Academic Journal of Applied Mathematical Sciences
ISSN(e): 2415-2188, ISSN(p): 2415-5225
Vol. 7, Issue. 1, pp: 60-65, 2021
URL: https://arpgweb.com/journal/journal/17
DOI: https://doi.org/10.32861/ajams.71.60.65

Simple Finite-Dimensional Modules and Monomial Bases from the GelfandTestlin Patterns

Amadou Keita

Department of Mathematics, University of The Gambia, P.O. Box 3530, The Gambia
Email: akeita@utg.edu.gm

Article History

Received: 2 September, 2020
Revised: 18 December, 2020
Accepted: 28 December, 2020
Published: 1 January, 2021
Copyright © 2020 ARPG
\& Author
This work is licensed under the Creative Commons Attribution International

Commons Attribution License 4.0

Abstract

One of the most important classes of Lie algebras is $s l_{n}$, which are the $n \times n$ matrices with trace 0 . The representation theory for $s l_{n}$ has been an interesting research area for the past hundred years and in it the simple finite-dimensional modules have become very important. They were classified and Gelfand and Tsetlin actually gave an explicit construction of a basis for every simple finite-dimensional module. This paper extends their work by providing theorems and proofs, and constructs monomial bases of the simple module.

Keywords: Finite-dimensional; Module; Irreducible; Representation; Monomial basis.

1. Introduction

Let K_{n} be a Lie algebra of all matrices of order n. In this paper, we work with finite-dimensional modules and hence finite-dimensional representation of $s l_{n}$. This means for $g \in s l_{n}$, there exists a matrix G of order N defined in such a way that

$$
\text { if } g \rightarrow G \text { and } f \rightarrow F \text {, then } \lambda g+\mu f \rightarrow \lambda G+\mu F \text { and }[g, f] \rightarrow[G, F]
$$

Choose integers $m_{1}, m_{2}, \cdots, m_{n}$ such that the inequality $m_{1} \geq m_{2} \geq \cdots \geq m_{n}$ is satisfied. These partitions are quite important because they appear to be the core in constructing representations. These chosen integers are used to construct some index set ξ (the explicit construction of this index set will be given in the next section). For a Lie algebra with order n, we could construct at least $\frac{n(n-1)}{2}$ possible number of such ξ with entries from a given partition. An example will be given in the next section.

Let $e_{i, j}$ be a matrix of order n which has 1 at the intersection of the $i^{\text {th }}$ row and the $j^{\text {th }}$ column and zeros in all other places and let $E_{i j}$ be the matrix of order N from K_{n}. Note that $E_{i j}$, under our consideration corresponds to elements $e_{i, j} \in K_{n}$. It is easy to see that each matrix $E_{i j}$ forms a linear combination of $e_{i, j}$; that is $E_{i, j}=\sum_{i, j} a_{i, j} e_{i, j}$ for some $a_{i, j}$. Therefore, the set $E_{i, j}$ distinctly defines some representation. One could find all such representations by explicitly describing all linear transformations $E_{i, j}$.

The quest for irreducible representations of special linear algebra $s l_{n}$ was reformulated: one needs matrices $E_{i, j}$ of order N satisfying the following bracket relations:

$$
\begin{array}{cc}
{\left[E_{i, j}, E_{j, l}\right]} & =E_{i, l} \text { when } i \neq l, \\
{\left[E_{i, j}, E_{j, i}\right]} & =E_{i, i}-E_{j, j}, \\
{\left[E_{i_{1}, j_{1}}, E_{i_{2}, j_{2}}\right]} & =0 \text { when } j_{1} \neq i_{2} \text { and } i_{1} \neq j_{2}
\end{array}
$$

For irreducibility, the system $E_{i, j}$ is required to have no invariant subspaces.
The representation theory of $s l_{n}$ has a unique nature in choosing a partition. For the classification of simple finite dimensional modules, one sets the last choice $m_{n}=0$ in the partition. This controls differences between subsequent choices in a partition.

