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Abstract 
A one-dimensional convective-diffusion problem is considered. To improve the quality of difference schemes, the 

method of moving nodes is used in combination with Richardson interpolation. Approximate analytical solutions and 

improved schemes are obtained. Numerical experiments carried out. 
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1. Introduction 
In mathematical modeling of various physical phenomena, initial and boundary-value problems arise for 

differential equations with small parameters at higher derivatives [1].  
Due to the importance of such problems, the construction of various schemes of the convective-diffusion 

problem is the subject of the work of many authors [2-14]. The choice of the optimal sampling scheme for 

convective flows is one of the main problems in modeling flows. 

The construction of discrete analogues of the convective-diffusion equation plays an essential role for transport 

processes. This is especially true when discrete analogues of the Navier-Stokes equation are constructed for large 

Reynolds numbers. In this regard, the movable nodes method (MNM) allows in many cases to design higher-quality 

discrete analogs of differential equations. 

MNM arose in connection with the solution of differential equations by numerical methods [15, 16]. When 

approximating derivatives (ordinary or partial) in a differential equation by difference relations, or by the finite 

volume method, we obtain a discrete equation. MMN for simple cases allows you to get an analytical representation 

of the solution between the nodal points of the boundary value problem. Based on this representation, it is possible to 
construct a higher-quality discrete scheme. In the case of a coarse mesh (one nodal point inside the region), an 

approximate analytical solution of the boundary value problem can be obtained.  In the simplest cases, this solution 

is accurate. To refine the solution, you can increase the number of moved nodes. 

Using MNM, it is possible to improve the quality of the difference scheme. An increase in the accuracy of 

various schemes of the convective-diffusion problem using extrapolation of Richardson is given. Based on the 

developed algorithm, numerical calculations were performed. 

 

1.1. Problem Statement  
Let's consider a boundary value problem  

2

2

1
( ),

dФ d Ф
S x W x E

dx Pe dx
   

                                                (1) 

Ф(W)=ФW,   Ф(E)=ФE                                                                 (2) 

where Pe (
/ )Pe vL Г

-Peclet number, (v - a velocity, 
 

 a denseness, L-scale of length, Г - a 
diffusivity, x-dimensionless co-ordinate, S(x)- a source.  

Exponential character of a solution and presence of narrow areas with the big gradients at values 1Pe   are 

characteristic for this equation. 

For a difference solution (1) there are various schemes. Here is an improvement of the difference scheme for (1) 

using Richardson extrapolation in combination with the method of moving nodes. 
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In [15, 16] two aspects of the application of the method of movable nodes are given. On the one hand, this 

method can be used to obtain an approximate analytical solution, and on the other, to obtain improved schemes. 

Here, the movable knot method is applied to improve the quality of the scheme using the Richardson method. 
 

2. The Method of Movable Nodes for a One-Dimensional Convective-Diffusion 

Problem 

Let inside the segment 
( , )x W E

 take an arbitrary one node. Consider a difference analogue of Eq. (1), in 
which the convective term is approximated by upwind difference scheme. 

Then the upwind difference scheme has the form 

 

1 1 1 11 1
2

( ).W WE
U U U UU U

Pe Pe S x
x W E W E x x W

  
    

                                                    (3) 
This scheme can be rewritten as follows: 

1 1 1 1 1 1 1( ),P E E W Wa U a U a U F x  
 

Here 

1 1 1 1 1 12 2
, , , ( ) ( )

( )( ) ( ) ( )( )
E W P E W

Pe
a a a a a F x Pe S x

E W E x x W E W x W
      

      
From here we have  

      
    

  

 

1 1

1
2 2

( )
22

E Wx W U E x Pe E W U x W E x
U Pe S x

Pe E xE W Pe E x

      
  

   
                         (4) 

When changes 
( , )x W E

 the position (we will make its moved in an interval 
( , )W E

, on the basis of (4) 

we will receive values of unknown function in each position. In other words, 
1U  received by means of (4), will give 

us problem approximate solution. We will notice that in this case 

1 1( ), ( ).W EU Ф W U Ф E 
 The Superscript 

corresponds to an amount of moved grids. 

