

Open Access

Original Research

Simple Finite-Dimensional Modules and Monomial Bases from the Gelfand-Testlin Patterns

Amadou Keita

Department of Mathematics, University of The Gambia, P.O. Box 3530, The Gambia Email: akeita@utg.edu.gm

Article History Received: 2 September, 2020 Revised: 18 December, 2020 Accepted: 28 December, 2020 Published: 1 January, 2021 Copyright © 2020 ARPG & Author This work is licensed under the Creative Commons Attribution International CC BY: Creative Commons Attribution License 4.0

Abstract

One of the most important classes of Lie algebras is sl_n , which are the $n \times n$ matrices with trace 0. The representation theory for sl_n has been an interesting research area for the past hundred years and in it the simple finite-dimensional modules have become very important. They were classified and Gelfand and Tsetlin actually gave an explicit construction of a basis for every simple finite-dimensional module. This paper extends their work by providing theorems and proofs, and constructs monomial bases of the simple module.

Keywords: Finite-dimensional; Module; Irreducible; Representation; Monomial basis.

1. Introduction

Let K_n be a Lie algebra of all matrices of order n. In this paper, we work with finite-dimensional modules and hence finite-dimensional representation of sl_n . This means for $g \in sl_n$, there exists a matrix G of order N defined in such a way that

if $g \to G$ and $f \to F$, then $\lambda g + \mu f \to \lambda G + \mu F$ and $[g, f] \to [G, F]$.

Choose integers m_1, m_2, \dots, m_n such that the inequality $m_1 \ge m_2 \ge \dots \ge m_n$ is satisfied. These partitions are quite important because they appear to be the core in constructing representations. These chosen integers are used to construct some index set ξ (the explicit construction of this index set will be given in the next section). For a Lie algebra with order n, we could construct at least $\frac{n(n-1)}{2}$ possible number of such ξ with entries from a given partition. An example will be given in the next section.

Let $e_{i,j}$ be a matrix of order n which has 1 at the intersection of the i^{th} row and the j^{th} column and zeros in all other places and let E_{ij} be the matrix of order N from K_n . Note that E_{ij} , under our consideration corresponds to elements $e_{i,j} \in K_n$. It is easy to see that each matrix E_{ij} forms a linear combination of $e_{i,j}$; that is $E_{i,j} = \sum_{i,j} a_{i,j} e_{i,j}$ for some $a_{i,j}$. Therefore, the set $E_{i,j}$ distinctly defines some representation. One could find all such representations by explicitly describing all linear transformations $E_{i,j}$.

The quest for irreducible representations of special linear algebra sl_n was reformulated: one needs matrices $E_{i,j}$ of order N satisfying the following bracket relations:

$$\begin{aligned} & [E_{i,j}, E_{j,l}] &= E_{i,l} \text{ when } i \neq l, \\ & [E_{i,j}, E_{j,l}] &= E_{i,i} - E_{j,j}, \\ & [E_{i_{1,j_{1}}}, E_{i_{2,j_{2}}}] &= 0 \text{ when } j_{1} \neq i_{2} \text{ and } i_{1} \neq j_{2}. \end{aligned}$$

For irreducibility, the system $E_{i,j}$ is required to have no invariant subspaces.

The representation theory of sl_n has a unique nature in choosing a partition. For the classification of simple finite dimensional modules, one sets the last choice $m_n = 0$ in the partition. This controls differences between subsequent choices in a partition.

A comprehensive theory of infinitesimal transformations was first given by a Norwegian mathematician, Sophus Lie (1842-1899). I. M. Gelfand and M. L. Tsetlin gave an explicit construction of a basis for every simple finitedimensional module of sl_n . In their work, they gave all the irreducible representations of general linear algebra (gl_n) but without theorems [1]. Recently, V. Futorny, D. Grantcharov and L. E. Ramirez provided a classification and explicit bases of tableaux of all irreducible generic Gelfand-Tsetlin modules for the Lie algebra gl_n [2]. In 2016, V. Futorny, D. Grantcharov, and L. E. Ramirez initiated the systematic study of a large class of non-generic Gelfand-Tsetlin modules - the class of 1 – singular Gelfand-Tsetlin modules. An explicit tableaux realization and the action of gl_n on these modules was provided using a new construction which they call derivative tableaux. Their

Academic Journal of Applied Mathematical Sciences

construction of 1 –singular modules provides a large family of new irreducible Gelfand-Tsetlin modules of gl_n , and is a part of the classification of all such irreducible modules for n = 3 [3].

