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Abstract 
In this paper we introduced Gompertz Gumbel II (GG II) distribution which generalizes the Gumbel II distribution. The 

new distribution is a flexible exponential type distribution which can be used in modeling real life data with varying 
degree of asymmetry. Unlike the Gumbel II distribution which exhibits a monotone decreasing failure rate, the new 

distribution is useful for modeling unimodal (Bathtub-shaped) failure rates which sometimes characterised the real life 

data. Structural properties of the new distribution namely, density function, hazard function, moments, quantile function, 

moment generating function, orders statistics, Stochastic Ordering, Renyi entropy were obtained. For the main formulas 

related to our model, we present numerical studies that illustrate the practicality of computational implementation using 

statistical software. We also present a Monte Carlo simulation study to evaluate the performance of the maximum 

likelihood estimators for the GGTT model. Three life data sets were used for applications in order to illustrate the 

flexibility of the new model.  

Keywords: Quantile function; Bathtub-shaped failure rate; Renyl entropy; Orders statistics. 
 

 

1. Introduction 
The Gumbel type-2 distribution plays an important role in Extreme value theory. The distribution can be used 

for modeling extreme events such as in the field of risk based engineering, flood frequency analysis, Meteorology, 

structural engineering, software reliability engineering, network engineering and Seismology. The distribution has 

not gained popularity/prominence in the area of application unlike the Weibull distribution because of its lack of fit. 

The Gumbel type-2 distribution can only be applied to real life data with monotonic failure rates. On the contrary, in 
real life situations the hazard rate of many complex phenomena that are often encountered in practice is non-

monotone and cannot be modeled by the Gumbel type-2 distribution. To address this limitation [1] proposed the 

Exponentiated Gumbel      type-2 distribution according to Nadarajah and Kotz [2] version of Gupta, et al. [3], 

Okorie, et al. [4] proposed the Kumaraswamy G Exponentiated Gumbel Type-2 Distribution which was obtained by 

combining Exponentiated Gumbel (EG) and the kumaraswamy distribution [5, 6] proposed and studied the 

properties of Extended Gumbel type-2      ) distribution. 

Motivated by some of the properties of the generalised distribution with respect to the nature of its hazard 

function which includes; increasing, decreasing, non-monotone and bathtub shapes as well as the tractability and 

flexibility of the generalised distribution with improved statistical properties. We propose and study a new 

distribution called the Gompertz Gumbel type-2 distribution which inherits these desirable properties with improved 
modeling capabilities most especially in modeling life time data. 

The cumulative distribution function       of the Gumbel type-2 distribution is given by 

               
                                                                                                                               

With the corresponding       given by  

                      
                                                                                                                        

Where   is a shape parameter and   is a scale parameter. 

Recently, Alizadeh, et al. [7] developed Gompertz-G family of distributions by making use of Transformed-

Transformer (T-X) family of distribution, defined as 

     ∫        

 [    ]

 

                                                                                                                                                       

The pdf corresponding to equation (3) is given by 

     {
 

  
 [    ]}  { [    ]}                                                                                                                                     
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Setting  [    ]      [      ] and            
 

 
(     )    . The     of the                 

    family by 

     ∫       
 
 
(     )   

     [        

 

   
 
 
{  [        ]  }

                                                                            

Where        is the baseline cdf depending on the parameter is vector   and       are two additional shape 

parameters. For a specified baseline  , the      is defined by the     (5) which represents a wide family of 

distributions. 

The associated pdf to equation (5) is given by  

                  [        ]     
 
 
{  [        ]  }

                                                                                

The new density function is most tractable when      ) and        have simple analytical expressions. 

Based on the generalization in equation (5) and (6), several flexible distribution have been proposed and studied 

not limited to the work of Oguntunde, et al. [8] studied the properties of Gompertz inverse exponential distribution, 

Khaleel, et al. [9] studied the Gompertz flexible Weibull distribution and its applications etc.  