 When 
( , )x W E

 changes its position (let's make it moveable within the interval
( , )W E

), based on 

(4) we get the values of the unknown function at each position. In other words, 
1U  obtained with the help of (4), 

will give us an approximate solution to the problem. Note that in this case the Superscript corresponds to the number 

of movable nodes. 

 Add additional moved nodes: 
1 2, .

2 2

x W x E
x x

 
 

  

Now we have three moved nods 1 2, , .x x x
 We will note that if x  changes the positions 1x

 and 2x
 also 

change the positions.  

 The scheme of type (3) for a segment 
[ , ]W x

 has the form: 

 

3 3 3 33 3

1 11

1

1 1

2
( ).

( ) / 2

W WU U U UU U
Pe Pe S x

x W x W x x x W

  
    

                                                (5) 

Here 

3 3

1 1( )U U x
. The scheme of type (3) for a segment 

[ , ]x E
 has the form: 

 

3 3 3 3 3 3

2 2 2

2

2 2

2
( ).

( ) / 2

EU U U U U U
Pe Pe S x

E x E x E x x x

   
    

                                                  (6) 

The upwind scheme for a segment 1 2[ , ]x x
: 

 

3 3 3 3 3 3

1 2 1

1 2 1 2 1

2
( ).

U U U U U U
Pe Pe S x

x x x x x x x x

   
    

                                                      (7) 

Here 
3 3

2 2( )U U x
 

In (7) we exclude 
3 3

1 2,U U
 using (5) and (6). Then we get the following scheme: 

       

3 3 3 33 3

3

1 1 1

4
( )

( )
1 1 1

2 2 2

W WE
U U U UU U

Pe F x
x W E x x WE W

  

 
  

   
          

                      (8) 
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The notation is introduced here  1 12 / (2 ), (2 ) / 2      
,

( ),Pe x W  
 

( ),Pe E x  

   3 1 1

1 2

1 1

1 14 ( ) 4
( ) ( )

1 1

Pe E W
F x Pe S x S x S x

E W E W

 

 

   
       

   
. 

Where 
3 3( ), ( ).W EU Ф W U Ф E 

 
(8) can be rewritten as follows: 

3 3 3 3 3 3 3 ( ),P E E W Wa U a U a U F x  
                                                                                            (9) 

where  

3 3

1 1 1

8 2 8
, ,

( )( )(1 ) ( )(1 ) ( )( )(1 )
E W

Pe
a a

E W E x x W E W x W  
  

       
 

3 3 3 .P W Ea a a 
 

Increase the number of moveable nodes: 

1
1

3
,

2 4

x W x W
x  

 
 

1
1

3
,

2 4

x x x W
x  

 
 

2
2

3
,

2 4

x x x E
x  

 
 

2
2

3
.

2 4

x E x E
x  

 
 

In the difference scheme (9), the unknown function appears in three nodes: W, x, E. 

Function S is calculated in points 1 2, , .x x x
 We will write the scheme of type (9) for each of segments 

[ , ].W x [ , ]x W
 and 1 2[ , ].x x

 

 

The scheme like (9) for a segment 
[ , ]W x

 has the form:  

1 1

3 3 3 3 3 3 3

1( ),x x x x WW
a U a U a U F x   

                                                                                             (10) 

where 

3 3

1 1 1 1 1 1

8 2 8
, ,

( )( )(1 ) ( )(1 ) ( )( )(1 )
x W

Pe
a a

x W x x x W x W x W  
  

  
       

 

1

3 3 3

x x W
a a a  

,

   3 1 1

1 1 1 1

1 1

1 14 ( ) 4
( ) ( )

1 1

Pe x W
F x Pe S x S x S x

x W x W

 

 

 

 

  

   
       

  
, 

1 12 / (2 ), (2 ) / 2         
, 1( ),Pe x W    1( ).Pe x x   

 
 