A comprehensive theory of infinitesimal transformations was first given by a Norwegian mathematician, Sophus Lie (1842-1899). I. M. Gelfand and M. L. Tsetlin gave an explicit construction of a basis for every simple finitedimensional module of $s l_{n}$. In their work, they gave all the irreducible representations of general linear algebra $\left(g l_{n}\right)$ but without theorems [1]. Recently, V. Futorny, D. Grantcharov and L. E. Ramirez provided a classification and explicit bases of tableaux of all irreducible generic Gelfand-Tsetlin modules for the Lie algebra $g l_{n}$ [2]. In 2016, V. Futorny, D. Grantcharov, and L. E. Ramirez initiated the systematic study of a large class of non-generic GelfandTsetlin modules - the class of 1 -singular Gelfand-Tsetlin modules. An explicit tableaux realization and the action of $g l_{n}$ on these modules was provided using a new construction which they call derivative tableaux. Their
construction of 1 -singular modules provides a large family of new irreducible Gelfand-Tsetlin modules of $g l_{n}$, and is a part of the classification of all such irreducible modules for $n=3$ [3].

This paper will show that the Gelfand-Tsetlin constructions given in the year 1950 [1] forms all the irreducible representations of special linear algebra $s l_{n}$ by providing proofs to results. It will also show that $s l_{n}-$ module is simple and also construct monomial basis from these modules. Section 2 discusses some previous work and gives some notations and Section 3 presents proofs to results and shows that $s l_{n}$-module is simple. Then a conclusion is drawn in Section 4.

2. Notations and Preliminaries

Definition 1 (Upper Triangular Matrix). This is a matrix with entries (i, j) where $i \geq j$ are zeros.
From now on, we will denote an upper triangular matrix by $E_{i, j}$ such that entry (i, j) has a 1 and all others are zeros. Let u^{+}be the set of all upper triangular matrices. If $E_{i_{1}, j_{1}}, E_{i_{2}, j_{2}} \in u^{+}$, then $\left[E_{i_{1}, j_{1}}, E_{i_{2}, j_{2}}\right] \in u^{+}$. Therefore, u^{+}is a Lie algebra and $E_{i, j}, i<j$ is a basis of u^{+}. So $E_{i, i+1}$ acts by zero. Hence $\left\{E_{i, i+1}\right\}$ are generators of u^{+}. We will denote a sequence of upper triangular matrices by $E \underline{a}$ and a sequence of upper triangular matrices in relation to ξ by $E^{\underline{a}(\xi)}$.

Definition 2 (Lower Triangular Matrix). This is a matrix with entries (i, j) where $i \leq j$ are zeros.
Similarly, from now on, we will denote a lower triangular matrix by $F_{i, j}$ such that entry (i, j) has a 1 and all others are zeros. Let u^{-}be the set of all lower triangular matrices. If $F_{i_{1}, j_{1}}, F_{i_{2}, j_{2}} \in u^{-}$, then $\left[F_{i_{1}, j_{1}}, F_{i_{2}, j_{2}}\right] \in u^{-}$. Therefore, u^{-}is a Lie algebra and $F_{i, j}, i>j$ is a basis of u^{-}, with $F_{i+1, i}$ acting by zero, so $\left\{F_{i+1, i}\right\}$ are generators of u^{-}. Similarly, we will denote a sequence of lower triangular matrices by $F \underline{a}$ and a sequence of lower triangular matrices in relation to ξ by $F^{a(\xi)}$.

Definition 3 (Diagonal Matrix). This is a matrix with some non-zero entries on its diagonal while all other entries away from the diagonal are zero.

It is well known that the entries of the diagonals of such a square matrix are the eigenvalues. Let h be the set of all diagonal matrices with trace zero. For $H_{i_{1}, j_{1}}, H_{i_{2}, j_{2}} \in h,\left[H_{i_{1}, j_{1}}, H_{i_{2}, j_{2}}\right]=0 \in h$. So $\left\{H_{i, i}-H_{i+1, i+1} \mid 1 \leq i \leq n-\right.$ $1\}$ is a basis of h. Suppose $h^{\star}=\{\varphi: h \rightarrow \mathbb{C} \mid \varphi$ is linear $\}$. The map φ is defined by giving the image of $H_{i, i}-H_{i+1, i+1}$, for all i. By definition,

$$
\begin{array}{ll}
\omega: h & \rightarrow \mathbb{C}, \\
H_{i, i}-H_{i+1, i+1} & \rightarrow 1 \\
H_{j, j}-H_{j+1, j+1} & \rightarrow 0, \forall \mathrm{j} \neq \mathrm{i} .
\end{array}
$$

