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Abstract

Practical nonlinear programming problem often encounters uncertainty and indecision due to various factors that cannot
be controlled. To overcome these limitations, fully fuzzy rough approaches are applied to such a problem. In this paper,
an effective two approaches are proposed to solve fully fuzzy rough multi-objective nonlinear programming problem
(FFRMONLP) where all the variables and parameters are fuzzy rough triangular numbers. The first, based on a slice
sum technique, a fully fuzzy rough multi-objective nonlinear problem has turned into five an equivalent multi-objective
nonlinear programming (FFMONLP) problems. The second proposed method for solving FFRMONLP problems is a-
cut approach, where the triangular fuzzy rough variables and parameters of FFRMONLP problem are converted into
rough interval variables and parameters by a-level cut, moreover the rough MONLP problem turns into four MONLP
problems. Furthermore, the weighted sum method is used in both proposed approaches to convert multi-objective
nonlinear problems into an equivalent nonlinear programming problem. Finally, the effectiveness of the proposed
procedure is demonstrated by numerical examples.

Keywords: Fuzzy programming; Triangular fuzzy number; Multi-objective nonlinear programming; Fully Fuzzy programming;
Fuzzy rough programming.

1. Introduction

Mathematical model data cannot be unambiguously collected in many real-world problems. This uncertainty
may occur in a vague sense, rough, or both. Moreover, when the parameters are imprecise scalar quantities, it is very
appropriate to implement ambiguous quantities to model these situations. The concept of fuzzy quantities in decision
making was introduced by Bellman and Zadeh [1], Zimmermann [2], Fortemps [3] and Sakawa have proposed fuzzy
programming approach to solve crisp multi-objective linear and nonlinear programming problems. Dong and Wan
[4], proposed A new method for solving fuzzy multi-objective linear programming Problems. Ammar, et al. [5],
suggested a solution for fuzzy multi-objective nonlinear programming problem, Pérez-Cafiedo, et al. [6] proposed a
fuzzy epsilon-constraint method that yields Pareto optimal fuzzy solutions of fuzzy variable and fully fuzzy MOLP
problems, in which all parameters and decision variables take on LR fuzzy numbers. A new algorithm was proposed
for solving fully fuzzy multi-objective linear programming problem which first converted it into the multi-objective
interval linear programming problem by Sharma and Aggarwal [7].

Rough Set Theory is a new mathematical theory introduced by Pawlak to deal with ambiguity or uncertainty in
the early (1980). Youness [8], Feng, et al. [9] Mathematical programming proposed in the rough environment in
several aspects. Lu, et al. [10] The concept of a rough interval is introduced to represent uncertain double
information for many parameters. Garai, et al. [11], developed a multi-objective multi-item inventory model with
fuzzy rough coefficients. Elsisy and Elsayed [12], develop bilevel multi-objective nonlinear programming problem
(BMNPP), in which the objective functions have fuzzy nature and the constraints represented as a rough set. Midya
and Roy [13], introduced an analysis of the interval programming utilizing rough interval Pandian, et al. [14]
proposed level-bound method for solving fully fuzzy interval integer transportation problem Ammar and Eljarbi [15]
proposed an algorithm for solving fuzzy rough multi-objective integer linear fractional programming problem.

In this paper, we introduce fully fuzzy rough MONLP problem such that all coefficients and variables in both
the objective functions and constraints are fuzzy rough intervals. Basic notions of fuzzy number, fuzzy rough
intervals, a triangular fuzzy rough number and the a-cut of a fuzzy rough interval, are given in section 2. We give
solution proceedings to characterize the rough solution set of FFRMONLP problem with triangular fuzzy rough
intervals in both the objective and constraints functions in section 3. The slice-sum algorithm to deduce the fully
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fuzzy rough solution set of the fully fuzzy rough MONLP problem is given in section 4. In section5 introduced an
o-cut approach for solving FFRMONLP problem. For the above two approaches numerical examples are given.

2. Preliminary
Several necessary basic concepts are recalled in this section which can be established in Bellman and Zadeh [1],

Buckley and Feuring [16], Das, et al. [17], and Zimmermann [2], Ammar and Muamer [18].