This paper will show that the Gelfand-Tsetlin constructions given in the year 1950 [1] forms all the irreducible representations of special linear algebra sl_n by providing proofs to results. It will also show that sl_n -module is simple and also construct monomial basis from these modules. Section 2 discusses some previous work and gives some notations and Section 3 presents proofs to results and shows that sl_n -module is simple. Then a conclusion is drawn in Section 4.

2. Notations and Preliminaries

Definition 1 (Upper Triangular Matrix). This is a matrix with entries (i, j) where $i \ge j$ are zeros.

From now on, we will denote an upper triangular matrix by $E_{i,j}$ such that entry (i, j) has a 1 and all others are zeros. Let u^+ be the set of all upper triangular matrices. If $E_{i_1,j_1}, E_{i_2,j_2} \in u^+$, then $[E_{i_1,j_1}, E_{i_2,j_2}] \in u^+$. Therefore, u^+ is a Lie algebra and $E_{i,j}$, i < j is a basis of u^+ . So $E_{i,i+1}$ acts by zero. Hence $\{E_{i,i+1}\}$ are generators of u^+ . We will denote a sequence of upper triangular matrices by $E^{\underline{a}}$ and a sequence of upper triangular matrices in relation to ξ by $E^{\underline{a}}(\xi)$.

Definition 2 (Lower Triangular Matrix). This is a matrix with entries (i, j) where $i \le j$ are zeros.

Similarly, from now on, we will denote a lower triangular matrix by $F_{i,j}$ such that entry (i, j) has a 1 and all others are zeros. Let u^- be the set of all lower triangular matrices. If $F_{i_1,j_1}, F_{i_2,j_2} \in u^-$, then $[F_{i_1,j_1}, F_{i_2,j_2}] \in u^-$. Therefore, u^- is a Lie algebra and $F_{i,j}$, i > j is a basis of u^- , with $F_{i+1,i}$ acting by zero, so $\{F_{i+1,i}\}$ are generators of u^- . Similarly, we will denote a sequence of lower triangular matrices by $F^{\underline{a}}$ and a sequence of lower triangular matrices in relation to ξ by $F^{\underline{a}(\xi)}$.

Definition 3 (Diagonal Matrix). This is a matrix with some non-zero entries on its diagonal while all other entries away from the diagonal are zero.

It is well known that the entries of the diagonals of such a square matrix are the eigenvalues. Let *h* be the set of all diagonal matrices with trace zero. For $H_{i_1,j_1}, H_{i_2,j_2} \in h$, $[H_{i_1,j_1}, H_{i_2,j_2}] = 0 \in h$. So $\{H_{i,i} - H_{i+1,i+1} | 1 \le i \le n - 1\}$ is a basis of *h*. Suppose $h^* = \{\varphi: h \to \mathbb{C} | \varphi$ is linear}. The map φ is defined by giving the image of $H_{i,i} - H_{i+1,i+1}$, for all *i*. By definition,

$$\begin{split} & \omega: h \longrightarrow \mathbb{C}, \\ & H_{i,i} - H_{i+1,i+1} \rightarrow 1, \\ & H_{j,j} - H_{j+1,j+1} \rightarrow 0, \forall j \neq i. \end{split}$$

Since ω_i generates all of *h*, then $\{\omega_i\}$ is a basis of h^* .

