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Abstract 

Let , ,k l a  and b be positive integers with  max , 2a b  . In this paper, we show that every positive rational number can 

be written as the form    a bkm ln  , where       if and only if  gcd , 1a b   or    , , , 2,2,1,1a b k l  . Moreover, 

if  gcd , 1a b  , then the proper representation of such representation is unique. 
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1. Introduction 

Let N be the set of all positive integers and 


 Euler's totient function, which is defined as  ( )  

 *               (   )   +, the number of integers in the set 
1, 2, , n

 that are relatively prime to n . 
Let  
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be the standard factorization of a positive integer n , it is well-known that  
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                                                                                                    (1) 

(See. e.g., [1], page 20). Sun [2], proposed many challenging conjectures on representations of positive rational 

numbers. Recently, Krachun and Sun [3] proved that:any positive rational number can be written as the form 

   2 2m n 
,where      . 

For given positive integers 
, ,a b k

 and l  with
 max , 2a b 

, in this paper, we consider a more general 

problem when every positive rational number can be written as the form    a bkm ln 
,  where      . 

Note that if 
p

 is a prime with either 
 gcd ,p m n

 or 
 gcd , 1p mn 

, then 
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. From this 
we can easily derive that 
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                                                                                                                               (2) 

whenever 1d
 and 2d

 are positive integers with 1 2

a bd d
, and for each prime 1 2p d d

, either 

 gcd ,p km ln
 or 

 gcd , 1p klmn 
. Hence we have the following definition. 

 

Definition 1: Let 
, ,k l a

 and b  be positive integers with 
 max , 2a b 

 and r  a positive rational numbers. 

A representation of 

 
 

a

b

km

ln




 is called a 

proper
 representation if there are no positive integers 1 1d 

 and 2d
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such that 1 1m m d
, 1 2n n d

, 1 2

a bd d
, and for each prime 1 2p d d

, either 
 1 1gcd ,p km ln

 or 

 1 1gcd , 1p klm n 
. 

For example,when 
   , , , 2,2,1,1a b k l 

,then a representation of 

 
 

2

2

m
r

n






 is called a 
proper

 

representation if there are no positive integers 1d   such that 1m m d
, 1n n d

, and for each prime 
p d

, either 

 1 1gcd ,p m n
 or 

 1 1gcd , 1p m n 
. 

The main purpose of this note is to show the following result. 

Theorem 1 Let 
, ,k l a

 and b  be positive integers with 
 max , 2a b 

. Then any positive rational number 

can be written as the form 
   a bkm ln 

,  where       if and only if 
 gcd , 1a b 

 or 

   , , , 2,2,1,1a b k l 
. Moreover, if 

 gcd , 1a b 
, then the 

proper
 representation of such representation of 

a positive rational number is unique. 

 

2. Proof of Theorem 1 
Pr .oof For a positive rational number r  with 1r  , let  

 1 2
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be the standard factorization of r , where 1 2 sp p p 
 are primes. Let 

  sP r p
denote the maximal 

prime factor of r ,
 

sp sv r 
,the sp

-valuation of r ,and we let 
 1 1P 

. 

We first prove that if 
 gcd , 1a b 

 or 
   , 2,2a b 

 and 
   , 1,1k l 

, then any positive rational number 

can be written as the form 
   a bkm ln 

, where      . Recall that Krachun and Sun [3] have proved the 

case of 
   , , , 2,2,1,1a b k l 

.It suffices to show the statement holds  for a  and b  with 
 gcd , 1a b 

.For any 

integer c ,it is well-known that there are positive integers x  and 
y

such that 
ax by c 

 since 
 gcd , 1a b 

.Hence for each prime 
p

 with 
  0pv r 

 or 
p kl

,there are positive integers px
 and py

 such that 

         .p p pv r v k ax p v l by p   
 

Let 
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Then it is easy to check that 
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since for any prime 
p

 with 
  0pv r 

 or 
p kl

,we have 
 gcd ,p m n

 and hence 

                  1 1 .p p p p p p pv r v k av m v l bv n v k ax p v l by p         
 

Therefore we have proved  that any positive rational number can be written as the form

Nnm
km

b

a

,,
)(ln

)(





when
 gcd , 1a b 

or 
   , 2,2a b 

and 
   , 1,1k l 

. 