A=(@',a",a")

Definationl. A fuzzy number is said to be a triangular fuzzy number (T.F.N) if it has the

£ Am Au
following membership function where a,a,a
¢
X —a
— for a'<x<a"
a —a
a' —x
M (X) =9 ——— for a" <x <a"
a —a
0, otherwise

Defination2. Let (aé’am ’au ) and (bf ! b i ’bu) be two positive triangular fuzzy numbers, then
(@,a",a")+(’,b",b")=@"+b",a" +b™,a" +b").
(@,a",a")-(b",b",b")=(@"-b",a" —b",a" —b").
k(@',a",a")=(ka', ka" ,ka")for k _,

k(@',a",a")=(ka" ka" ka")for k _,
(@’,a",a")x(b’,b™,b")=(@"xb’,a™ xb™,a" xb").
(@’,a",a")=(b",b",b")=(@" +b",a™ =b",a" =b").

Let F(R) be the set of all real triangular fuzzy numbers.

R
Definition 3. Let X be denote a compact set of real numbers. A fuzzy rough interval X "is defined as

/R _ pwLAl . 7UAI ~ ~
X=X X where X and XA are fuzzy set called lower and upper approximation fuzzy numbers

Of)( R with )~(LAI - )(UAI )

AR _TAL . AU A A
AT =[ATA ]is said to be normalized if A" and A" are normal.
B" =[B" :BY]

Definition 4.A fuzzy rough interval

AR _ AL . AU
Definition 5. Let AT =[A"AT]
A* =BFiff A" =B' g A” 2BY

and are two fuzzy rough intervals in ER". We say

n R
Definition 6. The a-cut of a fuzzy rough interval A" s defined as :
A R _TAL . AU AL AU AL AU
(A )0‘ _[Aa 'Aa] where A and A are intervals with As Sir Aa .

Definition 7. A fuzzy rough numberARis a triangular fuzzy rough number denoted by
A R L8 Am AULY . fAfU oM U
AT =[@",a",a"):@",a",a")] L ere

fu 20 m us uu
a’ <a sa <a <a gpqits membership function can be defined as:
AL _ [al om Luf \U _ [ U om ,uu A L z U (X (X
Note that A _(a as,a )’ A _(a a-,a )and A" cA *where ‘uAL()and ’uA”( )are
membership functions of lower and upper approximation triangular fuzzy number respectively.

2 Aam qul Lflu m firi
a ya la ’a ’a and ﬁr eRn SUCh that

R
We  can define (A7) afor any  fuzzy  rough  with  triangular ~ fuzzy = numbers
AR — [(azl’am ’aul) : (azu ’am ’auu )] o (AR )a — [aéé (0(), aué(a) . aéu (a)’ W (06)]

Al =[a"+@"-a")a,a"+(@"-a"")a]

A’ =[a"+@"-a")a,a" +(@"-a")a],a €[0,1]

where

and

A R 3 R
Definition 8. Let A~ 2 0and B™ =01pe o fuzzy rough intervals , then
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BR =[(A- ®B"):(AY ®BY)].
B"=(A' ©B")(A" 0B")
BR =[(A" ®B"):(AY ®BY)].
"@B (A" @B (A" @B" )

R
R
. ©
R®

> I Py By

3. Formulation of Fully Fuzzy Rough MONLP Problem

The fully fuzzy rough multi-objective nonlinear programming problem is defined as follows:
- m
(FFRMONLP,): min f R (xR)=> ¢X (x¥)°,r=12 .. k; 5eZ"
j=1
s.t.

m N 1)
z a5 (X5)° <b,

~j >0iel ={,2..n} jed={L2.,m}

A bRand(ij) icl,jed, s ez r=12.k,

Where are fuzzy rough coefficient,
parameters and variables, respectively
I’j _[(er1 rr];’ ) (er ’ I’j’ lrjju)],
£e £ . JAVRNo) ) o
(X-) =[5, (T2 (D) (<57, (T2 ()], @
m UU
” —[(a” ’ |J ’ ) (alj ’ Ij ’ IJ )]’
=[(bfﬁ,b{“,bﬁ‘ﬂ):(bf“,b{“,bﬁ‘“ ). ,
The problem (1) can be written as:
m
cpmin T o ~L .« ~L 5. gU\S
(FFRMONLP, ):min [f,5 (x):f (x)]1=Y [E5 : T I®I(X )7 : (X33 )°1.r =1,
j=1
S. t.
m o 3)
> a8 180X 5)%: (X5 ) 1 <[by :b} ]
j=1
)~(|J‘,)~(LJ" >0/iel; jel,oeZ"
Cg. G, &g, ag, bf, bf XExYy
Suppose that are triangular fuzzy numbers, are triangular fuzzy

variables. Then problem (2) could be written as:

(FRMONLP;):min [(f,“,f ™ £ 25y 1 (F, 8 ™8 2] r =1, 2, ..., K

r +'r
s.t.