Similarly, scheme of type (10) we will write for segments 
[ , ]x W

 and 1 2[ , ].x x
 Excluding in the received 

three sets of equations 1

3

xU
 and 2

3

xU
 we will receive the scheme with seven moved grids: 

7 7 7 7 7 7 7 ( ),P E E W Wa U a U a U F x  
                                                     (11) 

where 

     5 5

2 2 27 7

4 4 4

2 2 2

2 1 4 1 2 1
, ,

( )( )(1 ) ( )(1 ) ( )( )(1 )
E W

Pe
a a

E W E x x W E W x W

  

  

  
  

       

7 7 7 .P W Ea a a 
 2 24 / (4 ), (4 ) / 4      

 

 
 

2
3

27 1

24
1 12

2
3

2 1

24
1 12

18 ( )
( ) ( )

41

18
4 .

41

j
i

j i

j
i

j i

Pe x W x W
F x Pe S x S W j

x W

E x
S x j

E W













 



 

    
       

   

  
    

   




 

Continuing thus, we can receive the scheme with 2 1k   moved grids 
(2 1) (2 1) (2 1) (2 1) (2 1) (2 1) (2 1) ( ),

k k k k k k k

P E E W Wa U a U a U F x        
                                           (12) 

where 

     2 1 2 1 2 1

(2 1) (2 1)

2 2 2

2 1 2 1 2 1
, ,

( )( )(1 ) ( )(1 ) ( )( )(1 )

k k

k k k

k k k

k k k

E W

k k k

Pe
a a

E W E x x W E W x W

  

  

  

 
  

  
       
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(2 1) (2 1) (2 1) .
л л л

P W Ea a a    2 / (2 ), (2 ) / 2k k k k

k k      
, 

   
21 2 1

(2 1) 1

2
1 1

12
( ) ( )

21

k

k

k

k j
k i

k k
j ik

Pe E W x W
F x Pe S x S x j

E W






 
 

 

    
      

  


 

 
 

2
1 2 1

1

2
1 1

12
2 .

21

k

k

k j
k i k

k k
j ik

E x
S x j

E W






 


 

  
   

  


 
Fig. 1 shows the graphs of approximate solutions to problem (1), (2) obtained by (12) for with different movable 

nodes. 

Fig-1. Pe=20, 
0,WФ  1,EФ  ( ) 0.S x 

 

 
 

Fig-2. Pe=20,
0,WФ 

 
0,EФ  ( ) ,S x x

 

 
 

Approximate solutions of problem. Pointwise - at k=1, dashed - k=2, is pointwise-dotted - k=3, long dashed - 

k=4, seldom dashed - k=5. The solid line is exact solution. 

The graphs show that approximate solutions give good results. 
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3. Improving Accuracy with Richardson Extrapolation 
Using the method described in Marchuk and Shaidurov [16], we can improve the accuracy of approximate 

solutions to the problem. Linear combination 

3 1 31 4
( ) ( ) ( )

3 3
Q x U x U x  

 more closely approximates the 

solution. With a linear combination 
1 3( ), ( )U x U x  and 

7 ( )U x  in the form  

7 1 3 71 4 64
( ) ( ) ( ) ( )

45 9 45
Q x U x U x U x  

 we get a more refined solution to the problem.  
Figure 3 shows the graphs of approximate solutions of problem (1), (2) obtained by (12) by Richardson 

extrapolation at 0,W  1.E   The solid line in Fig. 3 the exact solution.  

  

Fig-3. 
0,WФ  1,EФ  ( ) 0,S x 

 

 
 

Fig-4. 
0,WФ  0,EФ  ( ) ,S x x
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20.Pe 
 Comparisons of solutions. A dashed line -

3 ( )U x
, pointwise -

3 ( )Q x
, pointwise-dashed  - 

7 ( )U x
, 

long dashed-
7 ( )Q x

 

Fig-5. 
0,WФ  1,EФ  ( ) 0,S x 

 

 
 

Fig-6.  
0,WФ  0,EФ  ( ) ,S x x

 

 
 

20.Pe 
 Comparisons of solutions. A dashed line - 

15 ( )U x
, pointwise – 

15 ( )Q x
 

 

4. Numerical Experiments 
Simulation of the approximate solution to the problem given above can be used to construct difference schemes. 