Definition 4 (Representation [4]). Suppose *L* is a Lie algebra and let $x, y \in L$. The operation

 $\rho: L \to \operatorname{End}(K_n)$

$$\rho([x, y]) = [\rho(x), \rho(y)] \equiv \rho(x)\rho(y) - \rho(y)\rho(x).$$

is a Lie algebra representation. The vector space K_n is the representation space. The bracket $[\cdot, \cdot]$ is bilinear and also an endomorphism. That means

 $[\cdot,\cdot]$: End (K_n) × End (K_n) \rightarrow End (K_n) .

It is easy to see that the Lie algebra $sl_n = u^- \oplus h \oplus u^+$. If K_n is a finite dimensional sl_n -module, then $H \in h$ (where $H = \bigoplus_{i=1}^{n} H_i$) acts on K_n such that

$$K_n = H_1 \cdot \xi_1 + \dots + H_n \cdot \xi_n = \bigoplus_{\lambda} (K_n)_{\lambda},$$

where λ runs over H^* (a dual) and

 $(K_n)_{\lambda} = \{r \in (K_n) | H \cdot \xi = \lambda(H)\xi \ \forall H \in h\}.$ The weight spaces $(K_n)_{\lambda}$ are infinitely many and different from zero when K_n is infinite dimensional. $(K_n)_{\lambda}$ is called a weight space, ξ a weight vector and we called λ a weight of K_n . A highest weight vector (maximal vectors) in sl_n -module is a non-zero weight vector β in weight space $(K_n)_{\lambda}$ annihilated by the action of all upper triangular matrices. We will prove in this paper that a highest weight vector is indeed maximal and hence a generator.

The index set, ξ is an interesting construction and we will show how it is built. K_n is a vector space with bases ξ [1]. These bases depend on the choice of integer partition

$$m_{1}, m_{2}, \cdots, m_{n} \text{ with } (m_{1} \ge m_{2} \ge \cdots \ge m_{n})$$

$$\xi = \begin{pmatrix} p_{1,i}, i = 1, \dots, n-1 \\ p_{2,i}, i = 1, \dots, n-2 \\ \vdots \\ p_{j,i}, \{1 \le j \le n-1 \\ 0 \le i \le n-j \end{pmatrix}.$$
(1)

In order to understand the construction of this basis vector quite well, let us consider rows (i - 1), i and (i + 1) and entry $p_{i,j}$ in ξ . For all $p_{i,j}$, if j < 1 or j > n - i, then $p_{i,j}$ is not an entry in the index set. Otherwise, the relations of the three rows and specifically the entry $p_{i,j}$ are

$$\begin{cases} p_{i-1,j} \ge p_{i,j} \ge p_{i-1,j+1}, \\ p_{i+1,j-1} \ge p_{i,j} \ge p_{i+1,j}, \\ p_{0,j} := m_j. \end{cases}$$

Below is a pictorial representation of $p_{i,i}$.

Let $m_1 = 1$, $m_2 = 1$ and $m_3 = 0$. All possible bases from this partition, as given by the construction of Figure 1, are

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Here, we discuss the module structure on K_n . Our representation space K_n is a sl_n -module. Although this is true, we will not prove it. It is a sl_n -module via actions of upper triangular matrices, lower triangular matrices and the diagonal matrices on ξ [1].

In Gelfand [1], a comprehensive construction was presented for the action of upper triangular, lower triangular and diagonal matrices on basis vector ξ . For upper triangular matrices in general, suppose $\xi_{k-1,k}^{j}$ is the pattern obtained from ξ by replacing $m_{i,k-1}$ with $m_{i,k-1} + 1$, the upper triangular matrix $E_{k-1,k}$ acts on ξ as

$$E_{k-1,k}(\xi) = \sum_{j} a_{k-1,k}^{j} \, (\xi_{k-1,k}^{j}). \tag{2}$$

For a 3 × 3matrix, the action of $E_{i,j}$ on ξ raises the i^{th} row in the basis ξ by 1 on every entry in that row accordingly. For the case n = 3, the formulas for computing the action can be found in Gelfand [1]. In general, $E_{i,j}$ is generated by $E_{i,i+1}$.