Z[(a., afai): (a afl a1, ()%, () (G )78 @)
<[(bﬁé bm bUZ) (béu bm bUU)]

x{=0iel; jel sez".

M = e .eqN @), <)% ()%

where
£ JATRY) J o
MM = e e ) @) ()7, 6)).
The problem (3) is equivalent to the following crisp MONLP problems
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FFRMONLP,): min (f %, 45 M f%4 f%),r=12 ..,k
4 r r r r r

s.t.

Q0 (G UINS ol P AUL NS 0 NP AM (yM\S M

2ay ()7 <bi D> a ()T <bit >af (<) <b, (5)
j=1 j=i j=1

m m
dat (<) <bi, > at (4Y)? <bi.
i=L =1
X?Zo,iel; jeld,oezZ*

where
m
20NO N0 o
Zc (x;)°, zc ‘o =Y ef o’
j=1
ZC (X€u)5 fruu =ZC%U(X?U)5.
j=1
* * * *
o J :[(Xjff’xjm "_’Uf).(X.EU jm’x’}UU . .
Definition9: The triangular fuzzy rough vector which

satisfies the conditions in problem (1) is called a fuzzy rough efficient solution of problem (5), if and only if there
R o tf m Jufy.,,u ,m uu R
=[x, X)) (XX, X )] eMT

fe (et <f (X)), F ) < (x),
f ™M) <fr (™), F ) < (x)
and f (™) <f (x) vr=12,.k

And for at least one r=1,2,... .k follows:
fr o) <fr (X)), F (k%) <f (x),

L 0e™M) < (™), F (0) < ()

and f,(x*™) <f, (x™).
. (FFRMONLP, )

does not exist another

From th problem will be constructed five FMONLP problems as:

FFMNPLP" : min f " = Zc (x4, r=1,2, ..,k

s. t.
m (6)
> aft (x{")? <b
j=1
XL}U >0,iel;s5ez”
FFMONLPY":  min f!" = Zc ‘xY0r=12 ...k
s t.
Q)

m
Slal () <t

x‘j£<xJ x‘j£>0| el ,oez*
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m . ; m m/, m
FFMONLP™ : min f/ =Zcrj (x")°,r=12 ..,k
J:
s. t.
< S
m g, m m
2.2 (7)) <b",
j=1

* * - -
X" SX?M X" =0iel; jel sez"

FFMONLP® : min f ** = Zc x{)°.r=12 ..k
s. t.
U 144 LONO <bM
D a (xj)° <bf”,
j=1
Mxif=0iel,sezt
FFMOLNP™ : min f " = Zc xi")’,r=12 ..,k
s. L.

m
Zaﬁ-“ (x§*)? <b/",

xf“ <xJ xﬁ” >0/iel,oez"

By weighting method the last five problems

124 fu
FFMOLNP™ and FFMOLNP may be converted into the equivalent the following N.L.P: For

K
w, eW ={w, 1> w, =1w, >0}

FFPYY(W): min (ZW Zc (x““))
s. t.

m
Sal (xi)° < b
i=1

Xl}u >0,iel; w, eW ,oeZ”"

k m
FFPY“(w): min (ZWch‘r‘jg(xug
_ j=1
S.t.
m
Za}j’g(x‘j‘gf <bY¢, L
i=1
uf *uu
i =X

leEZO,i el; w, eW,0eZ"

X

XU
where ~ 1 is the solution of

FFP' (w)

problem.

(8)

(9)

(10)

FEFMOLNP" , FFMOLNP"’, FEMOLNP™

11

(12)
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k
FFPm . H & m ms\o
W): min G w, > cg (x)
j=1
s. t.
m

Zau (x")? <bj (13)

*Uf
<
X <X

ern =20,i el ; w, eW,5Z2"

Vil
where ~ J s the solution of

FFP ““(w) : mln(ZW Zc (x”))

uf
FFP™ (W) problem.

s. t.
Za “(x{)? <b", . (14)

2Pl
XJ _XJ

X?ZO,i el;,w, eW ,oeZ"

XM
where ~ 1 is the solution of

FFP™ (w)

problem.

FFP““ (W): min Zw Zc (x4)°
s. t.

