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Abstract 
Whenever a discriminant function is constructed, the attention of a researcher is often focused on classification. The 

underlined interest is how well does a discriminant function perform in classifying future observations correctly. In order 
to assess the performance of any classification rule, probabilities of misclassification of a discriminant function serves as 

a basis for the procedure. Different forms of probabilities of misclassification and their associated properties were 

considered in this study. The misclassification probabilities were defined in terms of probability density functions (pdf) 

and classification regions. Apparent probability of misclassification is expressed as the proportion of observations in the 

initial sample which are misclassified by the sample discriminant function. Different methods of estimating probabilities 

of misclassification were related to each other using their individual shortcomings. The status of degrees of uncertainties 

associated with probabilities of misclassification and their implications were also specified. 

Keywords: Probabilities of misclassification; Classification regions; Estimated probability of misclassification; Discriminant 

function; Mahalanobis distance. 
 

 

1. Introduction 

Probability of misclassification expressed by jkP
 is the probability of classifying an observation to population j 

when it is actually from population k. It occurs when there is a selection of criteria that is not suitable for 

classification [1, 2]. An observation X may be classified as belonging to population 1  when it actually comes from 

population 2 ,
 or vice versa. These errors are of serious concern in the choice of the procedure and as such, one is 

required as much as possible to reduce the errors or, more appropriately, their probabilities of occurrence [3, 4]. 

Let 1( )f x
 and 2 ( )f x

 be the probability density functions associated with X  for populations  1  and 2  

respectively. If 1R
 is the set of values of X for which observations in 1  are classified and 2R

 is the set of values of 

X for which observations in 2  are classified, then the probabilities of correctly or incorrectly classifying 
observations are: 

 Pr (correctly classifying an object from 1 to 1 ) = 

   
1

1 1 1Pr 1|1 Pr | ( )
R

X R f x dx   
 

 Pr (misclassifying an object from 2  to 1 ) = 

   
1

1 2 2Pr 1| 2 Pr | ( )
R

X R f x dx   
 

 Pr (correctly classifying an object from 2  to 2 ) =

   
2

2 2 2Pr 2 | 2 Pr | ( )
R

X R f x dx   
 

 Pr ( misclassifying an object from 1  into 2 ) = 

   
2

2 1 1Pr 2 |1 Pr | ( )
R

X R f x dx   
 

The different probabilities of misclassification considered in this study are significant in the sense that the 

construction of  a discriminant function would prompt a researcher to determine how this function performs on the 
validity of future samples [5] 
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2. Description of Probabilities of Misclassification 
2.1. Optimum Probability of Misclassification 

Optimum probability of misclassification assumes that the parameters of a distribution in the two populations 

are known and cannot be improved upon. According to John [6], the total optimum probability of misclassification is 

defined as: 

2 1
1 1 2 2( , ) ( ) ( )

R R
R f P f x dx P f x dx   

,                                                                               (1) 
where R is the entire region of classification, f is the distribution of the observations that will be classified and 

, ( 1,2)iP i 
 refers to the a priori probability that an observation comes from population 

, (i 1,2)i 
. 

Let 
 2

1 1~ ,X N  
and 

 2

2 2~ ,X N  
 with classification regions as follows: 

 

 

1 1 2

2 1 2

1
: :

2

1
: : .

2

R X X

R X X

 

 

 
  

 

 
  

                                                                                                              (2)        

The optimum probability of misclassification when observation from 1  is misclassified is given by 

2
1 1( , ) ( ) ,

2R
R f f x dx

 
   

 


                                                                                                 (3) 

where  1( )f x
 is the probability density function  associated with the random vector X  for the population 1 , 2R

 

is the set of values of  X  for which observations into 2  are classified,   is the cumulative standard distribution 

function and   is the mahalanobis distance between populations 1  and 2  defined by  

   

1

2
' 1

1 2 1 2 .           

Similarly, the optimum probability of misclassification when an observation from 2  is misclassified is given 
as 

1
2 2( , ) ( ) 1 ,

2R
R f f x dx

 
    

 


                                                                                      (4) 

where  2 ( )f x
 is the probability density function  associated with the random vector X  for the population 2 , 

1R
 is the set of values of  X  for which observations into 1  are classified,   is the cumulative standard 

distribution function and   is the mahalanobis distance between populations 1  and 2  defined by  

   

1

2
' 1

1 2 1 2 .           
Sedransk and Okamato [7], gave similar result on probability of misclassification when the variance in two 

populations, 1 2, 
, is given by 

2 . 