Since ω_{i} generates all of h, then $\left\{\omega_{i}\right\}$ is a basis of h^{\star}.
Definition 4 (Representation [4]). Suppose L is a Lie algebra and let $x, y \in L$. The operation

$$
\rho: L \rightarrow \operatorname{End}\left(K_{n}\right)
$$

$$
\rho([x, y])=[\rho(x), \rho(y)] \equiv \rho(x) \rho(y)-\rho(y) \rho(x)
$$

is a Lie algebra representation. The vector space K_{n} is the representation space. The bracket $[\because, \cdot]$ is bilinear and also an endomorphism. That means

$$
[\because \cdot,]: \operatorname{End}\left(K_{n}\right) \times \operatorname{End}\left(K_{n}\right) \rightarrow \operatorname{End}\left(K_{n}\right)
$$

It is easy to see that the Lie algebra $s l_{n}=u^{-} \oplus h \oplus u^{+}$. If K_{n} is a finite dimensional $s l_{n}$ - module, then $H \in h$ (where $H=\oplus_{i}^{n} H_{i}$) acts on K_{n} such that

$$
K_{n}=H_{1} \cdot \xi_{1}+\cdots+H_{n} \cdot \xi_{n}=\underset{\lambda}{\oplus}\left(K_{n}\right)_{\lambda},
$$

where λ runs over H^{*} (a dual) and
$\left(K_{n}\right)_{\lambda}=\left\{r \in\left(K_{n}\right) \mid H \cdot \xi=\lambda(H) \xi \forall H \in h\right\}$.
The weight spaces $\left(K_{n}\right)_{\lambda}$ are infinitely many and different from zero when K_{n} is infinite dimensional. $\left(K_{n}\right)_{\lambda}$ is called a weight space, ξ a weight vector and we called λ a weight of K_{n}. A highest weight vector (maximal vectors) in $s l_{n}$-module is a non-zero weight vector β in weight space $\left(K_{n}\right)_{\lambda}$ annihilated by the action of all upper triangular matrices. We will prove in this paper that a highest weight vector is indeed maximal and hence a generator.

The index set, ξ is an interesting construction and we will show how it is built. K_{n} is a vector space with bases ξ [1]. These bases depend on the choice of integer partition

$$
\begin{align*}
& m_{1}, m_{2}, \cdots, m_{n} \text { with }\left(m_{1} \geq m_{2} \geq \cdots \geq m_{n}\right) \\
& \xi=\left(\begin{array}{c}
p_{1, i} i=1, \ldots, n-1 \\
p_{2, i} i=1, \ldots, n-2 \\
\ddots \\
p_{j, i}, \\
1 \leq j \leq n-1 \\
0 \leq i \leq n-j
\end{array}\right) \tag{1}
\end{align*}
$$

In order to understand the construction of this basis vector quite well, let us consider rows $(i-1), i$ and $(i+1)$ and entry $p_{i, j}$ in ξ. For all $p_{i, j}$, if $j<1$ or $j>n-i$, then $p_{i, j}$ is not an entry in the index set. Otherwise, the relations of the three rows and specifically the entry $p_{i, j}$ are

$$
\left\{\begin{array}{c}
p_{i-1, j} \geq p_{i, j} \geq p_{i-1, j+1}, \\
p_{i+1, j-1} \geq p_{i, j} \geq p_{i+1, j} \\
p_{0, j}:=m_{j} .
\end{array}\right.
$$

Below is a pictorial representation of $p_{i, j}$.

Let $m_{1}=1, m_{2}=1$ and $m_{3}=0$. All possible bases from this partition, as given by the construction of Figure 1, are

$$
\left(\begin{array}{lll}
1 & & 1 \\
& 1 &
\end{array}\right), \quad\left(\begin{array}{lll}
1 & & 0 \\
& 1 &
\end{array}\right), \quad\left(\begin{array}{lll}
1 & & 0 \\
& 0 &
\end{array}\right)
$$

Here, we discuss the module structure on K_{n}. Our representation space K_{n} is a $s l_{n}$-module. Although this is true, we will not prove it. It is a $s l_{n}$-module via actions of upper triangular matrices, lower triangular matrices and the diagonal matrices on ξ [1].