- ¢ LUNS ¢

D&t (x ") <bfY, . (15)

j=1

fu *pg

Xj SXJ-

X?u >0,i el ,WreW,5eZ+

K4 o
where 3 is the solution of T+ (W) problem.
Theorem 1. Bellman and Zadeh [1] For w*eW, if x (W  JER"is an optimal solution of N.L.P
uu g~ ufl g, * m o~ 28 * o * #
problems FFP™ (w ),FFP™" (w ),FFP " (w ),FFP ~"(w ) and FFP ™ (w ).Then X eR™ an efficient
solution of the corresponding MONLP problems

FMONLPY"“  FMONLP"*,FMONLP™ FMONLP ““and FMONLP v,

uu o, fud *m

*
x WU TUE M % and *lu

Theorem 2. Let ER"™ be efficient solutions of

FFP™M (W), FFPYS (W), FFP™ ("), FFP “(w") and FFP ™ (w")
R :[(X*Eﬁ X*m ,X*Uﬁ) : (X*EU ’X*m ,X*UU )]

(FFRMONLP;)

respectively, then

is an efficient fuzzy rough solution of the problem

’X*ué) . (X*Zu ’ X*m ,X uu

R _
Proof: Let [(X )] be a feasible solution of
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*uu *ul\,*m 2 *£fu
problem (1), clearly, XXX, X and x are feasible solutions of

FRPM (W), FFPYS (W), FFP™ (W), FFP ““(w ) and FFP ™ (w")

X*uu ,X*MX*m ’X*M and X*/Zu

respectively.

Assume  that are  efficient  solutions of  problems

FFP™ (w"), FFP (W), FFP™ (W), FFP ““(w") and FFP ™ (W) .-

fr M) <f M) Fr(CH) < (v,

f XM <f (™) F ) <fr (v)

andf, (x"“)<f (y")

for all. r=12..k For all yR:(yu’ym’yw):(yzu’ym'yuu) feasible  solutions  of
FFP™ (W), FFPY (W), FFP™ (W), FFP /(W) and FFP ™ (W) 1 ¢ oast one r follows:

fr ) <f (). M) < (19,

FrOC™M)<f (™) f () <Fr (y™)

*2u 2u
andf, (x 7)) <f, (y )
*,~R *r ~R *,~R *,~R
< —
This implies that Frx™) <t (y™) for all ' =12,k and fr(x )<fr (y )for at least one r.
~R _ *L o ,m *ufy . *2u *m *uu
Therefore, X = [(X X X ) ) (X X X )] is an efficient fuzzy solution to the given problem

(FFRMONLPl)

3.1. Algorithm Solution for FRMONLP Problem
(FFRMONLP4)

1. Consider the problem in the form .
uu
Transfer the (FFRMONLP4)to five forms as FFMONLP™, FFMONLPM, FFMONLPm,

FFMONLP* .4 FMONLP" oroblems.

N

3. Use one of the secularization methods, say the weights method to convert each problem FFMONLP™ ,
/ 44 {4
FFMONLP" , FFMONLP"™ ,FFMONLP and FFMONLP™ with a single objective in the form

FFP (w), FFPY* (w), FFP™ (W), FFP* (W) _  FFP™ (w)

and
4. For W=w €W Find the optimal solution of each nonlinear programming problems
FFPY (W), FFPY (W), FFP™ (W), FFP*“ (W) , FFP™ (W)

5. Obtain the set of efficient fuzzy rough solutions to the given problem, using the results of last step by
theorem(3)and(4) is

)ZR :[(X*M’X*m’x*ué):(x*éu’X*m’x*uu)]

"R, %y *00 *m ULy . *4U *m *u
and fuzzy rough value is:fr (X )_[(f (X )’f (X )'f (X )(f (X )'f (X )’f (X )]
Example 3.1: Consider the following FRMONLP:

. “R R /oR\2 R /oR\2 R &R R &R
Min f = (X) = (cq1 (X1 ) +C13 (X2 )7, €21 X1 +Cp X7 )
st.
R (16)

where
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XT =00 X xg ) ox T x g ), X5 = (x5 %3 x5 1 (x x 3 x8Y),
¢l =(2,3,4):(1,3,5), ¢y =(3,4,5):(2,4,7), ¢4 =(4,5,6):(2,5,8), Cso =(5,6,7):(1,6,9),
ak =(3,4,5):(1L,4,6), a5 =(1,2,3):(0.5,2,5),

aj =(0.5,1,3):(0.25,1,4), ag, =(1,3.5,5):(0.5,3.5,7),

? =(20,30,45): (15,30,55), bR = (14,15,30) : (5,15, 40).
[(2.3,4):(1.3,5)]®[((x1 )%, (x{")?, (x1' )2)-«x‘u)2 M2 )]+
[(3.4,5):(2,4,7)1®((x5")%, (x3)%, (x59)%) : (x3")%, (x 52, (x5")?),
[(4,5,6):(2,58)]® (x;" X", x1“) 1 (x{", x{", x3") +
[(5.6,7):(L6,9I® (x5, x5, x5°): (x5, x5, x5")

s.t.
[(3.4,5): (L,4,6)]® (x{ ", x{" X1 ) s (¢, x ", x{") +
[(1,2,3):(0.5,2,5)]® (x5, x ' x55) : (x 24, x 3, x5 ) <[(20, 30, 45) : (15,30,55)], 17)

