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Abstract 
One of the most important classes of Lie algebras is    , which are the      matrices with trace 0. The representation 

theory for     has been an interesting research area for the past hundred years and in it the simple finite-dimensional 

modules have become very important. They were classified and Gelfand and Tsetlin actually gave an explicit 

construction of a basis for every simple finite-dimensional module. This paper extends their work by providing theorems 

and proofs, and constructs monomial bases of the simple module. 
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1. Introduction 
Let    be a Lie algebra of all matrices of order  . In this paper, we work with finite-dimensional modules and 

hence finite-dimensional representation of    . This means for      , there exists a matrix   of order   defined in 

such a way that 

                                                 
Choose integers   ,   ,  ,    such that the inequality            is satisfied. These partitions are 

quite important because they appear to be the core in constructing representations. These chosen integers are used to 

construct some index set   (the explicit construction of this index set will be given in the next section). For a Lie 

algebra with order  , we could construct at least  
      

 
 possible number of such   with entries from a given 

partition. An example will be given in the next section. 

Let      be a matrix of order   which has   at the intersection of the     row and the     column and zeros in all 

other places and let     be the matrix of order    from   . Note that    , under our consideration corresponds to 

elements        . It is easy to see that each matrix    forms a linear combination of     ; that is      ∑        
     

for some     . Therefore, the set     distinctly defines some representation. One could find all such representations by 

explicitly describing all linear transformations     . 

The quest for irreducible representations of special linear algebra     was reformulated: one needs matrices      

of order   satisfying the following bracket relations: 
                          

                      

                                       

 

For irreducibility, the system      is required to have no invariant subspaces. 

The representation theory of     has a unique nature in choosing a partition. For the classification of simple 

finite dimensional modules, one sets the last choice      in the partition. This controls differences between 

subsequent choices in a partition. 

A comprehensive theory of infinitesimal transformations was first given by a Norwegian mathematician, Sophus 

Lie (1842-1899). I. M. Gelfand and M. L. Tsetlin gave an explicit construction of a basis for every simple finite-

dimensional module of    . In their work, they gave all the irreducible representations of general linear algebra (   ) 

but without theorems [1]. Recently, V. Futorny, D. Grantcharov and L. E. Ramirez provided a classification and 

explicit bases of tableaux of all irreducible generic Gelfand-Tsetlin modules for the Lie algebra      [2]. In     , V. 

Futorny, D. Grantcharov, and L. E. Ramirez initiated the systematic study of a large class of non-generic Gelfand-

Tsetlin modules - the class of   singular Gelfand-Tsetlin modules. An explicit tableaux realization and the action 

of     on these modules was provided using a new construction which they call derivative tableaux. Their 
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construction of   singular modules provides a large family of new irreducible Gelfand-Tsetlin modules of    , and 

is a part of the classification of all such irreducible modules for     [3]. 

This paper will show that the Gelfand-Tsetlin constructions given in the year      [1] forms all the irreducible 

representations of special linear algebra     by providing proofs to results. It will also show that     module is 

simple and also construct monomial basis from these modules. Section   discusses some previous work and gives 

some notations and Section   presents proofs to results and shows that     module is simple. Then a conclusion is 

drawn in Section  . 

 

2. Notations and Preliminaries 
Definition 1 (Upper Triangular Matrix). This is a matrix with entries       where     are zeros. 

From now on, we will denote an upper triangular matrix by      such that entry       has a   and all others are 

zeros. Let    be the set of all upper triangular matrices. If                 , then                   . Therefore, 

  is a Lie algebra and     ,     is a basis of   . So        acts by zero. Hence          are generators of   . We will 

denote a sequence of upper triangular matrices by    and a sequence of upper triangular matrices in relation to   by 

     . 

Definition 2 (Lower Triangular Matrix). This is a matrix with entries       where     are zeros. 

Similarly, from now on, we will denote a lower triangular matrix by      such that entry       has a   and all 

others are zeros. Let    be the set of all lower triangular matrices. If                 , then                   . 

Therefore,    is a Lie algebra and          is a basis of   , with        acting by zero, so          are generators of 

  . Similarly, we will denote a sequence of lower triangular matrices by    and a sequence of lower triangular 

matrices in relation to   by      . 

Definition 3 (Diagonal Matrix). This is a matrix with some non-zero entries on its diagonal while all other 

entries away from the diagonal are zero. 

It is well known that the entries of the diagonals of such a square matrix are the eigenvalues. Let   be the set of 

all diagonal matrices with trace zero. For                ,                    . So                      

   is a basis of  . Suppose                      . The map   is defined by giving the image of              , 

for all  . By definition, 
   

             

             

 
 
 

  
  
  

 
 

     
 

Since    generates all of  , then      is a basis of   . 

Definition 4 (Representation [4]). Suppose   is a Lie algebra and let      . The operation 

            

                                        
is a Lie algebra representation. The vector space    is the representation space. The bracket       is bilinear and 

also an endomorphism. That means 

                               
It is easy to see that the Lie algebra            . If    is a finite dimensional     module, then     

(where     
   ) acts on   such that 

                  
 
       

where   runs over    (a dual) and 

(Kn)λ = {r   (Kn)|H · ξ = λ(H)ξ  H   h}. 