 

1.1. The Gompertz Gumbel Type-2        Distribution 
Now, suppose that (1) and (2) are any continuous baseline cumulative distribution function (cdf) and probability 

density function (pdf) of Gumbel type-2 (GTT) distribution. The Gompertz Gumbel type-2 (GGTT) distribution is 

obtained by putting equation (1) in (5) given by 

        
 
 
{  [        

]
  

}
                                                                                                                                      

And the corresponding pdf is given by 

                   
(        

)
    

 
 
 
{  [        

]  }
                                                                            

Special sub-models of the GGTT distribution are recorded in Table 1. 

 
Table-1. Sub-models of GGTT distribution 

                              

        Gompertz Inverse Exponential Oguntunde, et al. [8]  

         Gompertz Exponential  
        Inverse Exponential Keller and Kamath [10]  
         Exponential  

 

The graph of the cdf is drawn below in figure 1. taking the value of parameters                      
     and varying the values of parameters (alpha and lambda). 

 
Figure-1. Graph of the cdf of GGTT distribution 

 
 

 The figure 1. drawn above indicates the GGTT distribution has a proper pdf. 
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An expression for the survival function              hazard rate      
    

    
 and the reversed hazard rate 

     
    

    
 are respectively given by  

       
 
 
{  [        

]  }
                                                                                                                                             

                   
(        

)
    

                                                                                                              

and 

     
              

(        
)
    

 
 
 
{  [        

]  }

   
 
 
,  [        

]  -
                                                                           

Figure 2. drawn below is the graph of the pdf of GGTT distribution taking                          , 

for diagram I and                      for diagram II. Figure 3. is the graph of the survival function for 

arbitrary values of the parameters and Figure 4. is the graph of the hazard function of GGTT distribution. 

 
Figure-2. The graph of the pdf of GGTT distribution 

 
 

Figure-3. The graph of the Survival function of GGTT distribution 
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Figure-4. The graph of the hazard of GGTT distribution 

 
 

1.2. Quantile Function  
The quantile function plays a useful role when simulating random variates from a statistical distribution. The 

quantile function of the      distribution, say      is given by: 

   { 
 

 
   [  (  

 

 
   {   })

 
 
 
]}

 
 
 

                                                                                        

In many heavy tailed distributions, the classical measures of skewness and kurtosis may be difficult to obtain as 

a result of nonexistence of higher moments. In such a situation, the quantile measures could be a better option. The 

Bowley skewness [11] is one of the earliest measures of skewness based on quartiles of a distribution. It is defined 

as: 

  
                 

           

                                                                                                                                            

Similarly, the coefficient of kurtosis can be estimated using the Moors’ coefficient of kurtosis [12] is obtained 

based on the octiles of a distribution defined as: 

  
                           

           

                                                                                                                     

It should be noted that the two measures are less sensitive to outliers and they exist for distribution which 

moment cannot be defined. 

Table 1. drawn below gives the various values of Bowley Skewness ( ) and Moor kurtosis (   for arbitrary 

values of the parameters taking a fixed value of (            . 
 

Table-2. Skewness and Kurtosis of the      distribution for different values of parameters 

                                                     

2.1, 5.5 0.0942 0.1221 0.1557 0.0781 0.1081 0.1373 0.1824                
4.1, 10.5 0.1195 0.0987 0.0798 0.0681 0.0894 0.1083 0.1349                 
8.1, 15.5 0.1029 0.0877 0.0729 0.0632 0.0806 0.0950 0.1134                 
10.1, 20.5 0.0952 0.0819 0.0688 0.0602 0.0757 0.0882 0.1041                 
15.1, 25.5 0.0886 0.0774 0.0658 0.0579 0.0719 0.0828 0.0960               
20.1, 30.5 0.0841 0.0741 0.0636 0.0562 0.0692 0.0789 0.0905               
25.1, 35.5 0.0807 0.0716 0.0618 0.0549 0.0670 0.0760 0.0864               
50.1, 70.5 0.0694 0.0627 0.0552 0.0496 0.0592 0.0660 0.0736               

 

 From Table 1. drawn above it can be deduced that the GGTT distribution can be used to model data that are 

positively or negatively skewed. 