In Gelfand [1], a comprehensive construction was presented for the action of upper triangular, lower triangular and diagonal matrices on basis vector ξ. For upper triangular matrices in general, suppose $\xi_{k-1, k}^{j}$ is the pattern obtained from ξ by replacing $m_{i, k-1}$ with $m_{i, k-1}+1$, the upper triangular matrix $E_{k-1, k}$ acts on ξ as

$$
\begin{equation*}
E_{k-1, k}(\xi)=\sum_{j} a_{k-1, k}^{j}\left(\xi_{k-1, k}^{j}\right) \tag{2}
\end{equation*}
$$

For a 3×3 matrix, the action of $E_{i, j}$ on ξ raises the $i^{\text {th }}$ row in the basis ξ by 1 on every entry in that row accordingly. For the case $n=3$, the formulas for computing the action can be found in Gelfand [1]. In general, $E_{i, j}$ is generated by $E_{i, i+1}$.

The action of $F_{i, j}$ on ξ reduces the entries of the $i^{t h}$ row in ξ by 1 accordingly. This is done in such a way that rules governing the size of entries are observed. Suppose $\xi_{k, k-1}^{j}$ is the pattern obtained from ξ by replacing $m_{i, k-1}$ with $m_{i, k-1}-1$. The lower triangular matrix $F_{k, k-1}$ acts on ξ as

$$
\begin{equation*}
F_{k, k-1}(\xi)=\sum_{j} b_{k, k-1}^{j}\left(\xi_{k, k-1}^{j}\right) \tag{3}
\end{equation*}
$$

The formulas for $n=3$ can be found in Gelfand [1]. In general, $F_{i+1, i}$ generates all $F_{i, j}$ and other actions can be computed using the Lie bracket operation.

The diagonal matrices can also be generated by $E_{i, i+1}$ and $F_{i+1, i}$. Some coefficients from the action of $H_{i, i}$ can be zero but not all coefficients. In general

$$
\begin{equation*}
H_{i, i}(\xi)=\left(\sum_{i=1}^{k} m_{i, k}-\sum_{i=1}^{k-1} m_{i, k-1}\right)(\xi) \text { where }\left(\sum_{i=1}^{k} m_{i, k}-\sum_{i=1}^{k-1} m_{i, k-1}\right) \tag{4}
\end{equation*}
$$

is the coefficient of ξ. The formulas for computing the action of diagonal matrices $\left(H_{i, i}\right)$ when $n=3$ can be found in Gelfand [1].

Theorem 5 (sln_module). The representation space K_{n} is a $s l_{n}$-module.
A highest weight vector is the weight vector that is annihilated by every ($n \times n$) upper triangular matrix (that is $E_{i, j}$ with $i<j$). We fixed ξ as our basis vector in K_{n}, the representation space where q is any integer depending on some conditions [1]. The nature of each basis vector depends on the dimension n of operator $E_{i, j}$ acting on it and the partition. For $n=2$, we choose some integers $m_{1}, m_{2}\left(m_{1} \geq m_{2}\right)$ such that the condition $m_{1} \geq q \geq m_{2}$ is satisfied. When $n=3$, we choose three integers $m_{1}, m_{2}, m_{3}\left(m_{1} \geq m_{2} \geq m_{3}\right)$. The bases vectors in the representation space are now numbered by triples, p_{1}, p_{2}, q. The representation is given by $m_{1} \geq p_{1} \geq m_{2} \geq p_{2} \geq m_{3}$ and $p_{1} \geq q \geq p_{2}$. We have our bases vectors of the form

$$
\xi=\left(\begin{array}{lll}
p_{1} & & p_{2} \\
& q &
\end{array}\right)
$$

Every weight vector has a corresponding weight. The bases vectors are the weight vectors. Constructing these bases depends on the choices of $m_{1} \geq m_{2} \geq \cdots \geq m_{n}$ as defined above.