Next, we will show that if 
 gcd , 2a b 

 and 
   , , , 2,2,1,1a b k l 

, then there exists a positive rational 

number r  such that r  cannot be written as the form 
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If 
 gcd , 2a b  

, take t  to be a positive integer with 
 1 modt 

 and 
p

 a prime with 
 p P kl

, 

we will show that 
tp
 cannot be written as the form 
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m n

ln






 

Suppose that there are positive integers m  and n  such that 
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Without loss of generality, we may assume that the above representation is proper,so 
 P klmn p

,and hence 

 P mn p
since 

 p P kl
.Now we have 

              

       

0 mod , 0,
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Which implies that
 0 modt 

or
 1 modt  

,a contradiction to 
 1 modt 

 and 
3 

.Hence 
tp
 can not be written as  
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For the case of 
 gcd , 2a b  

and
   , 2,2a b 

,we have that 
 max , 2a b 

.We only consider the 

case where 2a  (the argument for the case of 2b   is similar).We have, for a prime 
p

 with 
 p P kl

, 

 
 

       0 mod 2 0 mod 2 ,

a

p p pb
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or 
  1 3pav m  

 when 
  0pv n 

, or 
 1 0pbv n 

 when 
  0pv m 

,so 
p

 can not be written as 

 
 

, , .

a

b

km
m n

ln






 

Now we consider the case where 
   , 2,2a b 

 and 
   , 1,1k l 

,then 
 max , 2k l 

.Without loss of 

generality,we may assume that 
   p P kl P k 

(the argument for the case of 
   p P kl P l 

is similar). 

If 
 gcd ,p k l

, then we have 

 
 

             2 mod 2 ,
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so 
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 can not be written as 
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.If 
p lŒl

(the case where 
p kŒl

 is similar, and we 

omit the detail), then we have 
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or 
   1 2 0p pv k v m  

 when 
  0pv n 

,so 
  1pv k

p
 

 can not be written as 
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 This proves the first statement. 

To prove the last statement, we use a double induction on 
 P kl

.We first prove that the statement holds for 

  1P kl 
by induction on 

 P r
,then we prove that the statement holds for any positive integers 

,k l
 by 

induction on 
 P kl

. 

Let 
 gcd , 1d a b 

 and r  a positive rational number.Suppose that the representation of 
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                                                                                                                             (3) 

is proper. We will show that m  and n  are uniquely determined by r , k  and l ,in other words,the proper 

representation (3)of r  is unique. We prove this by a double induction on 
 P kl

.To begin with,we show that for 

the proper representation(3)of r  is unique when 
  1P kl 

, i.e., 1k l  . In this case,we use induction on 

 P r
.For 

  1P r 
,let 
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n






 be a proper representation of 1 ,and let 
 p P mn

. If 
1p 

,then 
p

is a 
prime and we have 

     0 1 .p p pv av m bv n  
 

Hence 
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,where 
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1
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n n p

,and 
   p pav m bv n

, which implies that the 

representation of 
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 is not proper, a contradiction. Hence 
1p 

, and 1  has only the proper representation 

of 
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.For a proper representation (3)of r  with 
  1P r 

,we claim that 

   .P mn P r
                                                                                                                                             (4) 

Let 
 q P mn

.Obviously,we have 
 q P r

.Note that 
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If 
 q P r

, then we have 
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  ,so 

  0qv m 
 and 

  0qv n 
. Hence 

   0 q qav m bv n 
, which implies that 

   q qav m bv n
. Therefore, we have 
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where 

 
1
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m m q

 and 

 
1

qv n
n n q

,i.e.,the representation of 

 
 

a

b

m
r

n






 is not proper by definition, a 

contradiction. Hence 
   P mn P r

 when the representation (3) of r  is proper. 

For
  2P r 

,by (4),for any nonzero integer c and any proper representation of 

 
 

2 , ,

a

c
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m
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we have that 
  2P mn 

, so there are non-negative integers x  and 
y

 such that 2xm   and 2 yn  .For 

simplicity, we assume that 0c  (the case where 0c   is similar).If 
 gcd ,d a b c

,then it follows from (5) 

that 
, 0, 0c ax by x y   

.Let 
   0 0, ,x y x y

, 0 0x 
, 0 0y 

 be the least positive integer solution of 
the linear equation 

, 0, 0.ax by c x y   
 

It is well-known that all positive integer solution 
 ,X Y

 of the equation aX bY c   are given by 

   
 0 0, , 0 .

gcd , gcd ,

b a
X x t Y y t t

a b a b
    

                                                                      (6) 

We claim that 0x x
 and 0y y

.Otherwise, there exists a positive integer t  such that 
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0 0, .

gcd , gcd ,

b a
x x t y y t

a b a b
   

 
Hence we have 
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by b by

d
d d

d



 
   

 
Which contradicts with the proper representation of   . Therefore      and     . Hence the proper 

representation of    is unique. If     (   )   ⁄ , then it follows from (5) that        and    , so 

  (   )  ⁄ , the proper representation of    is also unique. This proves the result for  ( )   . 