Suppose X in populations, 1  and 2  has the density function 

       
1
22

' 11
( ) 2 exp , 1, 2

2

p

i i if x x x i  
  

       
                                       (5) 

The parameters, i  and ∑, satisfy the conditions, i   
 and ∑ is a positive definite symmetric matrix 

of order p. The optimum probabilities based on the classification regions: 

     

     

1

1 1 2 1 2 1 2

1

2 1 2 1 2 1 2

1
: : ( ) : , , 0

2

1
: : ( ) : , , 0

2

R X D X X

R X D X X

     

     





 
       

 

 
       

                                         (6) 
are given by 
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1

2

( )
2

( ) 1
2

R, f

R, f





 
  

 

 
   

                                                                                                                        (7) 
 

2.2. Conditional Probability of Misclassification 
The conditional probability of misclassification is usually calculated when a sample discriminant function is 

involved in the classification rule. Given a discriminant function, the probability can be described as the conditional 

probability that a randomly chosen member of 
, ( 1,2)i i 

 is misallocated. It is not only conditional on the 

individual coming from one of populations 1 2or , 
 but also on the estimates of the means of the distribution in 

the two populations.  

John [6], obtained the conditional probability of misclassification when an observation from population π1 is 

misclassified as: 

 

 

 

1

1 1 2 1 1 2

1

1

1 1 2 1 1 2

1
1 ;

2
,

1
; ,

2

X X if X X

R f

X X if X X

 



 





   
      

   
 

                                                               (8) 
where Ф is the cumulative standard distribution function, σ1

-1 is the inverse of standard deviation fr

1 1 1, ,from population is mean from population  
1 2X and X

 are the sample means from 

populations 1 2and 
 respectively.  

The conditional probability of misclassification when an observation from population π2 is misclassified is given 

as 

 

 

 

1

2 1 2 2 1 2

2

1

2 1 2 2 1 2

1
;

2
R,

1
1 ; ,

2

X X if X X

f

X X if X X

 



 





   
      

   
 

                                                                 (9) 
where Ф is the cumulative standard distribution function, σ2

-1 is the inverse of standard deviation 

1 1 1, ,from population is mean from population  
1 2X and X

 are the sample means from 

populations 1 2and 
 respectively.  

 

2.3. Estimated Probability of Misclassification 
Estimated probability of misclassification often referred to as the “plug-in estimate” was suggested by Fisher 

[8]. This was premised on the fact that the maximum likelihood estimates of the parameters are plugged in the 

discriminant function prior to classification. The total estimated probability of misclassification is given by 

 
2 1

1 1 2 2ˆ ˆ

ˆ ˆ ˆˆ, ( ) ( )
R R

R f P f x dx P f x dx   
,                                                                                    (10) 

where 1 2R and R
 are respective sub-regions of classification corresponding to populations 1 2and 

, 

1 2( ) ( )f x and f x
 are the respective density functions of  X  in  populations, 1 2and 

 and 1 2P and P
 are the 

a priori  probabilities that an observation comes from 1 2 ,and 
respectively. 

 

2.4. Apparent Probability of Misclassification 
Apparent probability of misclassification was suggested by, Smith [9] and defined as the proportion of 

observations in the initial sample which are misclassified by the sample discriminant function. If 1n
 is the 

proportion of observation misclassified by the discriminant function in population 1,
 and n is the total sample size 

in population 1 , then the apparent probability of misclassification is 

1n

n .   
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2.5. Expected Probability of Misclassification 

The expected probability of misclassification has been discussed in the literature as the expected value of the 

conditional probability of misclassification. It is otherwise known as unconditional probability of misclassification 

[6]. The total expected probability of misclassification is defined as: 

 
2 1

1 1 2 2
ˆ, ( ) ( ) ,

R R
E R f E P f x dx P f x dx     

     
                                                                       (11) 

where 1 2R and R
 are respective sub-regions of classification corresponding to populations 1 2and 

, 

1 2( ) ( )f x and f x
 are the respective density functions of  X  in  populations 1 2and 

 and 1 2P and P
 are the a 

priori  probabilities that an observation comes from 1 2and 
 respectively. 