Suppose $H_{i, i}$ is a square diagonal matrix. The action $H_{i, i}(\xi)=\kappa_{i}(\xi)$, where κ_{i} is the eigenvalue of corresponding weight vector ξ. There is a map ω such that for $h \in H, \omega: h \rightarrow \mathbb{C}$ such that $H_{i, i} \mapsto \kappa$. The map ω is the weight. Now,
for arbitrary partition $m_{1} \geq m_{2} \geq \cdots \geq m_{n}, H_{i, i}(\xi)=\kappa_{i}(\xi)$ has weight $\omega=\kappa_{1} \varepsilon_{1}+\kappa_{2} \varepsilon_{2}+\cdots+\kappa_{n} \varepsilon_{n}$ where ε_{1} is the weight for $\xi_{1}, \varepsilon_{1}+\varepsilon_{2}$ the weight of ξ_{2} and so on. Since $s l_{n}$ is trace free, $\varepsilon_{1}+\cdots+\varepsilon_{n}=0$. In general,

$$
H_{i, i}(\xi)=\left(\sum_{i=1}^{k} m_{i, k}-\sum_{i=1}^{k-1} m_{i, k-1}\right)(\xi)
$$

Suppose we let $m_{1}=3, m_{2}=2$ and $m_{3}=0$. Then $E_{1,2}^{l_{3}} E_{2,3}^{l_{2}} E_{1,2}^{l_{1}} \xi_{q}=\beta$ where β is a highest weight vector and l_{i} is the maximum times each operator can act on ξ while all conditions are observed to either raise the first row or the second row of ξ. Due to the nature of transitions as a consequence of the action of the sequence, the result is unique (proved later).

The representation space K_{n} is simple if for all $v \in K_{n}$, there exist upper triangular square matrices such that $E^{a}(\alpha) \cdot v=\beta$, a highest weight vector. The weight vectors could be of the form $v=\sum_{\alpha(\text { patterns })} a_{\alpha} \alpha$ where α is a weight vector. We will show that there exists a sequence of upper triangular matrices $E^{\underline{a}(\alpha)}$ such that its action on any sum of weight vectors annihilates all but one. That resulting weight vector is a highest weight vector.

2.1. Main Results

Theorem 6. The representation space K_{n} is a simple $s l_{n}$-module.
This theorem requires a proof for many parts so we break it down into two propositions and two lemmas.
Proposition 7. For every given partition there is a highest weight vector, β.
Proof. Suppose for integers $m_{1}, m_{2}, \ldots, m_{n}$ with ($m_{1} \geq \cdots \geq m_{n}$) that

$$
\beta=\left(\begin{array}{ccccccc}
m_{1} & & m_{2} & & m_{3} & \cdots & m_{n} \\
& m_{1} & & m_{2} & & \cdots & \\
& & \ddots & & \ddots & &
\end{array}\right) .
$$

Suppose there exists some ξ_{i} such that (we have a total ordering)

$$
\xi_{1}<\xi_{2}<\cdots<\xi_{s}
$$

and $E_{i, i+1} \cdot \xi_{1} \neq 0$ and $E_{i, i+1} \cdot \xi_{2} \neq 0$ and so on. Also, suppose that entries in both basis vectors ξ_{1}, ξ_{2} are equal at the bottom, except for a certain row such that in that row, the sum of the entries (for ξ_{1}, denote the first entry of the row by ${ }^{1} \xi_{1}$ and the second entry by ${ }^{2} \xi_{1}$ and so on)

$$
{ }^{1} \xi_{1}+{ }^{2} \xi_{1}+\cdots \stackrel{s}{+} \xi_{1}<{ }^{a_{1}} \xi_{2}+a_{2} \xi_{2}+\cdots+{ }^{a_{s}} \xi_{2}
$$

and that

$$
{ }^{1} \xi_{1}<\left({ }^{2} \xi_{1}+\cdots \stackrel{s}{+} \xi_{1}\right)<\left({ }^{a_{1}} \xi_{2}^{a_{2}}+\xi_{2}+\cdots \stackrel{a_{s}}{+} \xi_{2}\right)
$$

We can write $\xi_{1}=\left(v-\xi_{i}\right)$, where ξ_{i} is some weight vector and $v=\sum_{i=1}^{s} c_{i} \xi_{i}, c_{i} \neq 0$ is a complex number. The action

$$
E_{i, i+1} \cdot v=E_{i, i+1} \cdot \xi_{1}+E_{i, i+1} \cdot\left(v-\xi_{1}\right)={ }^{1} \xi_{1}+\sum_{\Psi_{i, j}>\xi_{1}} \Psi_{i, j},
$$

where $\Psi_{i, j}$ is the set of all resulting weight vectors the sum of whose entries in the $n t h$ row are greater than that of ${ }^{1} \xi_{1}$. Now, with a sequence of upper triangular matrices which raises the entries of ξ_{1},

$$
E \underline{a}\left(\xi_{1}\right) \cdot v=E^{\underline{a}}\left(\xi_{1}\right) \cdot \sum_{i} c_{i} \xi_{i} \text { for } c_{i} \neq 0
$$