The action of $F_{i,j}$ on ξ reduces the entries of the i^{th} row in ξ by 1 accordingly. This is done in such a way that rules governing the size of entries are observed. Suppose $\overline{\xi}_{k,k-1}^{j}$ is the pattern obtained from ξ by replacing $m_{i,k-1}$ with $m_{i,k-1} - 1$. The lower triangular matrix $F_{k,k-1}$ acts on ξ as

$$F_{k,k-1}(\xi) = \sum_{j} b_{k,k-1}^{j} (\xi_{k,k-1}^{j}).$$
(3)

The formulas for n = 3 can be found in Gelfand [1]. In general, $F_{i+1,i}$ generates all $F_{i,j}$ and other actions can be computed using the Lie bracket operation.

The diagonal matrices can also be generated by $E_{i,i+1}$ and $F_{i+1,i}$. Some coefficients from the action of $H_{i,i}$ can be zero but not all coefficients. In general

$$H_{i,i}(\xi) = \left(\sum_{i=1}^{k} m_{i,k} - \sum_{i=1}^{k-1} m_{i,k-1}\right)(\xi) \text{ where } \left(\sum_{i=1}^{k} m_{i,k} - \sum_{i=1}^{k-1} m_{i,k-1}\right)$$
(4)

is the coefficient of ξ . The formulas for computing the action of diagonal matrices ($H_{i,i}$) when n = 3 can be found in Gelfand [1].

Theorem 5 (sln_module). The representation space K_n is a sl_n -module.

A highest weight vector is the weight vector that is annihilated by every $(n \times n)$ upper triangular matrix (that is $E_{i,j}$ with i < j). We fixed ξ as our basis vector in K_n , the representation space where q is any integer depending on some conditions [1]. The nature of each basis vector depends on the dimension n of operator $E_{i,j}$ acting on it and the partition. For n = 2, we choose some integers $m_1, m_2(m_1 \ge m_2)$ such that the condition $m_1 \ge q \ge m_2$ is satisfied. When n = 3, we choose three integers $m_1, m_2, m_3 (m_1 \ge m_2 \ge m_3)$. The bases vectors in the representation space are now numbered by triples, p_1, p_2, q . The representation is given by $m_1 \ge p_1 \ge m_2 \ge p_2 \ge m_3$ and $p_1 \ge q \ge p_2$. We have our bases vectors of the form

$$\xi = \begin{pmatrix} p_1 & p_2 \\ & q \end{pmatrix}$$

Every weight vector has a corresponding weight. The bases vectors are the weight vectors. Constructing these bases depends on the choices of $m_1 \ge m_2 \ge \cdots \ge m_n$ as defined above.

Suppose $H_{i,i}$ is a square diagonal matrix. The action $H_{i,i}(\xi) = \kappa_i(\xi)$, where κ_i is the eigenvalue of corresponding weight vector ξ . There is a map ω such that for $h \in H$, $\omega: h \to \mathbb{C}$ such that $H_{i,i} \mapsto \kappa$. The map ω is the weight. Now,

Academic Journal of Applied Mathematical Sciences

for arbitrary partition $m_1 \ge m_2 \ge \cdots \ge m_n$, $H_{i,i}(\xi) = \kappa_i(\xi)$ has weight $\omega = \kappa_1 \varepsilon_1 + \kappa_2 \varepsilon_2 + \cdots + \kappa_n \varepsilon_n$ where ε_1 is the weight for ξ_1 , $\varepsilon_1 + \varepsilon_2$ the weight of ξ_2 and so on. Since sl_n is trace free, $\varepsilon_1 + \cdots + \varepsilon_n = 0$. In general,

$$H_{i,i}(\xi) = \left(\sum_{i=1}^{k} m_{i,k} - \sum_{i=1}^{k-1} m_{i,k-1}\right)(\xi).$$

Suppose we let $m_1 = 3$, $m_2 = 2$ and $m_3 = 0$. Then $E_{1,2}^{i_3} E_{2,3}^{i_2} E_{1,2}^{i_1} \xi_q = \beta$ where β is a highest weight vector and l_i is the maximum times each operator can act on ξ while all conditions are observed to either raise the first row or the second row of ξ . Due to the nature of transitions as a consequence of the action of the sequence, the result is unique (proved later).