 

1.3. Mathematical Properties of Gompertz Gumbel-Type Distribution 
Here, we examined the mathematical properties of      distribution 

If | |    and      is a real non-integer, the following expansion exist 

        ∑(
     

 
*
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   ∑
  

  

 

   

                                                                                                                                                                          

If   is an integer, index i in the previous sum, stops at    . Using the equations (15) and (16) we can re-write 

the pdf of      distribution given in (8) as 

        ∑∑∑(
 

 
*
  

   

(
 

 
*

 

   

     
 

   

      .
        

 
/                                                          

Finally the pdf of GGTT distribution can be written as  

       ∑           

 

   

                                                                                                                             

Where 

             ∑∑(
 

 
*
  

   

 

   

(
 

 
*            .

        

 
/                                                                              

The remaining parts of the paper is arranged as follows: section 2 presents the comprehensive study of the 

moments, variance, skewness, kurtosis and moment generating function of the new model; section 3 presents a study 

on the Renyi entropy of the new distribution; section 4 presents the Stochastic ordering of the new distribution; 

section 5 gives a comprehensive review of the    order statistics of the new distribution which includes the    and 

    order; section 6: proposes the maximum likelihood estimation method of estimating the new model; in section 7 
we carried out Monte Carlo simulation to validate the maximum likelihood estimation technique that was used to 

analyse the data; section 8 presents the applications of the new model and section 9 the conclusion. 

 

2.      Raw Moment 
Here we derive an expression for raw moments of GGTT distribution as 

  
        ∑      

 

   

       ∫                              

 

 

                                                                            

By letting            and substitute in equation (20), we have 

 ∑      

 

   

       [      ]   ∫   
 
      

 

 

                                                                                                       

Finally we have 

  
  ∑      

 

   

      [      ]    ,  
 

 
-                                                                                                  

   , Where      ∫          
 

 
 the complementary incomplete gamma function. 

The first four raw moments for                     are respectively, 

  
  ∑      

 

   

      [      ]    {  
 

 
}                                                                                                          

  
  ∑      

 

   

      [      ]    {  
 

 
}                                                                                                          

  
  ∑      

 

   

      [      ]    {  
 

 
}                                                                                                          

  
  ∑      

 

   

      [      ]    {  
 

 
}                                                                                                         

Then,          
(  

 )
 

(  
 )

 ,          
  
 

(  
 )

 , variance(      
     

    and coefficient of variation      

    
 
 

  
  

Table 2. drawn below gives the various values of variance (  ) and coefficient of variation (    for arbitrary 

values of the parameters taking a fixed value of (               
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Table-3. Values of      and (CV) of GGTT distribution for different values of parameters 

      
    

    
    

     CV 

                                    0.015419 0.7655 

                                    0.012720 0.7011 

                                    0.002001 0.4521 

                                       0.000539 0.3262 

                                       0.000267 0.2773 

                                        0.000165 0.2450 

                                         0.000127 0.2305 

                                             8.4311e-5 0.2092 

 

2.1. Moment Generating Function  
The moment generating function of GGTT distribution is obtained as   

                                                                                                                                                                            
Applying relation in equation (16) to equation (27), we have  

      ∑
  

  

 

   

                                                                                                                                                          

Substitute for       in equation (22), we have 

       ∑∑           

 

   

  

  

 

   

[      ]    ,  
 

 
-                                                                                      

 

2.2. Incomplete Moment 
The incomplete moment has important applications in different fields of study. The first incomplete moment is 

used in estimation of the Bonferroni and Lorenz curves which are useful in reliability, demography, insurance, 

seismology and medicine. The     incomplete moment of the GGTT random variable is: 

      ∫           

 

 

                                                                                                                                               

Then 

        ∑           

 

   

∫                  

 

 

                                                                                                  

Using the complementary incomplete gamma function, this yields: 

       ∑           

 

   

[      ]    ,  
 

 
          -                                                                        

   , Where        ∫          
 

 
 the complementary incomplete gamma function. 