The sequence is actually raising the weight vectors by the series of actions and the supposedly the smallest basis vector becomes a highest weight vector as a consequence. So

$$
E^{\underline{a}\left(\xi_{1}\right) .} \sum_{i} c_{i} \xi_{i}=\lambda_{\beta} \beta+\sum_{\psi_{i, j}>\beta} \Psi_{i, j}=\lambda_{\beta} \beta \text { for } \lambda_{\beta} \neq 0 .
$$

Therefore, β is a highest weight vector.
The weight for β is such that

$$
\begin{gathered}
H_{i, i} \cdot \beta=\left(\sum_{k=1}^{i} m_{k, i}-\sum_{k=1}^{i-1} m_{k, i-1}\right) \cdot \beta \\
=\left[q+\left(p_{1}+p_{2}-q\right)+\left(m_{1}+m_{2}+m_{3}-p_{1}-p_{2}\right)+\cdots+q+\left(p_{1}+p_{2}-q\right)+\cdots\right. \\
\left.+\left(m_{1}+m_{2}+\cdots+m_{n}-p_{1}-p_{2}-\cdots-p_{n-1}\right)\right] \cdot \beta \\
=\left(c_{1} \varepsilon_{1}+c_{2} \varepsilon_{2}+c_{3} \varepsilon_{3}+\cdots+c_{n-1} \varepsilon_{n-1}+c_{n} \varepsilon_{n}\right) \cdot \beta
\end{gathered}
$$

So β has weight $c_{1} \varepsilon_{1}+c_{2} \varepsilon_{2}+\cdots+c_{n-1} \varepsilon_{n-1}+c_{n} \varepsilon_{n}$, which is a highest weight. Q.E.D.
Proposition 8 . For any basis vector ξ, there exists a set of upper triangular matrices, $E^{\underline{a}(\xi)}$, such that

$$
E^{\underline{a}(\xi)} \cdot \xi=\lambda_{\beta} \beta \text { for } \lambda_{\beta} \neq 0,
$$

where

$$
E^{\underline{a}(\xi)}=E_{1,2}^{a_{N}}\left(E_{2,3}^{a_{N-1}} E_{1,2}^{a_{N-2}}\right) \cdots\left(E_{n-1, n}^{a_{n-1}} \cdots E_{2,3}^{a_{2}} E_{1,2}^{a_{1}}\right)
$$

Proof. From the order $\xi_{1}<\xi_{2}<\cdots<\xi_{s}$ introduced in Proposition 7, we see that ξ_{1} is smaller than all other basis vectors. The action

$$
E^{a}(\xi) \cdot \xi=E^{a}\left(\xi_{1}\right) \cdot \xi_{1}+E \underline{a}\left(\xi_{1}\right) \cdot\left(\sum_{\Psi_{i, j}>\xi_{1}} \Psi_{i, j}\right) .
$$

But $\left(\sum_{\Psi_{i, j}>\xi_{1}} \Psi_{i, j}\right)$ will be annihilated by the action since its elements are bigger and $E \underline{a}(\xi)$ will be the sequence that raises ξ_{i} to β, which is a highest weight. Q.E.D.

Lemma 9. Suppose v is a non-zero element in K_{n},

$$
v=\sum_{i=1}^{s} c_{i} \xi_{i}, \text { with } c_{i} \neq 0 \in \mathbb{C}
$$

Then there exists a sequence of upper triangular matrices such that

$$
E \underline{a}(v) \cdot v=\lambda_{\beta} \beta \text { where } \lambda_{\beta} \neq 0
$$

Proof. From Proposition 7, for $\xi_{1}<\xi_{2}$, we established that

$$
{ }^{1} \xi_{1}<\left({ }^{2} \xi_{1}+\cdots \stackrel{s}{\xi_{1}}\right)<\left({ }^{a_{1}} \xi_{2}+\xi_{2}+\cdots \stackrel{a_{s}}{+\xi_{2}}\right) .
$$

