:
i. $\frac{1}{47}\left[\left(8 x_{3 n+4}-18 x_{3 n+3}\right)+3\left(8 x_{n+2}-18 x_{n+1}\right)\right]$
ii. $\frac{1}{188}\left[\left(8 x_{3 n+5}-64 x_{3 n+3}\right)+3\left(8 x_{n+3}-64 x_{n+1}\right)\right]$
iii.
iv.
$\frac{1}{47}\left[\left(8 y_{3 n+3}-2 x_{3 n+3}\right)+3\left(8 y_{n+1}-2 x_{n+1}\right)\right]$
$\frac{1}{94}\left[\left(8 y_{3 n+4}-28 y_{3 n+3}\right)+3\left(8 y_{n+2}-28 x_{n+1}\right)\right]$
Bi-quadratic integer:
i. $\quad \frac{1}{47^{2}}\left[\left(376 x_{4 n+5}-846 x_{4 n+4}\right)+4\left(8 x_{n+2}-18 x_{n+1}\right)^{2}-4418\right]$
ii. $\frac{1}{188^{2}}\left[\left(1504 x_{4 n+6}-12032 x_{4 n+4}\right)+4\left(8 x_{n+3}-64 x_{n+1}\right)^{2}-70688\right]$
iii.
iv.
$\frac{1}{47^{2}}\left[\left(376 y_{4 n+4}-94 x_{4 n+4}\right)+4\left(8 y_{n+1}-2 x_{n+1}\right)^{2}-4418\right]$
$\frac{1}{94^{2}}\left[\left(752 y_{4 n+5}-2632 x_{4 n+4}\right)+4\left(8 y_{n+2}-28 x_{n+1}\right)^{2}-17672\right]$
Nasty number:
$\frac{47}{}\left[564+48 x_{2 n+3}-108 x_{2 n+2}\right]$
ii.
$\frac{1}{188}\left[2256+48 x_{2 n+4}-384 x_{2 n+2}\right]$
iii.
iv.
$\frac{1}{47}\left[564+48 y_{2 n+2}-12 x_{2 n+2}\right]$
$\frac{1}{94}\left[1128+48 y_{2 n+3}-168 x_{2 n+2}\right]$

2.2. Remarkable Observations

I. Choices of hyperbola with their solutions generated through the known solutions are in Table 2 below:

Table-2. Hyperbola

Sl.no	Hyperbola	$\mathbf{(\mathbf { X } _ { \mathbf { n } } , \mathbf { Y } _ { \mathbf { n } } \mathbf {) }}$
1	$3 X_{n}^{2}-Y_{n}^{2}=26508$	$\left[\left(8 x_{n+2}-18 x_{n+1}\right),\left(28 x_{n+1}-2 x_{n+2}\right)\right]$
2	$3 X_{n}^{2}-Y_{n}^{2}=424128$	$\left[\left(8 x_{n+3}-64 x_{n+1}\right),\left(110 x_{n+1}-2 x_{n+3}\right)\right]$
3	$3 X_{n}^{2}-Y_{n}^{2}=26508$	$\left[\left(8 y_{n+1}-2 x_{n+1}\right),\left(24 x_{n+1}-2 y_{n+1}\right)\right]$
4	$3 X_{n}^{2}-Y_{n}^{2}=106032$	$\left[\left(8 y_{n+2}-28 x_{n+1}\right),\left(54 x_{n+1}-2 y_{n+2}\right)\right]$

II. Employing linear combination among the solutions other choices of parabola are presented in Table 3 below:

Table-3. Parabola

		Table-3. Parabola
Sl.no	Parabola	$\left(\mathbf{X}_{\mathbf{n}}, \mathbf{Y}_{\mathbf{n}}\right)$
1	$141 X_{n}-Y_{n}^{2}=26508$	$\left[\left(94+8 x_{2 n+3}-18 x_{2 n+2}\right),\left(28 x_{n+1}-2 x_{n+2}\right)\right]$
2	$564 X_{n}-Y_{n}^{2}=424128$	$\left[\left(376+8 x_{2 n+4}-64 x_{2 n+2}\right),\left(110 x_{n+1}-2 x_{n+3}\right)\right]$
3	$141 X_{n}-Y_{n}^{2}=26508$	$\left[\left(94+8 y_{2 n+2}-2 x_{2 n+2}\right),\left(24 x_{n+1}-2 y_{n+1}\right)\right]$
4	$282 X_{n}-Y_{n}^{2}=106032$	$\left[\left(188+8 y_{2 n+3}-28 x_{2 n+2}\right),\left(54 x_{n+1}-2 y_{n+2}\right)\right]$