 

2.3. Mean Residual Life and Mean Inactivity Time  
The Mean Residual Life (MRL) or the life expectancy at age t is the expected additional life length for a unit, 

which is alive at age t. The MRL has several important applications in life time testing of product, life insurance, 

demography and economics etc. The MRL is given by: 

                                                                                                                                                      
Which can also we written as 

      
{       }

    
                                                                                                                                              

Where,                 is the first incomplete moment and      is the survival function. Thus, the MRL of 

the      distribution is: 

      
{   ∑            

 
   [      ]    ,  

 
           -}

 
 
 
{  *        

+
  

}
                                          

The Mean Inactivity Time       is the waiting time elapsed since the failure of an item on condition that the 

failure had occurred in (0,t). The     of the      random variable X is defined for t > 0 as: 

                                                                                                                                                               

This can further be expressed as 

        
     

    
                                                                                                                                                           

Substituting the first incomplete moment and the CDF of the      random variable yields its MIT as: 
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 ∑            

 
   [      ]    ,  

 
           -

   
 
 
{  *        

+
  

}
                                                                     

 

3. Renyi Entropy 
Entropy has been applied in the field of engineering sciences and information theory as measures of variation of 

uncertainty. The Renyi entropy [13] of a random variable X having the GGTT distribution is given as: 

      
 

   
   [∫      

 

 

 

     ]                                                                                                         

Putting equation (19) in (44), we have 

      
 

   
   [∫ {  ∑           

 

   

                }

  

 

  ]                                                                      

After simple substitution, we have 

      
 

   
   {        (∑           

 

   

+

 

[       ]
        

  {
        

 
}}                          

Where               The Renyl entropy converges to the Shannon entropy as   approaches 1. The   

entropy, say      of the GGTT random variable is defined by:  

     
 

   
   {       }                                                                                                                                        

Where 

      [∫      
 

 

 

     ]                                                                                                                           

Hence, 

     
 

   
   {          (∑            

 
   )

 
[       ]

        

  ,
        

 
-}                                   

Table 3. drawn below gives the values of Renyi entropy of GGTT distribution for a fixed value of  θ=2.1,δ=3.1 

and varying the values of α and λ 

 
Table-4. Values of Renyi Entropy of      distribution for different values of parameters 

       

                

                             
                             
                                
                                
                                
                                  
                                  

 

 It should be noted that the higher the value of the Renyi entropy the greater the level of uncertainty in the 
system. 

 

4. Stochastic Ordering 
Stochastic ordering provides the commonest way of describing ordering mechanism in lifetime distributions. Let 

   ∼ GGTT(  ,   ,  ,  ) and   ∼ GGTT(  ,   ,  ,  ). The random variable    is stochastically greater than    in 

the  

–stochastic order             if the associated cdf satisfy:       
 ≤       

 for all x. 

–hazard rate order (        ) if the associated hazard rate function satisfies:       
≤       

 for all x. 

–likelihood ratio order (        ) if  
      

      
 is a decreasing function of x. 

Given the pdf of    and    
      

      

 
  

  

(        
)
       

 
[
  
  

{  [        
]   } 

  
  

{  [        
]   }]

                        

Taking the logarithm and differentiating the ratio of the densities gives 

 

  
.   {

      

      

}/        {
     

     
 [                             ]}          

Where         
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If       and             . Thus, for       and      ,           x. It follows from the 

implications of stochastic ordering that:         ⟹         ⟹          . 