The representation space K_n is simple if for all $v \in K_n$, there exist upper triangular square matrices such that $E^{\underline{a}(\alpha)} \cdot v = \beta$, a highest weight vector. The weight vectors could be of the form $v = \sum_{\alpha \text{(patterns)}} a_{\alpha} \alpha$ where α is a weight vector. We will show that there exists a sequence of upper triangular matrices $E^{\underline{\alpha}(\alpha)}$ such that its action on any sum of weight vectors annihilates all but one. That resulting weight vector is a highest weight vector.

2.1. Main Results

Theorem 6. The representation space K_n is a simple sl_n -module.

This theorem requires a proof for many parts so we break it down into two propositions and two lemmas.

Proposition 7. For every given partition there is a highest weight vector, β .

Proof. Suppose for integers $m_1, m_2, ..., m_n$ with $(m_1 \ge \cdots \ge m_n)$ that

$$\beta = \begin{pmatrix} m_1 & m_2 & m_3 & \cdots & m_n \\ & m_1 & & m_2 & & \cdots & \\ & & \ddots & & & \ddots & \\ & & & & m_1 & & & \end{pmatrix}.$$

Suppose there exists some ξ_i such that (we have a total ordering)

$$\xi_1 < \xi_2 < \dots < \xi_s$$

and $E_{i,i+1} \cdot \xi_1 \neq 0$ and $E_{i,i+1} \cdot \xi_2 \neq 0$ and so on. Also, suppose that entries in both basis vectors ξ_1, ξ_2 are equal at the bottom, except for a certain row such that in that row, the sum of the entries (for ξ_1 , denote the first entry of the row by ${}^{1}\xi_{1}$ and the second entry by ${}^{2}\xi_{1}$ and so on)

and that

$${}^{1}\xi_{1} + {}^{2}\xi_{1} + \dots + \xi_{1} < {}^{a_{1}}\xi_{2} + {}^{a_{2}}\xi_{2} + \dots + {}^{a_{s}}\xi_{2}$$

$${}^{1}\xi_{1} < ({}^{2}\xi_{1} + \dots + {}^{s}\xi_{1}) < ({}^{a_{1}}\xi_{2} + {}^{a_{2}}\xi_{2} + \dots + {}^{a_{s}}\xi_{2}).$$

We can write $\xi_1 = (v - \xi_i)$, where ξ_i is some weight vector and $v = \sum_{i=1}^{s} c_i \xi_i$, $c_i \neq 0$ is a complex number. The action

$$E_{i,i+1} \cdot v = E_{i,i+1} \cdot \xi_1 + E_{i,i+1} \cdot (v - \xi_1) = {}^1\xi_1 + \sum_{\Psi_{i,j} > \xi_1} \Psi_{i,j}$$

where $\Psi_{i,j}$ is the set of all resulting weight vectors the sum of whose entries in the *nth* row are greater than that of ${}^{1}\xi_{1}$. Now, with a sequence of upper triangular matrices which raises the entries of ξ_{1} ,

$$E^{\underline{a}(\xi_1)} \cdot v = E^{\underline{a}(\xi_1)} \cdot \sum_i c_i \xi_i \text{ for } c_i \neq 0.$$

The sequence is actually raising the weight vectors by the series of actions and the supposedly the smallest basis vector becomes a highest weight vector as a consequence. So

$$E^{\underline{a}(\xi_1)} \cdot \sum_i c_i \xi_i = \lambda_\beta \beta + \sum_{\Psi_{i,j} > \beta} \Psi_{i,j} = \lambda_\beta \beta \text{ for } \lambda_\beta \neq 0$$

Therefore, β is a highest weight vector.

