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Abstract 
The local regularization method for solving the first-order numerical differentiation problem is considered in this paper. 

The a-priori and a-posteriori selection strategy of the regularization parameter is introduced, and the convergence rate of 

local regularization solution under some assumption of the exact derivative is also given. Numerical comparison 
experiments show that the local regularization method can reflect sharp variations and oscillations of the exact derivative 

while suppress the noise of the given data effectively. 
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1. Introduction 
Numerical differentiation, which aims to compute the derivative of a function from its measured data 

approximately, has extensive application values in scientific studies and engineering practices. For example, 

differential operator method is the most common image edge detection method [1]. In general, image edges can be 
detected by finding the maximum of first-order derivatives or the zero-crossing of second-order derivatives of the 

image intensity [2]. 

Numerical differentiation is a classical ill-posed problem, and its main difficulty is the instability of numerical 

derivatives. There have been many stable methods developed for solving this problem. Generally speaking, these 

methods can be categorized as the finite difference method [3], the regularization method [4], the mollification 

method [5], the Lanczos integral method [6, 7] and so on. 

Assume that 
1[0,1]f H

 and 
2[0,1]u f L 

 is its first-order derivative, then 
f

 and u  satisfy the 

following Volterra equation: 

0
[ ]( ) : ( ) ( ), [0,1],

x

A u x u s ds f x x  
 

provided that 
(0) 0f 

. Consider the noisy data 
2[0,1]f L 

 of 
f

, it is unstable to solve 

[ ]( ) ( ), [0,1]A u x f x x 
                                                                                                                  (1.1) 

directly, and some regularization methods should be introduced. An immediate idea is to solve (1.1) by the 

Tikhonov regularization method, i.e., the regularization solution satisfies 
* *( ) [ ]( ) [ ]( ), [0,1],Tik Tikru x A A u x A f x x  

 

where 0r   is the regularization parameter and 

1
*[ ]( ) : ( )

x
A u x u s ds 

 is the adjoint operator of A  in 
2[0,1]L

. Since the operator A  is nonnegative in 
2[0,1]L

, the Volterra equation (1.1) can also be solved by 

Lavrentiev regularization method [8], where the regularization solution satisfies 

( ) [ ]( ) ( ), [0,1].Lav Lavru x A u x f x x  
 

As we know, the solution of Tikhonov regularization is too smooth, while the solution of Lavrentiev 

regularization is too sensitive to the noise. In order to ensure the calculation accuracy while suppressing the noise, 

some eclectic methods should be introduced. 

The local regularization method can be used to solve Volterra integral equation, Fredholm integral equation of 

the first kind [9-12]. If only consider the equation (1.1), the local regularization method adopts the information of 
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( )f x

 on a small future interval 
[ , ]x x r

 when we compute 
( )u x

, which avoids the overuse of 
( )f x

 in 

Tikhonov regularization and the underuse of 
( )f x

 in Lavrentiev regularization. Therefore, the local 

regularization method will be adopted to solve the Volterra equation (1.1). In this paper, we give the a-priori and a-

posteriori parameter selection strategy in 
2[0,1]L

 space with the convergence rate of local regularization solution, 

where the a-priori assumption is u  belongs to Sobolev space 
[0,1], (0,1)H  

. The a-posteriori parameter 

selection strategy we used is the extension of the generalized discrepancy principle for Lavrentiev regularization 

method given in [13-15]. 

The paper is organized as follows. In Section 2, the local regularization method for solving numerical 

differentiation problem is given. The a-priori and a-posteriori selection strategy of the regularization parameter with 

the convergence rate of local regularization solution are given in Section 3. At last, numerical comparison 

experiments are shown in Section 4. 

 

2. Local Regularization for Numerical Differentiation 

Let 
(0, ]r R

, where 0R   be a small fixed constant and extend the domain of 
f

 and u  to 
[0,1 ]R

, then 
it has 

0
( ) ( ), [0,1], [0, ].

x

u s ds f x x r


 


   
                                                                                (2.1) 

Splitting the integral in (2.1) yields 

0
( ) ( ) ( ), [0,1], [0, ].

x x

x
u s ds u s ds f x x r



 


     
 

Integrating both sides of the equation with respect to 


 on 
[0, ]r

 yields 

0 0 0 0
( ) ( ) ( ) , [0,1],

r x r x r

x
u s dsd u s dsd f x d x



   


       
 

i.e., 

0 0 0 0
( ) ( ) ( ) , [0,1].

x r r

r u s ds u x s dsd f x d x


         
                                                        (2.2) 

Notice that equation (2.2) still is an equation that the exact solution 
u f 

 satisfies exactly. In the text that 

follows, we assume that 
1[0,1 ]f H R 

, 
2[0,1 ]u L R 

 and 
2[0,1 ]f L R  

 satisfying 

2[0,1 ]
.