Suppose we put 
0,W 

 
1.E 

 Introduce on [0,1] a non-uniform grid 

0 1 1 1{ , 0,1,2,..., , 0 ... ... 1}i i i i Nx i N x х x x x x           
 

Let put 
0, 1.W E 

. We introduce a non-uniform grid on [0,1] 

0 1 1 1{ , 0,1,2,..., , 0 ... ... 1}i i i i Nx i N x х x x x x           
 



Academic Journal of Applied Mathematical Sciences  

 

210 

If we replace 1 1, ,i i iW x x x E x   
 in (12), we obtain a difference scheme approximating 

equation (1) in the node ( 1,2,..., 1).ix i N   

The accuracy of the scheme (3), with a uniform arrangement of grid nodes, is. ( )O h  

The accuracy of the scheme (3), with a uniform arrangement of grid nodes, is 
( )O h

. Scheme (9) has the order  

( / 2)O h
.  For the linear combination 

3 1 31 4
( ) ( ) ( )

3 3
i i iQ x U x U x  

, we obtain an approximation error 
2( )O h

 on a uniform grid. The linear combination 
1 3( ), ( )i iU x U x

 and 
7 ( )iU x

  in the form 

7 1 3 71 4 64
( ) ( ) ( ) ( )

45 9 45
i i i iQ x U x U x U x  

 has an approximation order 
4( )O h

. 

Consider
2( )S x x

, 
30Pe 

. Table 1 shows the absolute difference between the exact and approximate 

solutions according to the schemes. 

 
Table-1. 

x  0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

Схема (3) 0,001 0,004 0,007 0,011 0,017 0,025 0,039 0,073 0,160 
3 ( )iU x  

0,001 0,002 0,004 0,006 0,008 0,012 0,018 0,034 0,089 

7 ( )iU x  
0,000 0,001 0,002 0,003 0,005 0,007 0,010 0,019 0,046 

3 ( )iQ x  
0,000 0,001 0,002 0,004 0,006 0,007 0,010 0,021 0,065 

7 ( )iQ x  0,000 0,001 0,001 0,002 0,003 0,005 0,007 0,014 0,030 

 

Table 2 shows the standard error 
 

2

1

( ) /
N

i iФ x U N  
of the considered schemes. 

( )iФ x
 the 

exact solution at the nodal points, iU
 is the numerical solution obtained by the considered schemes.  

 
Table-2. 

Scheme (3) 3 ( )U x
 

7 ( )U x
 

3 ( )Q x
 

7 ( )Q x
 

 S=x2, Pe=50,ФW=0, ФE=1 0,047 0,023 0,011 0,015 0,006 

S=10, Pe=50, ФW=0,ФE=1 0,033 0,017 0,008 0,011 0,005 

S=x2, Pe=100, ФW=0, ФE=1 0,034 0,014 0,006 0,008 0,003 

S=5cos(4𝝿x), Pe=50, ФW=0, ФE=1. 0,213 0,120 0,061 0,090 0,038 

 
Figure 7, 8 shows the numerical solutions for ФW = 0, ФE = 0.  

 
Fig-7. Pe=100, S=5cos4𝝿x 
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The solid curve is the exact solution, the circle obtained according to scheme (3), the circle according to U3, the 

solid rectangle according to U7, the diamond Q3, the star according to Q7. 

 
Fig-8. Pe=200, S=exp(-4x) 

 
 
The solid curve is the exact solution, the circle obtained according to scheme (3), the circle according to U3, the 

solid rectangle according to U7, the diamond Q3, the star according to Q7. 

From the graphs in Fig. 7, 8 and from Tables 1, 2 it is clear that the linear combination according to Richardson 

gives a more improved scheme. 

 

5. Conclusions 
With the help of the method of movable nodes and the method of the Richardson extrapolation, it is possible to 

construct a better scheme. The approach presented here can be successfully applied to other boundary value 

problems. 
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