The weight for β is such that

$$H_{i,i} \cdot \beta = \left(\sum_{k=1}^{l} m_{k,i} - \sum_{k=1}^{l-1} m_{k,i-1}\right) \cdot \beta$$

= $[q + (p_1 + p_2 - q) + (m_1 + m_2 + m_3 - p_1 - p_2) + \dots + q + (p_1 + p_2 - q) + \dots + (m_1 + m_2 + \dots + m_n - p_1 - p_2 - \dots - p_{n-1})] \cdot \beta$
= $(c_1 \varepsilon_1 + c_2 \varepsilon_2 + c_2 \varepsilon_2 + \dots + c_n - \varepsilon_{n-1} + c_n \varepsilon_n) \cdot \beta$.

 $= (c_1\varepsilon_1 + c_2\varepsilon_2 + c_3\varepsilon_3 + \dots + c_{n-1}\varepsilon_{n-1} + c_n\varepsilon_n) \cdot \beta.$ So β has weight $c_1\varepsilon_1 + c_2\varepsilon_2 + \dots + c_{n-1}\varepsilon_{n-1} + c_n\varepsilon_n$, which is a highest weight. Q.E.D. Proposition 8. For any basis vector ξ , there exists a set of upper triangular matrices, $E^{\underline{a}(\xi)}$, such that

$$E^{\underline{a}(\xi)}$$
, $\xi = \lambda_{\beta}\beta$ for $\lambda_{\beta} \neq 0$

where

 $E^{\underline{a}(\xi)} = E^{a_N}_{1,2}(E^{a_{N-1}}_{2,3}E^{a_{N-2}}_{1,2})\cdots(E^{a_{n-1}}_{n-1,n}\cdots E^{a_2}_{2,3}E^{a_1}_{1,2})$ Proof. From the order $\xi_1 < \xi_2 < \cdots < \xi_s$ introduced in Proposition 7, we see that ξ_1 is smaller than all other basis vectors. The action

Academic Journal of Applied Mathematical Sciences

$$E^{\underline{a}(\xi)}.\xi = E^{\underline{a}(\xi_1)} \cdot \xi_1 + E^{\underline{a}(\xi_1)} \cdot \left(\sum_{\Psi_{i,j} > \xi_1} \Psi_{i,j}\right).$$

But $(\sum_{\Psi_{i,j}>\xi_1} \Psi_{i,j})$ will be annihilated by the action since its elements are bigger and $E^{\underline{\alpha}(\xi)}$ will be the sequence that raises ξ_i to β , which is a highest weight. Q.E.D.

Lemma 9. Suppose v is a non-zero element in K_n ,

$$v = \sum_{i=1}^{s} c_i \xi_i$$
, with $c_i \neq 0 \in \mathbb{C}$.

Then there exists a sequence of upper triangular matrices such that $E^{\underline{a}(v)} \cdot v = \lambda_{\beta}\beta$ where $\lambda_{\beta} \neq 0$.

Proof. From Proposition 7, for $\xi_1 < \xi_2$, we established that

$${}^{1}\xi_{1} < ({}^{2}\xi_{1} + \dots + {}^{s}\xi_{1}) < ({}^{a_{1}}\xi_{2} + {}^{a_{2}}\xi_{2} + \dots + {}^{a_{s}}\xi_{2}).$$

Then, for all $c_i \neq 0$,

$$E^{\underline{a}(\xi_i)} \cdot v = E^{\underline{a}(\xi_i)} \cdot \left(\sum_{i=1}^{s} c_i \xi_i\right) = E^{\underline{a}(\xi_i)} \cdot \left(c_1^{-1} \xi_1 + \sum_{\xi_i > {}^{-1} \xi_1} c_i \xi_i\right).$$

Since ${}^{1}\xi_{1}$ is the smallest basis, the action will be

$$E^{\underline{a}(\xi_i)} \cdot v = \lambda_{\beta}\beta + \sum_{\Gamma_{i,j} > \beta} \lambda_i \Gamma_{i,j} = \lambda_{\beta}\beta.$$

Therefore, $E^{\underline{a}(\xi_i)} \cdot v = \lambda_{\beta}\beta$. Q.E.D.