L R
f f 


 ‖ ‖

                                                                                                                                 (2.3) 

In order to solve (1.1) stably and obtain a desirable approximate derivative, we replace 
( )u x s

 in the second 

term of (2.2) by 
( )u x

 as 0 r R   is small enough, and thus 
2

, ,

0 0
( ) ( ) ( ) , [0,1],

2

x r
r rr

r u s ds u x f x d x        
 

i.e., 

, ,[ ]( ) ( ) ( ), [0,1],
2

r r

r

r
A u x u x f x x    

                                                                                        (2.4) 

Where 
0

1
( ) : ( )

r

rf x f x d
r

    
. Since the operator A  is nonnegative in 

2[0,1]L
, the equation (2.4) 

has a unique solution 
, 2[0,1]ru L 

, which depends continuously on rf


. 

 

3. The Selection Strategy of Regularization Parameter 
In the following, we first introduce the a-priori selection strategy of the regularization parameter r  and the 

convergence rate of the regularization solution 
,ru 

. For the simplicity of notation, the norm ‖‖ without the 

subscript means the norm of 
2[0,1]L

 deduced by 
2L  inner product 

( , ) 
. 

Theorem 1 Assume that 
[0,1 ], (0,1)u H R   

 with [0,1 ]H R
u M 

‖‖
 , 

2[0,1 ]f L R  
 

satisfying (2.3) is the noise data and 
,ru 

 is the unique solution of (2.4), then it has the error estimate 

, 2
,

1

r M
u u r

r

 


  


‖ ‖

                                                                                                                    (3.1) 
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and the optimal convergence rate 
, 1( )ru u O


   ‖ ‖

 holds when

1

1
2 1

[ (1 )]r
M





 

 . 

Proof: Denote 
( )ru x

 as the solution of 

[ ]( ) ( ) ( ), [0,1],
2

r r

r

r
A u x u x f x x  

                                                                                               (3.2) 

where 
0

1
( ) ( )

r

rf x f x d
r

  
, then it has 

, , .r r r ru u u u u u     ‖ ‖ ‖ ‖‖ ‖                                                                                                        (3.3) 

Since 

(( ) , ) ( , ) ( , ) ( , ),
2 2 2

r r r
I A u u u u Au u u u   

 

it has 

( )
2 2

r r
I A u u ‖ ‖ ‖‖

, and thus 

1 2
( )
2

r
I A

r

 ‖ ‖
. The Cauchy-Schwarz inequality yields 

1
2

2 0 0

1
2

2 0

1

2

0

2 2

0

1
( ) ( )

1
[

.

( ) ( )]

1
)

{ [

( ( )

] }

[ ]

r

r r

r

r

f f f x f x d
r

r f x f x d dx
r

f x f x d

d

xd
r

x 








  

  

 


    

   

  

 

 

 

‖ ‖

 
Hence, it has 

, 1 2 2
( ) ( ) .
2

r r

r r r r

r
u u I A f f f f

r r

         ‖ ‖ ‖ ‖ ‖ ‖
                                                                   (3.4) 

Rewriting the equation (2.2) as 

0 0

1
[ ]( ) ( ) ( ) ( ) ( ) , [0,1],

2 2

r

r

r r
A u x u x f x u x u x s dsd x

r



      
                                           (3.5) 

and subtracting (3.2) by (3.5) yield 

0 0

0 0

1
( )[ ( ) ( )] ( ) ( )
2 2

1
[ ( ) ( )] .

r
r

r

r r
I A u x u x u x s dsd u x

r

u x s u x dsd
r









    

  

 

 
 

Hence, it has 

1

0 0

1
( ) ( ) ( ) [ ( ) ( )] ,

2

r
r r

u x u x I A u x s u x dsd
r



     
                                                                 (3.6) 

and then 

   

2 2

4 0 0

1

4 0 0 0

1

4 0 0 0

2
1

2 1

3 2 10 0 0 0

2 2 2
1

3 2 10 0 0

2

2

4
|| [ ( ) ( )] ||

4
[ ( ) ( )]