[(0.5,1,3):(0.25,1,4)]® (x 1, x{" , x§ ) 1 (x £ x ™ x ) +
[(1,3.5,5):(0.5,3.5,7)]® (x 45, x 3", x55) 1 (x 2, x ", x4 ) <[(14,15,30) : (5,15, 40)],

X1,Xo = 0.

Can be written as:

(FFRMONLP):
UG AN RO H AR AN R N (PR PN PO R (FRR PAN A
S.t
[(3.4,5): (1,4,6)1® (x1", 1", x1) 1 (x4, x{" x{") + (18)

[(1,2,3):(0.5,2,5)]®(x2 X3 xY y: (x2 X3, x5%) <[(20,30,45) : (15,30,55)],

[(0.5,1,3):(0.25,1,4)]® (x1 ", ", x3) s (x4 x ", x M) +

[(1,3.5,5):(0.5,3.5,7)]® (x 5/, x ' x55) - (x5, x I, x5) <[(14,15,30) : (5,15, 40)],
X1, X5 2 0.

where
=3(xM)% +4(x )2, £." =5x" +6x 1,

U= 501 )2+ 7(x 512, F 5N =8x Y +9x !
flu,€ :4(Xu,€)2 +5(X u,€)2 f ufs — 6Xij,€ +7Xg,€’
“=2(x{%)% + (35 ) f, =ax/" +5x5",
U= (xfU)2+2(x 542, FLN =2x Y +ax
FFMONLPY :  min f Y = (5(x{")% +7(x44)?,8x{" +9x ")
S. t.
6 xj" +5x 5" <55, (19)
4x5" +7x 5" <40,

x4 >20,j=1,2
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FEFMONLPY :  min " = (40492 +5(x59)2,6 x5 +7x4°
s. t.

5x{¢+3x5° <45, (20)

3x{“+5x5° <30,

ufé *uu u,é P
Xj =X X >0,j =12

FFMONLP™ :  min f ™ = (3(x")? +4(x1)?,5x" +6x M)
s. t.
4x"+2x 5 <30, (21)
x"+3.5x 5" <15

m *ue m s

FEFMONLP® :  min f % = (2(x{*)? +3(x5")?,4x;  +5x5")
s. t.
3x;i+ x5 <20, L (22)
05xl +x2 <14,
x;“=0,j =12

§24
Xj SXJ

FFMONLP® : min f ™ = ((x{")% +2(x5")%,2x{" +X )
s. t.

xi4 +0.5x 3" <15, (23)

0.25x;Y +0.5x 5Y <5,

£u =00 fu s
X = Xj X >0,]) =12. ]

FFMONLP" FFMONLPY/ FFMONLP™,

w'=w,;=w, =05

For The last five problem
FMONLPM and FMONLPEU will converted into the equivalent N.L.P. problems
FFPUYY (W™):  min 2.5(x4¥)? +3.5(x3)? + 4x{" +4.5x y!
s. t.
6 x}" +5x 5" <55, (24)

Ax3" +7x5" <40,
xi'=0,j=12
FFPU‘(w™):  min 20d%)? +2.5(x4%)2, +3xY“+3.5x 4"
s. L.
5x5¢+3x5° <45, > (25)
3x]“+5x5" <30

x‘jg < x}’““,x‘jg >0,j=12

FFP™(wW*):  min 1.5(xx")? +2(x )2, +2.5x{" +6x "

s. t.
2X{"+ x5 <15, (26)
x{" +3.5x 5! <15,
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FFP““(w*):  min (x{*)? +1.5(x5" )2 +2x{ +2.5x5

s. t.
3x; 4+ x5" <20, (27)
0.5x{"+x5" <14,
xffg xj ,xfgzo,jzl,z |
FFP Y (w™)

min0.5(x ) +(x
S. L.