The expressions for the expected probability of misclassification and its approximations were given by John [6] 

using the Anderson’s classification statistic (W) as: 

     1 11 21 12 22
ˆ, , ; , ;E R f Q a a Q a a     

   

 1 2 1 2

11 1 1 2 2 2 1 12 11,a n n a a             

   

1

2
2 1 2 1 2

21 1 1 1 2 2 2 1 22 21

1 1
,

2 4
a n n a a    



  
      

   

   
1
21

21 2 1 2 2 1 2 1 2 1 2 1 2

1 1 2 2 1 1 1 2 2 1 1 2 2

1 1

2 4
n n n n n n       




      
        

   
          and 

 , ; ( ; ) ,
h k

Q h k q u,v du dv 
 

  
                                                                                                   (12) 

where µ1 and µ2 are the respective means from populations, π1 and π2, q(µ,v,ƿ) is the standard bivariate normal 

density function with correlation coefficient ƿ, µ1 and µ2 are the means from populations 1 2and 
, n1 and n2 are 

the sample sizes  from 1 2and 
, and 

2

1 , 
2

2  are the variances from 1 2and 
. 

 

3. Methods of Estimating Probabilities of Misclassification 
3.1. Parameter Substitution Method 

With this method, the probability of misclassification is estimated directly by substituting sample estimates of 

population parameters in the theoretical expression for the probability of misclassification. The method is a natural 

estimate and maximum likelihood estimator of the error rate. It is also said to be highly biased for small sample sizes 

[10]. 

 

3.2. Re-substitution Method 
This procedure results to apparent error rate since the proportion of the sample incorrectly classified is used as 

the estimate of probability of misclassification [11]. Let               the probabilities of misclassification of 

erroneously assigning an observation to group       when the observation comes from group      , then  ̂       ̂   
are the sample proportions of misclassified observations. The estimates are consistent, but can be severely biased for 

small sample sizes. This method underestimates the probability of misclassification since the data used for fitting 

and validating the model are the same [12].  

 

3.3. Holdout Method 
This method splits the total sample into two equal parts so as to overcome the shortcoming of re-substitution 

approach. One subsample is employed to construct the classification rule and second part for validation. However, it 

requires large samples; otherwise its estimate of misclassification suffers [13]. 

 

3.4. Cross-validation Method 
The method uses all of the available data without serious bias in the estimated error rates. It holds out one 

observation at a time, estimates the distribution function based on         observations and classifies the held 

out observations. This process is repeated until all observations are classified. Let           be the number of 

sampled observations misclassified in groups                        , then the estimated classification error rates 

are  ̂  
  

  
      ̂  

  

  
  

The method produces unbiased estimates of the probability of misclassification for a rule based on    
           observations, respectively [4] 
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3.5. Jacknife Method 
In order to overcome the defects of methods (3.2) and (3.3), application of Jacknife was proposed by 

Lachenbruch [14].  According to this procedure, the linear discriminant function is fitted to all but one observation. 

The linear discriminant function is then applied to the (n-1) observations in the sample, and repeated n times [15]. 

This method was later examined in the context of the discrimination problem by Crask and Perreault [16]. Their 

work focused on the simultaneous use of its cross validation and Jacknife analysis. While cross validation method 

obtains good estimates of classification error rates, Jacknife analysis considers coefficient stability.  

 

3.6. Boostrap Method 
The bootstrap method is an extension of Jack-knife and might also be thought of as a finite sample Monte Carlo 

procedure.  According to Samprit and Sangit [10], the method operates as follows:  

 From the sample of the     population (        ), draw an independent sample of size    with each unit 

being drawn with a probability 
 

  
 (         ). The sample drawn from each of the G groups constitutes 

the bootstrap sample. 

 On the basis of the bootstrap sample, the linear discriminant function is constructed and its performance is 

evaluated by classifying all the observations not included in the bootstrap sample. The proportion of 

observations correctly classified is observed. 

 The aforementioned steps are repeated a large number of times and each trial generates an estimate of 

misclassification probability. The average of all the sample outcomes is taken as the bootstrap estimate, and 

the standard deviation of the estimates provides an estimate of the standard error.  

 

4. Significance of Probabilities of Misclassification 
A qualitative value of predictive performance of a classification model provided by uncertainty estimation is 

anchored on probabilities of misclassification. Low probability of misclassification is linked to low degree of 

misclassification which implies high reliability. High probability of misclassification is connected to high degree of 

improbability indicating propensity to generate erroneous classification.  

 

5. Conclusion   
Probability of misclassification is a decisive factor used to evaluate a classification procedure. Different 

approaches have been designed and related to one another in order to find the best possible way of estimating the 

true probabilities of misclassification. These methods have resulted to different types of probabilities of 

misclassification. The boostrap method has the advantage of not only furnishing the estimates of misclassification 

probabilities but also provides an estimate of the standard error of estimate.  
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