2.3. Generation of Solutions

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a known solution of (1).
Consider the second solution $\left(x_{1}, y_{1}, z_{1}\right)$ of (1) to be
$x_{1}=h-x_{0}, y_{1}=h-y_{0}, z_{1}=h+z_{0}$
where $h_{\text {is a non-zero integer to be determined. }}$
Substituting (13) in (1) and simplifying, we get
$h=2\left(x_{0}+y_{0}+z_{0}\right)$
Using (14) in (13), the second solution of (1) is represented in the matrix form as

$$
\begin{equation*}
\left(x_{1}, y_{1}, z_{1}\right)^{t}=M\left(x_{0}, y_{0}, z_{0}\right)^{t} \tag{14}
\end{equation*}
$$

$$
M=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the general solution $\left(x_{n+1}, y_{n+1}, z_{n+1}\right)$ of (1) in the matrix form as $\left(x_{n+1}, y_{n+1}, z_{n+1}\right)^{t}=\tilde{M}\left(x_{0}, y_{0}, z_{0}\right)^{t}$,
where

$$
\tilde{M}=\left(\begin{array}{ccc}
\frac{Y_{n}-(-1)^{n}}{2} & \frac{Y_{n}+(-1)^{n}}{2} & X_{n} \tag{15}\\
\frac{Y_{n}+(-1)^{n}}{2} & \frac{Y_{n}-(-1)^{n}}{2} & X_{n} \\
X_{n} & X_{n} & Y_{n}
\end{array}\right), n=0,1,2 \ldots \ldots
$$

in which $\left(x_{n}, y_{n}\right)$ represents the general solution of the pell equation $Y^{2}=2 X^{2}+1$.
Thus, given an integer solution $\left(x_{0}, y_{0}, z_{0}\right)$, one may generate sequence of integer solutions to the given equation based on the known solution through employing (15).

2.4. Remark

In addition to (2), one may introduce the transformations

$$
x=\frac{1}{2}\left(k^{2}+11 k-6\right) \alpha, z=\frac{1}{2}\left(k^{2}+11 k-4\right) \alpha
$$

in (1) leading to

$$
\mathrm{y}^{2}=\left(\mathrm{k}^{2}+11 \mathrm{k}-5\right) \alpha^{2}+141, \alpha_{0}=2, \mathrm{y}_{0}=2 \mathrm{k}+11
$$

Following the procedure presented above, another set of integer solutions to (1) are obtained.

3. Conclusion

This paper presents a set of integer solutions to the second order equation with three variables $x^{2}+y^{2}=z^{2}+141$. However, there may be other sets of solutions to (1) which is left as an exercise for the readers.

References

[1] Carmicheal, 1959. The theory of numbers and diophantine analysis. New York: Dover Publications.
[2] Dickson, L. E., 1952. History of theory of numbers vol. 1. New york: Chelsea Publishing Company.
[3] Gopalan, M. A. and Sharadha, K., 2019. "On the homogeneous cone." Bulletin of Pure and Applied Science, vol. 38E, pp. 245-252.
[4] Gopalan, M. A. and Sivagami, B., 2013. "Integral points on the homogeneous cone." IOSR Journal of Mathematics, vol. 8, pp. 24-29.
[5] Gopalan, M. A., Vidhyalakshmi, S., and Kavitha, 2012. "Integral points on the homogeneous Cone." Diophantus J. Math, vol. 1, pp. 127-136.
[6] Gopalan, M. A., Vidhyalakshmi, S., and Maheswari, D., 2014. "Integral points on the homogeneous cone." Indian Journal of Science, vol. 7, pp. 6-10.
[7] Gopalan, M. A., Vidhyalakshmi, S., and Thiruniraiselvi, N., 2015. "Observations on the ternary quadratic diophantine equation." International Journal of Applied Research, vol. 1, pp. 51-53.
[8] Gopalan, M. A., Vidhyalakshmi, S., and UmaRani, J., 2013. "Integral points on the homogeneous cone." Cayley J. of Math, vol. 2, pp. 101-107.
[9] Kavitha, A. and Sasipriya, P., 2017. "A ternary quadratic diophantine equation." Journal of Mathematics and Informatics, vol. 11, pp. 103-109.
[10] Mallika, S. and Hema, D., 2017. "On the ternary quadratic diophantine equation." Journal of Mathematics and Informatics, vol. 10, pp. 157-165.
[11] Meena, K., Vidhyalakshmi, S., Gopalan, M. A., and Aarthy, T. S., 2014. "Integer solutions on the homogeneous cone." Bull. Math. and Stat. Res., vol. 2, pp. 47-53.
[12] Mordell, L. J., 1970. Diophantine equations. New York: Academic Press.
[13] Shanthi, J., Mahalakshmi, T., Anbuvalli, V., and Gopalan, M. A., 2020. "On finding integer solutions to the homogeneous cone." Aegaeum Journal, vol. 8, pp. 744-749.
[14] Sumathi, G. and Deebika, B., 2017. "Integral points on the cone." Journal of Mathematics and Informatics, vol. 11, pp. 47-54.
[15] Vidhyalakshmi, S. and Yogeshwari, S., 2017. "On the non-homogeneous ternary quadratic diophantine equation." Journal of Mathematics and Informatics, vol. 10, pp. 125-133.