) +x +05x

O.25xl

€U<

Xj_

Y +0.5x 53U <15,
+0.5x 5" <5,

X x5 =0j =12

i

> (28)

The fuzzy rough optimal solutions are:
X, X =[(6.364,7.046,8.409) : (6.364,7.046,8.409)],

X, =[(0.909,0.909,0.909) : (0.909, 0.909, 0.909)].

where the fuzzy rough efficient values range solutions for
R =[(56.74,99.19,171.89) : (27.89,99.19,217.37)]
And the fuzzy possibly optimal values range solution is

(FFP ™ w ™), FFP ™™ @ ™), FFP ™™ (w ™)) = (27.89,99.19,217.37)

The fuzzy surely optimal values range solutions are:

(FFP ™ (™), FFP™™ @ *), FFP ™’ (W *)) = (56.74,99.19,171.89).
In addition, the completely satisfactory solutions are:
(x,““x " x,"") = (6.364,7.046,8.409), (x,",x I, x
And the rather satisfactory solutions are:
(M x " x V) = (6.364,7.046,8.409), (x5

SU%) = (0.909,0.909,0.909).
X3 x5") =(0.909,0.909,0.909).

4. The a-Cut Approach for (FRMONLP) Problem

The multi-objective nonlinear programming problems with fuzzy rough coefficient, parameters and decision
variables are defined as follows:

—~— m ~
(FFRMONLPS5):min FR (xR)=> CF (xF)°.r=12 ... k; 6eZ"
j=1
s.t.
& AR (o R\S S R
2 A (XF)? <Bf,
j=1
XF>0iel ={L2..,n}

(29)

jed={12 ..,.m}
o Ci AT B el jed 5y ezt r=12..k,
whnere

respectively? The problem 29 can be converting as:

are fuzzy rough coefficient, and parameters,

(FFRMONLP6):min [f 5 (x):fY (x)]= i Y1) :(Y)Lr=12, ... k

j=1

S.t.

m (30)
Y IAF AT 181k E) (kY ) 1< (B} B ]

j=1

Xj. X5 20iel; jeloezt
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where
_(er’ I’j’ )CU_(C”, I’j’ )
:(aM a aué) AU :(aéu a aUU)
B =(b,bl",b"),B" _(bf“,b,m,b,““),
I22%) myo ui\o
- = X , X , X ,
are triangular fuzzy numbers, and J (( J ) ( J) ( J ) )

XY =()7.6)%.04%)

are triangular fuzzy variables

(FFRMONLP, ):min [f 5, (x):f 2 (x )] = Z [(C5)e: Cr)a]®IXT)o: (x])o]
s.t.
m (31)
Zl[[(AiE)a:(A%;)a]@[(xbi:<x5-’>2] [(BF),: (B} ),]
J:
(xP)5.0)020iiel; jed,5eZ"ae(0lr=12 . k.
The a-cuts of coefficient, pframeters and variables [see.E)efinition?] as:
C5). =) €).)Cy), =(cg). ;). )
(A5, =(@),. @) A)), =(@"),. @ )a)7
(B~iL )a = ((biw)a’(biw)a)l(éiu )a = ((bizu )ay(biuu )a)7
(K7 = (652 500, (5 ) = (") (X1)2)
Therefore
(FRMONLP, ): minf % (x) = Z[((c;?}f DM (PN () [
j=1
(<59, <492) ()2, 0N =1, 2, . K
s.t. (32)

D@ e @)0): (@) g @)L, (5) (x5S, (KT <
j=1

[0 )y 6 )0) : (0, (B )],
X599, x5, x5, )9 20,i el ; s € Z" € (0,1]
o fie, () =[(F o (X).F 1 (X):(F e (X),f 1 o9}
Therefore, the (FRMONLP“)
(MONLP) defines as follows:

wher

problem (32) decomposes to multi-objective nonlinear programming problem

MONLPY :minf 'Y (x) = Z Ci)a (x“”)a,r—l 2,...,k,
s.t.

o > (33)
> @), (43 < ),
j=1

(leu)a >0,iel,0eZ",ae(0,1]
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m
MONLPS“ :minf ;- () = > " (@4 )°.r =1, 2, ... k,
j=1

S.t.

m

> (@ (@) (K () <b}'“(a),

J:
X (@) <x* (@),

X (@)20,i el,5eZ", ae(0,1]
MONLP/“ :minf % (x) = i () ) (X)) 1 =12, ..., k
j=1
S.t.
2 (@)a)(()2)° <),
j=1

*X)e < (X{)a

X{)e=0iel; jed,6ezZt,aec(0]

MONLP M :minf 2 (x) = i (€)X r =12, ..., k,
j=1
S.t.
(@) <0
j=1

(X, <) (XM), 20i €1,6€Z",a € (0,1]

Now, using weighting sum method to convert the MONLP problem to the nonlinear programming N.L.P.

problem:

k m
PYY (W) imin > w > (5 ) NS o)
i=1

r=1
S.t.