The weight spaces       are infinitely many and different from zero when   is infinite dimensional.       is 

called a weight space,   a weight vector and we called   a weight of   . A highest weight vector (maximal vectors) 

in     module is a non-zero weight vector   in weight space       annihilated by the action of all upper triangular 

matrices. We will prove in this paper that a highest weight vector is indeed maximal and hence a generator. 

The index set,   is an interesting construction and we will show how it is built.    is a vector space with bases   

[1]. These bases depend on the choice of integer partition 

                              

  

(

 
 

     

     
 

     

           

           
 

{
       
       )

 
 

                  

In order to understand the construction of this basis vector quite well, let us consider rows                   

and entry      in  . For all     , if     or      , then      is not an entry in the index set. Otherwise, the relations 

of the three rows and specifically the entry      are 

{

                     

                     
         

 

Below is a pictorial representation of     . 
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Figure-1. Pictogram of entry      in  . 

 
 

Let     ,     and     . All possible bases from this partition, as given by the construction of Figure 1, 

are 

(   
 

)  (   
 

)  (   
 

)  

Here, we discuss the module structure on   . Our representation space    is a     module. Although this is 

true, we will not prove it. It is a     module via actions of upper triangular matrices, lower triangular matrices and 

the diagonal matrices on   [1]. 

In Gelfand [1], a comprehensive construction was presented for the action of upper triangular, lower triangular 

and diagonal matrices on basis vector  . For upper triangular matrices in general, suppose       
 

 is the pattern 

obtained from   by replacing        with         , the upper triangular matrix        acts on   as 

          ∑       
 

 
       

 
                  (2) 

For a    matrix, the action of      on   raises the     row in the basis   by   on every entry in that row 

accordingly. For the case    , the formulas for computing the action can be found in Gelfand [1]. In general,      

is generated by       . 

The action of     on   reduces the entries of the     row in   by   accordingly. This is done in such a way that 

rules governing the size of entries are observed. Suppose  
 

     
 

is the pattern obtained from   by replacing        

with         . The lower triangular matrix       acts on   as 

          ∑       
 

 
  

 

     
 

          (3) 

The formulas for     can be found in Gelfand [1]. In general,        generates all      and other actions can be 

computed using the Lie bracket operation. 

 

The diagonal matrices can also be generated by        and       . Some coefficients from the action of      can be 

zero but not all coefficients. In general 

        (∑    

 

   

 ∑       

   

   

)           (∑    

 

   

 ∑       

   

   

)          

is the coefficient of  . The formulas for computing the action of diagonal matrices (    ) when     can be 

found in Gelfand [1]. 

Theorem 5 (sln_module). The representation space   is a     module. 

A highest weight vector is the weight vector that is annihilated by every       upper triangular matrix (that is 

     with    ). We fixed   as our basis vector in   , the representation space where   is any integer depending on 

some conditions [1]. The nature of each basis vector depends on the dimension   of operator      acting on it and the 

partition. For    , we choose some integers   ,   (     ) such that the condition         is satisfied. 

When    , we choose three integers   ,   ,    (        ). The bases vectors in the representation space 

are now numbered by triples,   ,   ,  . The representation is given by                             
We have our bases vectors of the form 

  (
    

 
)  

Every weight vector has a corresponding weight. The bases vectors are the weight vectors. Constructing these 

bases depends on the choices of            as defined above. 

Suppose      is a square diagonal matrix. The action              , where   is the eigenvalue of corresponding 

weight vector  . There is a map   such that for    ,       such that       . The map   is the weight. Now, 
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for arbitrary partition           ,               has weight                    where   is 

the weight for   ,       the weight of    and so on. Since     is trace free,            In general, 

        (∑    

 

   

 ∑       

   

   

)      

Suppose we let     ,      and     . Then     
      

      
       where   is a highest weight vector and    

is the maximum times each operator can act on   while all conditions are observed to either raise the first row or the 

second row of  . Due to the nature of transitions as a consequence of the action of the sequence, the result is unique 

(proved later). 

The representation space    is simple if for all     , there exist upper triangular square matrices such that 

         , a highest weight vector. The weight vectors could be of the form   ∑                where   is a 

weight vector. We will show that there exists a sequence of upper triangular matrices      such that its action on 

any sum of weight vectors annihilates all but one. That resulting weight vector is a highest weight vector. 

 

2.1. Main Results 
Theorem 6. The representation space   is a simple     module. 

This theorem requires a proof for many parts so we break it down into two propositions and two lemmas. 

Proposition 7. For every given partition there is a highest weight vector,  . 

Proof.  Suppose for integers   ,   ,    ,                   that 

  

(

 

         

     

  
  )

   

Suppose there exists some    such that (we have a total ordering) 

           

and             and             and so on. Also, suppose that entries in both basis vectors   ,    are equal 

at the bottom, except for a certain row such that in that row, the sum of the entries (for   , denote the first entry of 

the row        and the second entry         and so on) 

            
 
               

 

          

and that 

            
 
           

  

     
  

      

We can write          , where    is some weight vector and   ∑   
       ,      is a complex number. 