Then, for all $c_{i} \neq 0$,

Since ${ }^{1} \xi_{1}$ is the smallest basis, the action will be

$$
E^{\underline{a}\left(\xi_{i}\right) \cdot v=\lambda_{\beta} \beta+\sum_{\Gamma_{i, j}>\beta} \lambda_{i} \Gamma_{i, j}=\lambda_{\beta} \beta}
$$

Therefore, $E^{\underline{a}\left(\xi_{i}\right)} \cdot v=\lambda_{\beta} \beta$. Q.E.D.
This implies
Corollary 10. If $S \subset K_{n}$ is a non-zero submodule, then $\beta \in S$.
We proved from Proposition 7 that there is a highest weight vector $\beta \in K_{n}$. So if $S \subset K_{n}$ is a non-zero submodule, then $\beta \in S$.

Let M be a simple finite-dimensional module and v be a highest weight vector, the following result claims that M is generated by v through applying iterative lower triangular matrices on v. We can view this iterated applying as being a product in some algebra (namely the universal enveloping algebra).

Definition 11 (Monomial Basis). For M a finite-dimensional module and v a highest weight vector, consider the fixed basis $F_{i, j}$ and the monomials in these $F_{i, j}$ only. A given set B of monomials is called a monomial basis of M if $\left\{F \underline{\underline{b}} . v \mid F_{\underline{b}}^{\underline{b}} \in B\right.$ is a basis of M, where $F \underline{\underline{b}}$ is a product (sequence) of some lower triangular matrices.

Lemma 12. Let

$$
B=\{F \underline{a}(\xi) \mid \xi \text { is a basis element }\}
$$

Then

$$
\mathcal{B}=\left\{F^{\underline{a}(\beta)} \cdot \beta \mid F^{\underline{a}(\beta)} \in B\right\}
$$

is a basis.
Proof. Now, we want to show that K_{n} is generated by β. From the ordering in Proposition 7, we see that at least (for the lower triangular matrix $F_{i+1, i}$)

$$
F_{i+1, i} \cdot \xi_{1}<F_{i+1, i} \cdot \xi_{2}
$$

Also, for $j \neq i$

$$
F_{j+1, j}{ }^{1} \xi_{1}<F_{j+1, j} \cdot \xi_{2}
$$

Therefore, we can write

$$
F \underline{a}(\beta) \cdot \beta=\chi_{i}+\sum_{\gamma_{i, j}>\chi_{i}} \gamma_{i, j}
$$

where $\xi_{1}=\chi_{i}$ and $\xi_{2}=\sum_{\gamma_{i, j}>\chi_{i}} \gamma_{i, j}$.
Suppose

$$
\sum_{i=1}^{N} c_{i} F^{a(\beta)} \cdot \beta=0
$$

where N is the size of the basis ξ_{i}, and all $c_{i} \neq 0$. Then

$$
\sum_{i=1}^{N} c_{i}\left(\chi_{i}+\sum_{\gamma_{i, j}>\chi_{i}} \gamma_{i, j}\right)=0
$$

We can fix χ_{i} such that $\chi_{1}<\chi_{2}<\cdots<\chi_{N}$. So

$$
\sum_{i=1}^{N} c_{i}\left(\chi_{i}+\sum_{\gamma_{i, j}>\chi_{i}} \gamma_{i, j}\right)=c_{1} \chi_{1}+\sum_{i=2}^{N} c_{i}\left(\chi_{i}+\sum_{\gamma_{i, j}>\chi_{i}} \gamma_{i, j}\right)+\gamma_{1}=0
$$

We know χ_{1} is the smallest and $\left\{\chi_{i}\right\}$ are linearly independent for $1 \leq i \leq N$, then $c_{1}=0$. Therefore, the set $\left\{F^{\underline{a}(\beta)} \cdot \beta \mid F^{\underline{a}(\beta)} \in B\right\}$
is linearly independent.

We are given that ξ_{i} is a basis of K_{n} implying ξ (β in particular) is a basis element. The cardinality of ξ is D (that is dim K_{n}, in other words the number of basis vectors one can make from a given partition). Since ξ has N linearly independent elements, then $\operatorname{dim}\left\langle F_{-}^{a(\beta)} \cdot \beta\right\rangle=\operatorname{dim} K_{n}=D$. So $\left\{F^{a(\beta)} \cdot \beta \mid F^{a}(\beta) \in B\right\}$ spans and is a basis in K_{n}. Since $\left\{F^{\underline{a}(\beta)} \cdot \beta \mid F^{\underline{a}(\beta)} \in B\right\}$ spans K_{n} and all its elements are linearly independent, then it is all of K_{n}. Therefore, the weight vector β generates all of K_{n}. Q.E.D.