D> (@) X)) < 0,
i=1

(W), 200 el; 5eZ" acOLw, W

N

k m
PYw ) imin D w D (5 )a) (X))’
r=1 j=1
s.t.

> (@) ((5))° <0
j=1

xiVa = X" )a

x{),=0iel,6eZ W, eW ,ae(0,1]

(34)

(35)

(36)

(37)

(38)
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k m
Py w ) imin > w (30 (€50 )(X5) )’
r=1 j=1
S.t.

> (@A) X)) <0
j=1

(39)
(7D < (X"
(Xi)g=0icl;w, eW ,6eZ", ae(01]
P2 W)t min 3w 3 (@4’
5.t. o
jil«aﬁ“ )OS = B, : (40)

¢ *0
X )a <X g

(x?“)azo,i elw,eW ,6eZ",ae(0,1]

uu * us o, * 20 fn* fu *
By theorem (3), the optimal solutions of Pa (w ),P“ (w ),P“ (w ),and P“ ( )problems are the
uu u’ 20 fu
efficient solutions of MONLPO‘ ,MONLP“ : MONLP, and MONLP, problems, respectively.

4.1. Algorithm Solution for FRMONLP Problem

1. Convert the problem to the form the (FRMONLF, ) .
2.

Use a-level cuts to deal with a fuzziness of fuzzy rough parameters decision variables as form
(FRMONLP,,)

3. Use decompose technique for (FRMONLP,) problem (32) to get the MONLP problem
MONLP" MONLPY, MONLP “and MONLP ™

4. Use one of the secularization methods say the weights method to convert

each problem MONLP™ MONLP'*,MONLP“and MONLP ™

with a
single objective in the form P‘lj‘u (W), PS‘E (W), Péé (w) and ngg W) .
For W= W ew Find the optimal solution of each nonlinear programming problems
P W), Pa (W), Pg’ (W) Pe (W)

Example 2: Consider the following FRMONLP
; R oR\2 , 7R (oR\2 R oR | R &R
Min (cp3 (X1)" +C15 (X3 )%, Ca1 X1 +C X5 )
s.t.
~R oR |, 2R R “R
A1 Xp +an Xy <0y,

Xp, X8>0
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C,, =(5,6,7):(1,6,9), &, =(3,4,5):(1,4,6), a;, =(1,2,3):(0.5,2,5),
a,, = (0.5,1,3):(0.25,1,4), a,, =(1,3.5,5):(0.5,3.5,7),

b, = (20,30, 45) : (15,30,55), b, = (14,15,30) : (5,15, 40).
The problem is writing as:

[(2,3,4): (1,3,5)]®[((x{)2, (xM)2, (x$)%) : (x{")2, ()2, 05" ) )] +
[(3.4,5): (2,4, 7)I®[((x5)?, (x53)2, (x3)%) : (x5")2, (x5)2, (x3) )],
[(4,5,6):(2,58)]®[(x{", x{", x1 ") (xt*, x{", x§" )]+

[(5.6,7): (L6,9)]®[(x5", x5, x5") : (x5, x5, x5")]

min

St.
[(3,4,5): (14, 6)]®[(x1", X", x4 ) s (%", x{", x§)] +
[[(1, 2,3):(0.5,2,5)]®[(x5, x5, x5°) : (x5, x5, x3")] <[(20, 30, 45) : (15,30,55)],
[(0.5,1,3):(0.25,1,4)]®[(x:*, x", x§ ) s (x{* , x]", x¥)] +
([(1, 3.5,5):(0.5,3.5, 7)] ®[(x55, x5, x%°) : (x5, xJ', x4 )]+ < [(14,15,30) : (5,15, 40)].
For @ =09 get:
[(1.5,3.5): (0, )] ®[((x1)5. 04 )2) 1 ()2, ) 2)]+
[(2.5,4.5):(0.5,5.5) I®[((x5)3, (x5)2) 1 (x5")2, (x5)2)],
[(3.5,5.5):(0.5,6.5)]®[(X1 )5 (X1 ) 1 ((X1") g X5) )]+
[(4.5,6.5):(—0.5,7.5)]®[(X5" ) (X5 ) 1 (X5") o1 (X5" ) )]
s.t.
[(2.5,4.5): (0,5)]®[(X1 ) (X1 ) g 1 (X1 ) s (XT*) )] +
[(0.5,2.5): (=1,3.5) 1 ®[(X5 ) o» (x5 ) 0 1 (X3") o» (X21) )] <[(13,37.5):(2.5,42.5)],
[(<0.5,2) : (—1.25,2.5)] ®[(X1" ) » (X1 ") o 1 ((X1") 4» (X1) )] +