4

4

}

[ ( ) ( )]

4 [ ( ) ( )]

2 2

{

{ }

r
r

r

r

r

r

u u u x s u x dsd
r

u x s u x dsd
r

r u x s u x ds d dx
r

u x s u x
s ds dsd dx

r s

u x s u x
d

r

x

s

d







 





























   

  

  

 
 

 
 



 

 

  

  

   

  

‖ ‖

,sdxd
 

where the Cauchy-Schwarz inequality is used twice. Since 
[0,1 ]u H R 

 and [0,1 ]H R
u M 

‖‖
 , i.e., 

2
1 1

2

2 10 0

[ ( ) ( )]
,

| |

R R u x u y
dxdy M

x y 
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it has 
2

1
2

2 10 0

[ ( ) ( )]
.

u x s u x
dsdx M

s





 
 

 
Hence, it has 

2
2 24

,
(2 2)(2 3)

r M
u u r 

 
 

 
‖ ‖

 
i.e., 

2
.

1(2 2)(2 3)

r M M
u u r r 

 
  

 
‖ ‖

                                                                                     (3.7) 

It follows from (3.3), (3.4) and (3.7) that 

, 2
.

1

r M
u u r

r

 


  


‖ ‖

 

Hence, the optimal convergence rate of 
,ru 

 is 
, 1( )ru u O


   ‖ ‖  when 

1

1
2 1

[ (1 )]r
M





 

 .                                                                                                      

□ 

The a-priori selection strategy of the regularization parameter given in Theorem 1 relies on the a-priori 

assumption of exact solution 
u f 

, which is usually unknown in many practical problems. Compared with the a-

priori selection strategy, the a-posteriori selection strategy generally only relies on the given data and its noise level, 

therefore, is more useful. There have been many a-posteriori choice strategies of the regularization parameter, such 

as the discrepancy principle and its generalizations [13, 16], the generalized cross-validation method [17], the L-

curve criterion [18] and the Arcangeli's method [19]. 

Next, we will extend the generalized discrepancy principle for Lavrentiev regularization method [13-15] to local 

regularization method. The principle determines the regularization parameter 
( )r r 

 by solving the nonlinear 

equation 
,[ ] ,r

rA u f C   ‖ ‖
                                                                                                                            (3.8) 

where 0C   and 0 1   are two given constants. In consideration of the solvability of (3.8), we have the 
following conclusion. 

Theorem 2 Assume that Rf
 ‖ ‖

 and  2
R

R
C f

R

   


‖ ‖
 for two constants 0C   and 0 1  , 

then the equation (3.8) has at least one solution 
(0, ]r R

. 

Proof: Since 
,ru 

 is the solution of (2.4), it has 

, ,( ) ( 1) ,
2 2

r r

r

r r
f I A u u     ‖ ‖ ‖ ‖ ‖ ‖

 

where 1A ‖‖  is used, and thus 

, ,[ ] , (0, ].
2 2

r r

r r

r r
A u f u f r R

r

      


‖ ‖ ‖ ‖ ‖ ‖
 

When r R , assumption condition shows that 

,[ ] .
2

R

R R

R
A u f f C

R

     


‖ ‖ ‖ ‖
                                                                                                   (3.9) 

Moreover, the triangle inequality yields 
, , .r r r ru u u u u u     ‖ ‖ ‖ ‖‖ ‖‖‖                                                                                                  (3.10) 

According to (3.6), it has 

   

2 2

4 0 0

1
2

4 0 0 0

1

4 0 0 0

1

0

2

2

4 0 0

4
[ ( ) ( )]

4
[ ( ) ( )]

4

{

]

}

{

4
[ ( ) ( )

}

r
r

r

r

r

u u u x s u x dsd
r

u x s u x dsd dx
r

r u x s u x ds d dx
r

r u x s u x dsd dx
r















 

   

 





  

  

 

 

  

  

  

‖ ‖ ‖ ‖
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1
2 2

4 0 0 0 0

8
[ ( ) ( ) ] .

r

r u x s ds u x ds d dx
r

 

      
 

Denote 

1
2

1 4 0 0 0

8
( )

r

I r u x s dsd dx
r



    
, 

1
2

2 4 0 0 0

8
( ) ,

r

I r u x dsd dx
r



    
 

then it has 
2

1
2 2

2 [0,1 ]0

8 8
( )