Now let q be an odd prime and assume that the result holds for  ( )   . Let r be a positive rational number 

with  ( )   , and the representation (3) of r is proper. By (4), we have  (  )   . If   ( )   , then   ( )    

and it follows from (5) that   ( )     ( )    and   ( )   , so   ( )  (  ( )   )  ⁄ .Let 

     
  ( )(   )⁄ . Then we have 

   
 (  

 )

 (   )
  

where        ( )⁄  and     .Note that the representation of    
 (  

 )  (  
 )⁄  is proper, so by the 

induction hypothesis,    and    are uniquely determined by    since  (  )   ( )   . Therefore the proper 

representation of r is unique.  

If   ( )    and   ( )   , then   ( )     and it follows from (5) that   ( )      ( )   and   ( )  

 , so   ( )  (   ( )   )  ⁄ . Let     (   )  
  ( )⁄ . Then we have 

   
 (  

 )

 (   )
  

where      and      
  ( )⁄ . Now the representation of    

 (  
 )  (  

 )⁄  is proper, so by the 

induction hypothesis    and    is uniquely determined by    since  (  )   ( )   . Therefore the proper 
representation of r is unique. 

If   ( )    and   ( )   , then it follows from (5) that   ( )     ( )     ( ) since   ( )    and 

  ( )   .By the similar argument as above, we have (  ( )   ( ))  (   ) is the least positive integer solution 

of the linear equation         ( ). Let      
  ( )⁄ . Then we have 

   

 (  
 )

 (   )
  

where        ( )⁄  and      
  ( )⁄ . It is easy to verify that the representation of    

 (  
 )  (  

 )⁄  

is proper. Since  (  )   ( )   , by the induction hypothesis,    and     are uniquely determined by   . Therefore 

the proper representation of r is unique. 

In view of the above, we have proved that the representation (3) of r is unique. This completes the proof of the 

case (   )  (   ). 
Now we assume that the statement holds for  (  )   , where p is a prime. 

That is, for any positive integers k, l with  (  )    and any proper representation of  

  

 (   )

 (   )
        

of a rational number number r, m, n are uniquely determined by r, k, l. We prove that the statement holds for 

 (  )   . For the first step, we let    be a positive rational number with least P(  ) such that 

   

 (   )

 (   )
        

is a proper representation of   . We show that m, n are uniquely determined by   , k, l. Obviously,   
 (    )   (  ), then we have 

0=  (

(   )


(   )

)  {

   ( )    ( )     ( )   ( )      (  )    (  )   

   ( )    ( )                                  (  )   

    ( )    ( )                                  (  )   

 

If  (  )   (resp.   (  )   ), then    ( )    and   ( ) is uniquely determined by k (resp.   ( )  

   and   ( ) is uniquely determined by l). 

If   (  )   , then we have    ( )    ( )     ( )   ( )   . By the same argument as before, we see 

that (  ( )   ( ))  (   ) is the least non-negative (resp. positive) solution of the linear equation        

  ( )     ( ) when   ( )    and   ( )    (resp. when   ( )    or   ( )    ). Hence   ( ) and   ( ) are 

uniquely determined by k, l. We have 
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 (    

 )

 (     )
 

where      
  ( )⁄ ,      

  ( )⁄ ,        ( )⁄  and      
  ( )⁄ , and the above representation of    is 

proper. Further, if q    (  ), then  

(   )  (     ) and    ( )     ( ), so the representation of    
 (   )  (   )         ⁄  is not 

proper. Hence q    (  ), and therefore  (    )   (  )   . By the induction hypothesis on P(kl), we know 

that the representation of    
 (    

 )  (    
 )  ⁄ is unique, so   ,    are uniquely determined by   ,   ,   , and 

hence m, n are uniquely determined by   , k, l. 