This implies

Corollary 10. If $S \subset K_n$ is a non-zero submodule, then $\beta \in S$.

We proved from Proposition 7 that there is a highest weight vector $\beta \in K_n$. So if $S \subset K_n$ is a non-zero submodule, then $\beta \in S$.

Let M be a simple finite-dimensional module and v be a highest weight vector, the following result claims that M is generated by v through applying iterative lower triangular matrices on v. We can view this iterated applying as being a product in some algebra (namely the universal enveloping algebra).

Definition 11 (Monomial Basis). For *M* a finite-dimensional module and *v* a highest weight vector, consider the fixed basis $F_{i,j}$ and the monomials in these $F_{i,j}$ only. A given set *B* of monomials is called a monomial basis of *M* if $\{F^{\underline{b}}, v \mid F^{\underline{b}} \in B\}$ is a basis of *M*, where $F^{\underline{b}}$ is a product (sequence) of some lower triangular matrices.

Lemma 12. Let

$$B = \{F^{\underline{a}(\xi)} \mid \xi \text{ is a basis element}\}\$$

Then

$$\mathcal{B} = \{ F^{\underline{a}(\beta)} \cdot \beta \mid F^{\underline{a}(\beta)} \in B \}$$

is a basis.

Proof. Now, we want to show that K_n is generated by β . From the ordering in Proposition 7, we see that at least (for the lower triangular matrix $F_{i+1,i}$) $F_{i+1,i} \stackrel{1}{\cdot} \xi_1 < F_{i+1,i} \cdot \xi_2$.

Also, for $j \neq i$

$$F_{j+1,j} \stackrel{1}{\cdot} \xi_1 < F_{j+1,j} \cdot \xi_2.$$

Therefore, we can write

$$F^{\underline{a}(\beta)} \cdot \beta = \chi_i + \sum_{\gamma_{i,j} > \chi_i} \gamma_{i,j}$$

where $\xi_1 = \chi_i$ and $\xi_2 = \sum_{\gamma_{i,j} > \chi_i} \gamma_{i,j}$. Suppose

$$\int_{1}^{1} c_i F^{\underline{a}(\beta)} \cdot \beta = 0,$$

where *N* is the size of the basis ξ_i , and all $c_i \neq 0$. Then

$$\sum_{i=1}^{N} c_i \left(\chi_i + \sum_{\gamma_{i,j} > \chi_i} \gamma_{i,j} \right) = 0.$$

< χ_N . So

We can fix χ_i such that $\chi_1 < \chi_2 < \cdots < \chi_N$. So

$$\sum_{i=1}^{N} c_i \left(\chi_i + \sum_{\gamma_{i,j} > \chi_i} \gamma_{i,j} \right) = c_1 \chi_1 + \sum_{i=2}^{N} c_i \left(\chi_i + \sum_{\gamma_{i,j} > \chi_i} \gamma_{i,j} \right) + \gamma_1 = 0.$$

We know χ_1 is the smallest and $\{\chi_i\}$ are linearly independent for $1 \le i \le N$, then $c_1 = 0$. Therefore, the set $\{F^{\underline{\alpha}(\beta)} \cdot \beta \mid F^{\underline{\alpha}(\beta)} \in B\}$

is linearly independent.

We are given that ξ_i is a basis of K_n implying ξ (β in particular) is a basis element. The cardinality of ξ is D (that is dim K_n , in other words the number of basis vectors one can make from a given partition). Since ξ has N linearly independent elements, then dim $\langle F_{-}^{\alpha(\beta)} \cdot \beta \rangle = \dim K_n = D$. So $\{F^{\alpha(\beta)} \cdot \beta \mid F^{\alpha(\beta)} \in B\}$ spans and is a basis in K_n . Since $\{F^{\alpha(\beta)} \cdot \beta \mid F^{\alpha(\beta)} \in B\}$ spans K_n and all its elements are linearly independent, then it is all of K_n . Therefore, the weight vector β generates all of K_n . Q.E.D.