3 3 L R
I u x dx u


  ‖‖

 and 

2

1
2

1 4 0 0 0

1 1
2 2

0 0 0

1 1 1
2 2 2

0 0 1

1
2 2

[0,1 ]0

8
( )

4 4
( ) ( )

4
[ ( ) ( ) ( )

4
( ) 4 .

r r

r x r

x

r t t r

r t r t r

r

L R

I r u x s dsd dx
r

u x s dsdx u t dtdx
r r

u t dxdt u t dxdt u t dxdt
r

ru t dt u
r

 





 





 

  

  

 

  

   

     

 ‖‖
 

Estimations of 1I  and 2I
 show that 

2[0,1 ]
3 .r

L R
u u u


 ‖ ‖ ‖‖

                                                                                                                        (3.11) 
According to (3.4), (3.10) and (3.11), it has 

2 2

, ,

[0,1 ] [0,1 ]

2
[ ] ( 3 ) 2 ,

2 2

r r

r L R L R

r r
A u f u u u r u

r

   


 
      ‖ ‖ ‖ ‖ ‖‖ ‖‖ ‖‖

 
and thus 

,

0
lim [ ] .r

r
r

A u f  


 ‖ ‖
                                                                                                                        (3.12) 

Inequalities (3.9), (3.12) and the continuity of 
,[ ]r

rA u f ‖ ‖
 show that the equation (3.8) has at least one 

solution 
(0, ]r R

.                                                                    □ 

Since the equation (3.8) may have more than one solution on the interval 
(0, ]R

, we determine the a-posteriori 

selection strategy of 
( )r r 

 as 
,( ) : inf{ (0, ] | [ ] },r

rr r R A u f C      ‖ ‖
                                                                             (3.13) 

where C  and   satisfy assumption conditions given in Theorem 2. Next, we will give the a-posteriori 

convergence rate of the regularization solution 
( ),ru  

 under some assumptions. 

Theorem 3 Assume that conditions of Theorem 1 and Theorem 2 hold, and there exists a positive number 0ò  

satisfying 0 ], (0,rf r R ‖ ‖ ò
, then for the regularization solution 

( ),ru  

 with 
( )r r 

 satisfying (3.13), it has 
( ), {1 , }( ),r minu u O     ‖ ‖

 

and the optimal convergence rate 
( ), 1( )ru u O


    ‖ ‖

 holds when 

1

1





 . 

Proof: The triangle inequality yields 

( ), ( ), ( ) ( ) ( )2
,

( )

r r r r ru u u u u u u u
r

      


       ‖ ‖‖ ‖‖ ‖ ‖ ‖

                                             (3.14) 

where 
( )ru 

 is the regularization solution satisfying (3.2) with 
( )r r 

. Notice that 

( ),

( ) ( )

( ) ( ) ( )

0 0

( )
[ ]

( ) 2

( )
( )

( ) 2

( ) ( )
( ) ( ),

( ) 2 ( ) 2

r

r r

r r r

r
C A u f f

r

r
f f f

r

r r
C

r r

    

 



  












 
 

 

  


  


   
 

‖ ‖ ‖ ‖

‖ ‖‖ ‖

ò ò

 
hence it has 
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0

2
( ) ,

2

C
r

C











ò
                                                                                                                                   (3.15) 

when   is so small that 02C   ò
 is satisfied, and thus 0

lim ( ) 0r






. 

Since 

2

( ), ( ), ( ) ( )

( )

1
( ),

[0,1 ]

2

( )

3 ,

r r r r

r

r

L R

u u u u

u u u
r

u u u
C

     




 





 



  

   

  

‖ ‖ ‖ ‖‖ ‖

‖ ‖‖‖

‖ ‖ ‖‖ ‖‖
 

it has 

2 [0,1 ]( ),

1

4
,

L Rr
C u

u
C

 










‖‖
‖ ‖

 
and thus 

2
1

[0,1 ]( ), 1

1

42
.

( )

L Rr
u

u
r C C


  



 


 


 


 



‖‖
‖ ‖

                                                                                          (3.16) 
It follows from (3.7), (3.14), (3.15) and (3.16) that 

2 [0,1 ]( ), 1

1

0

4 2
( ) ,

1 2

L Rr
u M C

u u
C C

    

 
 

  

 


  

  

‖‖
‖ ‖

ò
 

i.e., 
( ), {1 , }( ).r minu u O     ‖ ‖

                                                                                                               (3.17) 

Hence, the optimal convergence rate of 
( ),ru  

 is 
( ), 1( )ru u O


    ‖ ‖

 when 

1

1





 .  