If    (    )   (  ), then we have   (  )   

  (
 (   )

 (   )
)  {

   ( )    ( )     ( )    ( )      (  )    (  )   

   ( )    ( )                                  (  )   

    ( )    ( )                                  (  )   

 

By the same argument as in the case of  (    )   (  ), we get   ( ),   ( ) are uniquely determined by   , 

k, l and we have 

      
  (  )⁄  

 (    
 )

 (     )
  

 

where      
  ( )⁄ ,      

  ( )⁄ ,        ( )⁄  and      
  ( )⁄ , and the above representation of    is 

proper. Further, we have  (  )   (  ) 
and  (    )   (  )   . If  (    )   (  )   , then (k,l) (     ), 

   
 (   

 )

 (    )
  

and  (  )   (  ), which is impossible by the definition of   . If  (    )   (  )   , then by the induction 

hypothesis on P(kl), we know that the representation of    
 (    

 )  (    
 )  ⁄ is unique, so   ,   are 

uniquely determined by   ,   ,   , and hence m, n are uniquely determined by   , k, l. 

Next we assume that the statement holds for all positive rational number r with  (  )   ( )   , q is an odd 

prime. We show that the statement holds for all positive rational number r with  ( )   . Let 

  

 (   )

 (   )
        

 

be a proper representation of r. Obviously,    (    )   ( ). If    (    )   ( ), then we have    

  (
 (   )

 (   )
)  {

   ( )    ( )     ( )    ( )      (  )    (  )   

   ( )    ( )                                  (  )   

    ( )    ( )                                  (  )   

 

By the same argument as in the case of     ,   ( ),   ( ) are uniquely determined by k, l. And we hav 

     

 (    
 )

 (     )
  

where      
  ( )⁄ ,      

  ( )⁄ ,        ( )⁄  and      
  ( )⁄ , and the above representation of    is 

proper. Similarly, by the induction hypothesis on P(kl), we know that the representation is unique, so   ,    are 

uniquely determined by r,   ,   , and hence m, n are uniquely determined by r, k, l. 

The argument of the case where  (    )   ( ) is the same as in the case of     . Now we have   ( ), 

  ( ) are uniquely determined by r, k, l and  

     
  ( )⁄  

 (    
 )

 (     )
 

where      
  ( )⁄ ,      

  ( )⁄ ,        ( )⁄  and      
  ( )⁄ , and the above representation of    is 

proper. Further, we have  (  )   ( ) 
and  (    )   (  )   . If  (    )   (  )   , then (   )  (     ), 

   

 (   
 )

 (    )
  

and  (  )   (  ), by the induction hypothesis on P(r), we obtain that   ,    are uniquely determined by   , 

  ,   , and hence m, n are uniquely determined by   , k, l. If  (    )   (  )   , then by the induction hypothesis 

on P(kl), we know that the representation of    

(    

 )
 (    

 )  ⁄ is unique, so   ,    are uniquely 

determined by   ,   ,   , and hence m, n are uniquely determined by r, k, l. 
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This completes the proof. 

Two examples: (1) For (   )  (   ) and      ⁄ , we have 

 

  
 
 (     )

 (     )
 
 (     )

 (   )
 
 (   )

 (   )
 

Both   (   )  (   )⁄  and  (   )  (   )⁄  are proper representation of 
 

  
. 

(2) For (   )  (   ) and       ⁄ , we have 

  

  
 
     

 (   )
 
   (   )

   (   )
 
  (       )

  (       )
 
 (             )

  (          )
 

 
 (                )

 (             )
 
 (      )

 (      )
 
 (      )

 (      )
 

Here  (      )  (      )⁄  is the proper representation of       ⁄ , while the representation 

 (      )  (      )⁄  in [3] is not proper. 
Remarks: (1) It follows from the proof of Theorem 1 that if a, b, m, n are positive integers such that 

   *   +    and  (  )   (  ), then      .  

(2) For (   )  (   ), by the main theorem of [3] and Theorem 1, we have that any positive rational number 

can be written as the form  (  )  (  )⁄ , where      . Moreover, the proper representation of any positive 

rational number of the form  (  )  (  )⁄  is unique. 

(3) Let p be a prime and a, b, c positive integers with     (   )    and       ,   . Let     ⁄  
 (  )  (  )⁄  be a proper representation of     ⁄  and x, y be the least positive integer solution of the linear 

equation           . Then 

   
 (   )

 (   )
 
 (     )

 (  )
 

And both representations above of pc are proper. The first equality of the above equation does not hold when 

    (   )    since the related linear equation            has no integer solution (   ). 
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