From the above proofs, we can make out that if β is a highest weight vector, S a submodule of K_n (i.e $\beta \in S$ and S is all of K_n) implies β generates all of K_n . Therefore, there is no invariant subspace of K_n .

Corollary 13. The representation space K_n is generated by β , and moreover if $S \subset K_n$ is a non-zero submodule, then $S = K_n$.

This completes the proof for Theorem 6. So, the representation space K_n is a simple sl_n -module. Already, a monomial basis is constructed in Lemma 12.

3. Conclusion

In this paper, our representation is actually $\rho: sl_n \to \text{End}(K_n)$ where $x \mapsto \rho(x)$. The map ρ is linear and also the identity. Suppose $v \in K_n$ and $v = \lambda_1 \xi_1 + \dots + \lambda_n \xi_n$, where ξ_1, \dots, ξ_n are basis vectors and $\lambda_1, \dots, \lambda_n$ are non-zero coefficients. Let $\lambda_1 \neq 0$ and $\lambda_2 = \dots = \lambda_n$. Then $F_{i,j} \cdot v = \lambda_1 F_{i,j} \cdot \xi_1$ and $E_{i,j} \cdot (F_{i,j} \cdot v) = \lambda_1 E_{i,j} \cdot (F_{i,j} \cdot \xi_1)$ are both well defined operations in our representation. Now, let $\lambda_1 = \lambda_3 = \dots = \lambda_n$ and $\lambda_2 \neq 0$. Then $E_{i,j} \cdot v = \lambda_2 E_{i,j} \cdot \xi_2$ and $F_{i,j} \cdot (E_{i,j} \cdot v) = \lambda_2 F_{i,j} \cdot (E_{i,j} \cdot \xi_2)$ again are both well defined operations in our representation. The diagonal matrices act by a scalar; that is $H_{i,i} \cdot \xi = \kappa \xi$. In all the actions above, the results are all accounted for in formulas of Equations (2), (3) and (4). If $\xi_1, \dots, \xi_n \in S$, then *S* is all of K_n . So, ρ has no invariant subspace. Therefore, ρ is an irreducible representation of the special linear algebra, sl_n .

For any partition, we can construct all possible basis vectors and modules as discussed above. We apply total ordering on basis vectors to identify the smallest basis vector. A sequence of upper triangular matrices that acts maximally on the smallest bases vector will eventually act on a set of bases vectors resulting in a total annihilation of all bases vectors but raising the smallest basis vector maximally, to a highest weight vector which has weight $\omega_i = c_1 \varepsilon_1 + \dots + c_n \varepsilon_n$. We also proved that every basis vector has a sequence of upper triangular matrices that acts on it maximally to yield a highest weight vector. We proved the existence of monomial basis and gave a construction. Each of these results contributes in proving our main result, that sl_n -module is simple, and has monomial basis.

Acknowledgement

The author would like to acknowledge and thank Ghislain Fourier for his support and guidance that lead to these results.

References

- [1] Gelfand, Z. M. L., 2020. *Finite-dimensional representations of the group of unimodular matrices*. Semantic Scholar.
- [2] Futorny, V., 2015. "Irreducible Generic Gelfand-Tsetlin Modules of gl(n)." SIGMA, Available: <u>http://doi:10.3842/SIGMA.2015.018</u>
- [3] Futorny, V., Grantcharov, D., and Ramirez, L. E., 2016. "Singular Gelfand-Tsetlin modules of gl(n)." *Advances in Mathematics*, vol. 290, pp. 453-482. Available: <u>http://doi:10.1016/j.aim.2015.12.001</u>
- [4] Carter, R. and Carter, R. W., 2005. *Lie algebras of finite and affine type*. Cambridge University Press.