 

5. Order Statistics 
In this section, we derive closed form expressions for the pdf of the     order statistic of 

the (EGTT) distribution. Let              be a simple random sample from (GGTT) distribution with cdf and pdf 

given by (7) and (8), respectively. Let                                  
denote the order statistics obtained from this sample. The probability density function of      is given by 

         [     ]   [        ]                                                                                                                 
Where        and        are the cdf and the pdf of the GGTT distribution given in equation (7) and (8) 

respectively, we have  

              [      ]     
 
 
{  [      ]  } [     

 
 
{  [      ]  }]

   

[ 
 
 
{  [      ]  }]

   

                   

Using the series expansion in equation (15) and (16) and also the relation in equation (48),         can be 

expressed as  

             ∑ ∑             (
   

 
* (

 

 
* (

 

 
*
  

     

          

 

   

[ 

     ] [        ]                                                                                                                                        
Applying the series expansion to the last term in equation (49), finally we have 

         ∑ ∑              (
   

 
* (

 

 
* (

 

 
*
  

       

                

 

   

                                         

Where  
  

        
 ,              are respectively the baseline     and     respectively. 

For              . An expression for the     order statistics and the     order statistics is respectively given in 
equation (56) and (57). 

         ∑ ∑              (
 

 
* (

 

 
*
  

       

            

 

   

                                                                     

         ∑ ∑              (
   

 
* (

 

 
* (

 

 
*
  

       

            

 

   

                                                    

Where      and      are the baseline pdf and cdf respectively given in equation (1) and (2). 

 

6. Maximum Likelihood Estimation of the Parameters 
The likelihood function of GGTT distribution is given by 

                      ∑     
 ∏{     (        

)
    

 
 
 
{  [        

]  }
}

 

   

                                 

The log likelihood function is  

  {            }                        ∑  
  

 

   

 
 

 
∑,  [        

]  -

 

   

 

      ∑        ∑  (        
)           

 

   

                                                  

 

   

                                           

The nonlinear likelihood equations can be obtained for GGTT by differentiating equation (54) with respect to 

           . The components of the score vector  

     {
   {            }

  
 
   {            }

  
 
   {            }

  
 
   {            }

  
} 

Are given by  

   {            }

  
  ∑  (       

  
)  

 

   

 

  
∑  ,  [       

  
]  -
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 ∑

     
  

    
         

  

 

   

      ∑

     
  

       
  

 

   

 

 

 
∑

[       
  

]         
  

  [       
  ]  

                                                                                                                                  

 

   

 

We can obtain the estimates of the unknown parameters by maximum likelihood method by setting these above non-

linear equations (55) - (58) to zero and solve them simultaneously. Therefore, statistical software can be employed in 

obtaining the numerical solution to the non-linear equations such as R, MATLAB, Maple etc. For the four 

parameters Gompertz Gumbel type-two pdf, all the second order derivatives can be obtained. Thus the inverse 

dispersion matrix is given by 

(

 ̂
 ̂
 ̂
 ̂

,  

[
 
 
 
 

(

 
  
 
 
 )

 
 

(

 
 

 ̂   ̂   ̂   ̂  

 ̂    ̂   ̂   ̂  

 ̂  ̂   ̂   ̂  

 ̂   ̂   ̂   ̂  )

 
 

]
 
 
 
 

  

      (

            

             
            

            

,                                                                                                                          

Where  ̂           
            with {   }  [    ]

  
 [

   

      
]. This gives the approximate variance 

covariance matrix. By solving for the inverse of the dispersion matrix, the solution will give the asymptotic variance 

and covariance of the MLs for  ̂   ̂   ̂ and  ̂. The approximate           confidence intervals for             
can be obtained respectively as  

 ̂    
 
√ ̂    ̂    

 
√ ̂    ̂    

 
√ ̂         ̂    

 
√ ̂    

 

7. Simulation Study 
In this sub-section, we carried out a simulation study to examine the performance of maximum likelihood 

estimators of Gompertz Gumbel type-2 distribution. In this context, we carried out the simulation study using the 

Monte Carlo simulation, as explained in the following works: Lemonte [14], Cordeiro and Lemonte [15] and De 