The action 

                                      ∑  

     
 
  

      

where      is the set of all resulting weight vectors the sum of whose entries in the     row are greater than that 

of     . Now, with a sequence of upper triangular matrices which raises the entries of    , 

                ∑  

 

               

The sequence is actually raising the weight vectors by the series of actions and the supposedly the smallest basis 

vector becomes a highest weight vector as a consequence. So 

       ∑  

 

         ∑  

      

                   

Therefore,   is a highest weight vector. 

 

The weight for  is such that 

       (∑  

 

   

     ∑  

   

   

      )    

                                                   
                              

                                      
So   has weight                          , which is a highest weight. Q.E.D. 

Proposition 8. For any basis vector  , there exists a set of upper triangular matrices,      , such that 

                      
where 

          
       

        
             

         
      

    

Proof.  From the order           introduced in Proposition 7, we see that    is smaller than all other 

basis vectors. The action 
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                         ( ∑  

       

    )  

But  ∑         
      will be annihilated by the action since its elements are bigger and       will be the sequence 

that raises    to  , which is a highest weight. Q.E.D. 

Lemma 9. Suppose   is a non-zero element in   , 

  ∑ 

 

   

                  

Then there exists a sequence of upper triangular matrices such that 

                        

Proof.  From Proposition 7, for      , we established that 

            
 
          

  

     
  

     
Then, for all     , 

                (∑  

 

   

    )         (   
    ∑  

       

    )   

Since     is the smallest basis, the action will be 

             ∑  

      

            

Therefore,             . Q.E.D. 

This implies 

Corollary 10. If     is a non-zero submodule, then    . 

We proved from Proposition 7 that there is a highest weight vector     . So if     is a non-zero 

submodule, then    . 

Let   be a simple finite-dimensional module and   be a highest weight vector, the following result claims that 

  is generated by   through applying iterative lower triangular matrices on  . We can view this iterated applying as 

being a product in some algebra (namely the universal enveloping algebra). 

Definition 11 (Monomial Basis). For   a finite-dimensional module and   a highest weight vector, consider the 

fixed basis      and the monomials in these      only. A given set   of monomials is called a monomial basis of   if 

           is a basis of  , where    is a product (sequence) of some lower triangular matrices. 

Lemma 12. Let 

                                 
Then 

                    
is a basis. 

Proof.  Now, we want to show that    is generated by  . From the ordering in Proposition 7, we see that at least 

(for the lower triangular matrix       ) 

       
 
              

Also, for     

       
 
              

Therefore, we can write 

           ∑  

       

     

where       and    ∑         
    . 

Suppose 

∑ 

 

   

   
          

where  is the size of the basis   , and all     . Then 

∑ 

 

   

  (   ∑  

       

    )     

We can fix    such that           . So 

∑ 

 

   

  (   ∑  

       

    )       ∑ 

 

   

  (   ∑  

       

    )        

We know   is the smallest and      are linearly independent for      , then     . Therefore, the set 

                  
is linearly independent. 
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We are given that    is a basis of    implying   (  in particular) is a basis element. The cardinality of   is 

  (that is       , in other words the number of basis vectors one can make from a given partition). Since   has   

linearly independent elements, then       
 
 
   

            . So                   spans and is a basis 

in   . Since                   spans    and all its elements are linearly independent, then it is all of   . 

Therefore, the weight vector   generates all of   . Q.E.D. 

From the above proofs, we can make out that if   is a highest weight vector,   a submodule of    (i.e     and 

  is all of   ) implies   generates all of   . Therefore, there is no invariant subspace of   . 

Corollary 13. The representation space    is generated by  , and moreover if      is a non-zero submodule, 

then     . 

This completes the proof for Theorem 6. So, the representation space    is a simple     module. Already, a 

monomial basis is constructed in Lemma 12. 

 

3. Conclusion 
In this paper, our representation is actually               where       . The map   is linear and also the 

identity. Suppose      and                where         are basis vectors and         are non-zero 

coefficients. Let      and        . Then                  and                                are both 

well defined operations in our representation. Now, let            and     . Then                  

and                                again are both well defined operations in our representation. The diagonal 

matrices act by a scalar; that is          . In all the actions above, the results are all accounted for in formulas of 

Equations (2), (3) and (4). If          , then   is all of   . So,   has no invariant subspace. Therefore,   is an 

irreducible representation of the special linear algebra,    . 

For any partition, we can construct all possible basis vectors and modules as discussed above. We apply total 

ordering on basis vectors to identify the smallest basis vector. A sequence of upper triangular matrices that acts 

maximally on the smallest bases vector will eventually act on a set of bases vectors resulting in a total annihilation of 

all bases vectors but raising the smallest basis vector maximally, to a highest weight vector which has weight 

              . We also proved that every basis vector has a sequence of upper triangular matrices that acts 

on it maximally to yield a highest weight vector. We proved the existence of monomial basis and gave a 

construction. Each of these results contributes in proving our main result, that     module is simple, and has 

monomial basis. 
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