□ 

From Theorem 3 we know that when the regularization parameter is chosen by the a-posteriori selection 

strategy (3.13), the regularization solution has the same convergence rate as the a-priori selection strategy given in 

Theorem 1. 

 

4. Numerical Experiments 
In this section, we give two numerical examples in order to show the validity of local regularization for 

numerical differentiation, where the local regularization solution, i.e., the solution of (2.4) is denoted as Locu
. 

Example 1 Consider a function 

2

2

1 1
, [0, ],

2 2 2
( )

1 1 1
, ( ,1],

2 2 4 2

x
x x

f x
x

x x


  

 
   
  

then it has 

   

1 1
, [0, ],

2 2

1 1
, ( ,1].

2 2

x x

u x f x

x x


 

  
  
  

The noise data are generated by 

( ) ( ) * ( ), [0,1],f x f x rand x x   
 

where 
( )rand x

 is a random function that follows the standard uniform distribution on the open interval 
(0,1)

. 

Firstly, let us compare the numerical results of three different regularization methods: Tikhonov, Lavrenitev and 

local regularization method. In Figure 1, the relative errors of Tiku
, Lavu

 and Locu
 are shown for different error 

levels of the noise data, where 
/Rel f f f

  ‖ ‖‖‖
 means the relative error of 

f 

, and uRel
 means the 

relative error of regularization solution. In the experiment, all the regularization parameters 
( )r r 

 are chosen as 

the ones that minimize the error of regularization solutions, i.e., 
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,

0
( ) arg min ,r

r
r u u


 ‖ ‖

 

where 
,ru 

 means the regularization solution Tiku
, Lavu

 or Locu
. From Figure 1 we can see that the local 

regularization method is better than the other two methods for numerical differentiation. When the relative error of 

noise data is 
1%Rel  , the regularization solutions Tiku

, Lavu
, Locu

 and the exact solution u  are shown in 
Figure 2, from which we can see that the local regularization method can reflect sharp variations of exact derivatives 

while suppress the noise effectively. As we know, the results of Tiku
 near 1x   and Lavu

 near 0x   are terrible 

for solving Volterra integral equation (1.1), just as Figure 2 shows. When 
1%Rel  , we solve the a-posteriori 

selection strategy (3.13) approximately, and get the regularization parameter 0.052r  , where the constants are 

chosen as 0.5  , 2

RR f
C

R


 



‖ ‖

 and 0.1R  . As we shown in Figure 3, the result of the a-posteriori 
selection strategy is acceptable, although it is not optimal. 

Example 2 Consider a function 

( ) (( ) ),kf x sin x
 

where k  is nonnegative integer, then it has 
1( ) ( ) (( ) )k k ku x f x k x cos x  

. The noise data 
( )f x

 is 
generated by the same way in Example 1. 

In this example, the integer k  reflects the oscillation of 
( )u x

, and the bigger values of k , the stronger 

oscillations of 
( )u x

. In table 1, the relative errors of Tiku
, Lavu

 and Locu
 are shown for different k  when the 

relative error of noise data is
5%Rel  . From Table 1 we can see that the superiority of local regularization 

method over the other two methods, and still the stability of Locu
 with respect to different oscillations of 

( )f x
. 

When 
5%Rel  , the regularization solution Locu

 and the exact solution u  are shown in Figure 4 when 2k   

and 4k  , from which we can see that the local regularization method can reflect oscillations of exact derivatives 

well. 

 

Figure-1. Relative errors of Tiku
, Lavu

 and Locu
 for different relative error levels 

Rel  of the noise data 
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Figure-2. The comparison between the exact solution u  and the regularization solution Tiku
 (left), Lavu

 (middle), Locu
 (right) when 

1%Rel   

 
 

Figure-3. The relative error of Locu
 for different r  when 

1%Rel  , where 0.052r   is the solution of the a-posteriori selection 

strategy (3.13) 

.  

 

Figure-4. The comparison between the exact solution u  and the regularization solution Locu
 when 2k   (left), 4k   (right) and 

5%Rel   
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Table-1. Relative errors of Tiku
, Lavu

 and Locu
 for different k  when 

5%Rel  . 

k  Tiku
 Lavu

 Locu
  

1k   0.1477 0.2722 0.0435 

2k   0.1443 0.2328 0.0492 

3k   0.1204 0.2229 0.0463 

4k   0.1068 0.1172 0.0575 
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