[(0.25,4.25) : (—1.25,5.25)] ®[(X5°) ;. (x5°),, : (x5") . (x5") )1 <[(6.5,22.5) : (-7.5,27.5)]
The above problem can be written as the following problems:

MONLP," :min (4(x{")7 +5.5(x3" )7 ,6.5(1" )o +7.5(3"),,)
Ss.t.
5(x{"), +3.5(x%"), <425
2.5(xi"),, +5.25(x5"), <27.5,
(X" )0 (X5"), = 0.
MONLP," :min (3.504")7 +4.503)% 5504 ) +6.503"),,)
s.t.
4.5(x§%), +2.5(x5"), <37.5,
2(x4%) , +4.25(x5"),, < 22.5,
(X1, (x5, 20
MONLP, :min (L5(x{")2 +2.5(x5")2 ,3.5({"),, +4.5(¢5"),,)
S.t.
2.5(x{"),, +0.5(x5"),, <13,
—0.5(x1"),, +0.25(x5"),, <6.5,

(X{") g (X5")y =0
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MONLP :min (0.5(x{")2,0.5(x;"),, —0.5(x5"),,
S.L.

—(x{"), <25

~1.25(x;"),, —1.25(x5"), <—7.5.
"), (x5, =0
PUU (W*)
For w; =w,=0.5 we getting the corresponded weighting nonlinear programm-ing problems ¢
Ul o, * L6 fip fu * uu uf 00 fu
P, (w )’Pa (w )and P, (W) for MONLP, 'MONLPa MONLP, and MONLP,
can be described as follows:
PUY (w*):min 2(x{¥)2 +2.75(x4")2 +3.25(x4"),, +3.75(x2") )
s.t.
5(x;"), +3.5(x3"), <425
2.5(x{"), +5.25(xy"),, < 27.5,
3", (x5, = 0.

MONLPZ" . (™), =7.04,(;™),, =2.08

, respectively

Then, the efficient solution of
f U (x")=141.81

and the minimum value of

PYC (W) :min 1.75(x4)2 +2.25(x5°)2 +2.75(x}%),, +3.25 (x59),,
s.t.
4.5(x4"), +2.5(x%"),, <37.5,
244y, +4.25(x5"),, <22.5,
(x""), <7.042,
(xx**), <2.083,
(4 ) (x57) 20
ut ULy uly
Then, the efficient solution of MONLP, is (X1)q =6.82,(x3 "), =2.08
f U (x)=116.76
PLW ) min 0.75(x%)2 +1.25(x5%)2 +1.75(x;"),, +2.25(x5),,
S.t.
2.5(x{"), +0.5(x5"), <13,
—0.5(x;"),, +0.25(x5"),, <6.5,
x;"), <6.82,
(x5%), <2.08,
(X1 ) (X574 2 0

MONLP,". ("), =4.78,(x;"), = 2.08

and the minimum value of

So, the efficient solution of
f 2(x"*), =35.59
a a ) al

and the minimum value of

nd
P (w™) :min 0.25(x{")2 +0.25(x;"), —0.25(x5"),,
s.t.
-1.25(x;"), —1.25(x5"), <-7.5.
;") <4.78,
(x5™), <2.08,

") (X1, = 0.
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Then, the a-cut fuzzy rough optimal solutions are:
o), =[(4.78,6.82) : (4.78,7.04)]
1), =[(2.08,2.08) : (1.22,2.08)]
Where the a-cut fuzzy rough efficient values range solutions for
R =[(35.59,116.76) : (1.26,141.81)]
And the a-cut fuzzy possibly optimal values range solution is
P W), P (wW™)) = (1.26,141.81)
The a-cut fuzzy surely optimal values range solutions are:
(PLAwW™),PY (W) = (35.59,116.76).
In addition, the a-cut completely satisfactory solutions are:
(1) (X199 ) = (4.78,6.82), ((X5)y0» (x2"%),) = (2.08,2.08).
And the a-cut rather satisfactory solutions are:
(O5™) ., ")) = (4.78,7.04), ((x3™),, (x3"),) =(1.22,2.08).
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