Andrade, et al. [16]. We investigated the behavior of the MLEs for the parameters of the GGTT model by generating 

from (12) samples sizes n = 50,100,300 and 500 with selected values for values for α,λ,δ and θ. We consider 5,000 

Monte Carlo replications. The simulation process was performed in the R software using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) maximization method in the optimum script. To ensure the reproducibility of the 

experiment, we use the seed for the random number generator: set.seed (90) 

The results of the simulations are presented in Table 4. 4.1, and 4.2, including the means, Absolute Bias (AB), 

Standard Error (SE) and the Mean Square Error (MSE). We observed that the estimated values of the parameters are 

very close to the true values and also the MSE consistently decreases as the sample size increases. This is a desirable 

property to show the adequacy of the estimation technique. 

 
Table-5. Means, AB, SE and MSE of  ̂   ̂  ̂      ̂ for the GGTT model                                                      
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Table-5.1. Means, AB, SE and MSE of  ̂   ̂  ̂      ̂ for the GGTT model                                                       

                          

                                   
                               
                              
                              

                                   
                              
                               
                              

                                    
                              
                               
                              

                                    
                              
                              
                              

 
Table-5.2. Means, AB, SE and MSE of  ̂   ̂  ̂      ̂ for the      model                                                        

                          

                                   
                              
                              
                              

                                    
                              
                              
                              

                                    
                              
                              
                              

                                    
                              
                              
                              

 

8. Applications to Real Life Data 
In this section, we present three examples that demonstrate the flexibility and the applicability of the GGTT 

distribution in modelling real world data. We fit the density functions of the GGTT distribution and compare its fits 

with that of Exponentiated Gumbel Type-two (EGT), Extended Gumbel type-two (EGTT) distribution and its sub-

models Gumbel Type-two (GT) distribution. For all the fitted models, we compute the MLEs of the model 

parameters (with their corresponding standard errors in parentheses) and also the values of the Akaike information 

criterion (AIC), Hannan-Quinn information criterion (HQIC), Consistent Akaike information criterion (CAIC), 

Bayesian Information Criterion (BIC), Kolmogorov-Smirnoff (KS) statistic, Anderson Darling statistic (  ) and the 

probability value (PV) used as methods of comparing fits of distributions to data. In general, it is considered that the 

smaller the values of AIC, BIC, HQIC, CAIC and (  ) and the larger the PV the better the model fit to the data. 

 

8.1. Pig Data Set 
The first data set represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, 

observed and reported by Bjerkedal [17]. The starting point of the iterative processes for the guinea pigs data set is 

(1:0; 0:009; 10:0; 0:1; 0:1). Survival Times (in days) of Guinea Pigs Infected with Virulent Tubercle Bacilli. The 

data is give as: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 

1.08,1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24,1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 

1.63,1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02,2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 

2.53,2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32,4.58, 5.55. Table 6. gives the MLEs and Table 7.0 gives 

the selection, criteria statistics for the pig data. Figure 5 gives the graph of the Total Time on Test plot and the graph 

of the kernel density of the pig data which clearly shows that the data exhibits an increasing failure rate and 

positively skewed (unimodal) also Figure 6 gives the fitted densities of the pig data. 
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Figure-5. Graph of TTT plot and the Kernel density function of the cancer data 

 
 

Figure-6. Fitted densities for pig data 

 
 

Table-6. Parameter estimate, standard error (parenthesis) 

Distribution Estimates 

            
         

       
         

       
         

       
         

             
         

       
         

       
         

       
         

           
         

       
         

       
         

  
    

          
         

       
         

  
    

  
    

 
Table-7. Selection criteria statistics for pig data 

Distribution                                    

            199.707 208.813 200.304 203.332 0.7710 0.1120 0.3267 

     98.063 204.126 213.331 204.723 207.758 0.8151 0.1192 0.2581 

    118.167 242.333 249.163 242.686 245.052 3.3560 0.1981 0.0070 

   118.167 240.334 244.887 240.508 242.147 3.3656 0.1958 0.0080 

 