From the above proofs, we can make out that if β is a highest weight vector, S a submodule of K_{n} (i.e $\beta \in S$ and S is all of K_{n}) implies β generates all of K_{n}. Therefore, there is no invariant subspace of K_{n}.

Corollary 13. The representation space K_{n} is generated by β, and moreover if $S \subset K_{n}$ is a non-zero submodule, then $S=K_{n}$.

This completes the proof for Theorem 6. So, the representation space K_{n} is a simple $s l_{n}$-module. Already, a monomial basis is constructed in Lemma 12.

3. Conclusion

In this paper, our representation is actually $\rho: s l_{n} \rightarrow \operatorname{End}\left(K_{n}\right)$ where $x \mapsto \rho(x)$. The map ρ is linear and also the identity. Suppose $v \in K_{n}$ and $v=\lambda_{1} \xi_{1}+\cdots+\lambda_{n} \xi_{n}$, where ξ_{1}, \cdots, ξ_{n} are basis vectors and $\lambda_{1}, \cdots, \lambda_{n}$ are non-zero coefficients. Let $\lambda_{1} \neq 0$ and $\lambda_{2}=\cdots=\lambda_{n}$. Then $F_{i, j} \cdot v=\lambda_{1} F_{i, j} \cdot \xi_{1}$ and $E_{i, j} \cdot\left(F_{i, j} \cdot v\right)=\lambda_{1} E_{i, j} \cdot\left(F_{i, j} \cdot \xi_{1}\right)$ are both well defined operations in our representation. Now, let $\lambda_{1}=\lambda_{3}=\cdots=\lambda_{n}$ and $\lambda_{2} \neq 0$. Then $E_{i, j} \cdot v=\lambda_{2} E_{i, j} \cdot \xi_{2}$ and $F_{i, j} \cdot\left(E_{i, j} \cdot v\right)=\lambda_{2} F_{i, j} \cdot\left(E_{i, j} \cdot \xi_{2}\right)$ again are both well defined operations in our representation. The diagonal matrices act by a scalar; that is $H_{i, i} \cdot \xi=\kappa \xi$. In all the actions above, the results are all accounted for in formulas of Equations (2), (3) and (4). If $\xi_{1}, \cdots, \xi_{n} \in S$, then S is all of K_{n}. So, ρ has no invariant subspace. Therefore, ρ is an irreducible representation of the special linear algebra, $s l_{n}$.

For any partition, we can construct all possible basis vectors and modules as discussed above. We apply total ordering on basis vectors to identify the smallest basis vector. A sequence of upper triangular matrices that acts maximally on the smallest bases vector will eventually act on a set of bases vectors resulting in a total annihilation of all bases vectors but raising the smallest basis vector maximally, to a highest weight vector which has weight $\omega_{i}=c_{1} \varepsilon_{1}+\cdots+c_{n} \varepsilon_{n}$. We also proved that every basis vector has a sequence of upper triangular matrices that acts on it maximally to yield a highest weight vector. We proved the existence of monomial basis and gave a construction. Each of these results contributes in proving our main result, that $s l_{n}$-module is simple, and has monomial basis.

Acknowledgement

The author would like to acknowledge and thank Ghislain Fourier for his support and guidance that lead to these results.

References

[1] Gelfand, Z. M. L., 2020. Finite-dimensional representations of the group of unimodular matrices. Semantic Scholar.
[2] Futorny, V., 2015. "Irreducible Generic Gelfand-Tsetlin Modules of gl(n)." SIGMA, Available: http://doi:10.3842/SIGMA.2015.018
[3] Futorny, V., Grantcharov, D., and Ramirez, L. E., 2016. "Singular Gelfand-Tsetlin modules of gl(n)." Advances in Mathematics, vol. 290, pp. 453-482. Available: http://doi:10.1016/j.aim.2015.12.001
[4] Carter, R. and Carter, R. W., 2005. Lie algebras of finite and affine type. Cambridge University Press.