8.2. Cancer Remission Time Data 
The second data set consists of data of cancer patients. The data represents the remission times (in months) of a 

random sample of 128 bladder cancer patients from Lee and Wang [18]. The starting point of the iterative processes 

for the cancer patients data set is (1:0; 0:009; 10:0; 0:1; 0:1). Given as: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 
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23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 

7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 

32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 
5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 

79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 

19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 

2.07, 3.36, 6.93, 8.65, 12.63, 22.69. Table 8. gives the MLEs and Table 9. gives the selection, criteria statistics for 

the cancer data.  Figure 7 gives the graph of the Total Time on Test plot and the graph of the kernel density of the 

cancer data which clearly shows the cancer remission data exhibits a unimodal failure rate and positively skewed, 

also Figure 8 gives the fitted densities to the cancer data. 

 
Fig-7. Graph of TTT plot and the Kernel density function of the cancer data 

 
 

Fig-8. Fitted densities of the cancer data 

 
 

Table-8. Parameter estimate, standard error (parenthesis) for cancer data 

Distribution MLE estimates 
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Table-9. Selection criteria statistics for cancer data 

Distribution                                    

     413.580 835.161 846.569 835.486 839.796 0.7451 0.0722 0.5166 

     415.856 839.712 851.120 840.037 844.347 0.8731 0.0828 0.3434 

    444.003 894.005 902.561 894.199 897.482 4.4534 0.1404 0.0129 

   118.167 892.003 897.707 892.099 894.321 4.5548 0.1410 0.0124 

 

8.3. Yarn Specimen Data Set 
The third dataset consists of data on the number of cycles of failure for 25 specimens of 100 cm specimens of 

yarn, tested at a particular strain level by Lawless [19]. The starting points for the iterative processes in the yarn 

specimens’ data are (109:35; 1:2920; 3:6125; 1:0; 1:0): 15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149, 157, 175, 176, 
180, 180, 198, 220, 224, 251, 264, 282, 321, 325, and 653. Table 10 gives the MLEs and Table 11 gives the 

selection, criteria statistics for the pig data. Figure 9.0 gives the graph of the Total Time on Test plot and the graph 

of the kernel density of the pig data which clearly shows that the yarn specimen data exhibits an increasing failure 

rate and positively skewed, also Figure 10. Gives the fitted densities of Yarn specimen data 

 
Figure-9. Graph of TTT plot and the Kernel density function of Yarn specimen data 

 
 

Table-10. Parameter estimate, standard error (parenthesis) for Yarn Specimen Data 

Distribution MLE estimates 

            
      

       
         

       
      

       
         

            
         

       
         

       
         

        
         

            
          

       
         

       
          

  
    

          
         

        
         

  
    

  
    

 
Table-11. Selection criteria statistics for Yarn Specimen Data 

Distribution                                    

     152.853 313.706 318.582 315.706 315.054 0.3394 0.1743 0.4333 

     155.313 318.626 323.501 320.626 319.878 0.9916 0.1977 0.2825 

    158.579 323.158 326.815 324.301 315.058 1.5861 0.2115 0.2132 

   161.860 327.719 330.157 328.265 328.394 1.2950 0.2742 0.0467 
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Figure-10. Fitted densities of the Yarn specimen data 

 
 

9. Conclusion 
In this study, a four-parameter model called GGTT distribution is proposed and its statistical properties are 

derived. We discussed the maximum likelihood method to estimate the model parameters and presented a Monte 

Carlo simulation study to evaluate the performance of the maximum likelihood estimators for the GGTT model. 

Finally, three applications illustrate the potential of the GGTT distribution for fitting survival data. The performance 
of the GGTT distribution with regards to providing good fit to the data sets is assessed by comparing it with other 

models including its sub-model. The results show that the GGTT model provides a more reasonable parametric fit to 

the data sets. 
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