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Abstract 
This paper presents a half step numerical method for solving directly general second order initial value problems. The 

scheme is developed via collocation and interpolation technique invoked on power series polynomial. The proposed 

method is consistent, zero stable, order four and three. This method can estimate the approximate solution at both step 

and off step points simultaneously by using variable step size. Numerical results are given to show the efficiency of the 

proposed scheme over some existing schemes of same and higher order. 
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1. Introduction 
Numerical Solution of second order Initial Value Problem (IVP) of the form  

     (   ( )   ( ))        (  )       (  )    
 
                                                                                    ( ) 

have been treated in a variety of ways including the use of polynomial and non- polynomial via collocation and 

interpolation approach, where     ,                          
   

 
                   

and          is called the step length, where   is the solution at     and   is the initial point, f is a continuous 

function within the interval of integration, the condition on the function f are such that existence and uniqueness of 

solution is guaranteed( Wend [1], and prime indicates differentiation with respect to x, while y(x) is the unknown 

function to be determined. 

Adeniran and Ogundare [2], propose a power series polynomial induced one step hybrid numerical scheme with 

two off grid points for solving directly second order initial value problems, the scheme can estimate the approximate 

solution at both step and off-step points simultaneously by using variable step size. 

Ojo and Okoro [3], use a Bernstein polynomial to develop one step hybrid scheme with one off-grid point via 

collocation and interpolation techniques for the direct solution of general second order ordinary differential 

equations. Adeniran and Olanegan [4], develop a continuous two-step method using trigonometric function as basis 

function with two discrete methods as end products, the performance of the method is demonstrated on some 

numerical examples to show accuracy and efficiency advantages. 

Adeniran and Longe [5], in their paper construct a one-step hybrid numerical scheme with one off grid points 

for solving directly the general second order initial value problems. The scheme is developed using collocation and 

interpolation technique invoked on Lucas polynomial. Numerical results of the scheme show some efficiency over 

some existing schemes of same and higher order. This paper is concerned with the development of half step method 

using power series polynomial for numerical solution of second order IVP. 

 

2. Development of the Method 
Considering a power series approximate solution in the form: 

  ( )  ∑    
  

     

   

                                                                                                                                                        ( ) 

where c and i are number of distinct collocation and interpolation points respectively. Substituting the second 

derivative of (2) into (1) gives: 

 (   ( )   ( ))  ∑  (   )   
        

   
                                                                                                (3) 

https://arpgweb.com/journal/journal/17
https://doi.org/10.32861/ajams.72.77.81
adeadeniran@fedpolel.edu.ng
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Academic Journal of Applied Mathematical Sciences  

 

78 

we consider  grid point of step length of half, collocating (3) at points x=   ,  
  

 

 

, and 
  

 

 

, interpolating (2) at 

x=   and  
  

 

 

 give  a system of five equations which are solved using Gaussian elimination method to obtained the 

parameters   ’s, j=0, 1,…,4. The parameters   ’s obtained are then substituted back into equation (2) to give a 

continuous half step method of the form 

 ( )         
 
 

  
 
 
   (       

 
 

  
 
 
   

 
 

  
 
 
)                                                                                    ( ) 

where   and    are continuous coefficients. The continuous method (4) is used to generate the main method, 

that is, we evaluate at x =  
  

 

 

 to obtain 
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)                                                                              ( ) 

In order to incorporate the initial condition at (1) into the derived scheme (5), we differentiate (4) with respect to 

x and evaluate at point at x=  , x =  
  

 

 

and x= 
  

 

 

 to obtain: 
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Combining the schemes derived in equation (5-8). The block method is employed 

to simultaneously obtain value for  
  

 

 

,  
  

 

 

,   
  

 

 

 and   
  

 

 

, needed to implement equation (1), thus we have 
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3. Analysis of the Method 
We analyze the derived method which includes the order and error constant, consistency zero stability, and 

convergence of the method. 

 

3.1. Order and Error Constant 
We adopted the method proposed by Fatunla [6] and Lambert [7] to obtain the order of our method as (3, 3, 3, 

4)
T 

and error constant as (
 

     
 

 

     
 

 

    
  

 

     
)
 

 

 

3.2. Consistency 
According to Gurjinder, et al. [8], A linear multistep method is said to be 

Consistent, if it has an order of convergence, say    , thus, our derived methods are consistent, since all are 

of order three and four respectively. 

 

3.3. Zero Stability  
To obtain the zero stability of the method, we consider the following conditions: 

i.   A block method of linear multistep method is said to be stable if as      the roots       ( )  of the first 

characteristics polynomial  ( )     that is  ( )     [∑ ( )    ]   , and for those roots  with    , 

must have multiplicity equal to unity.(see Fatunla [6] for details.) 

ii. If the block method be an     marix, then, it is zero stable as                 . For those roots with 

      , the multiplicity must not exceed the order of the differential equation. 

For the block method, as     

(
   
    

)                                                                                                                                                     (9) 

Taking the determinant of equation (9) and setting it equal to zero, we have  

 (   )                                                                                                                                                  (10) 

Solving equation (10), gives        
 

3.4. Convergence 
Theorem 3.1: The necessary and sufficient condition for a linear multistep method to be convergent is for it to 

be consistent and zero stable. 
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Thus our block method is convergent since it is zero stable and consistent. 

 

4. Numerical Implementation of the Scheme 
The effectiveness and validity of our newly derived method was tested by applying it to some second order 

differential equations. All calculations and programs are carried out with the aid of Maple 2016 software. 

Example1 
 We consider the non-linear initial value problem: 

     (  )              ( )          ( )  
 

 
 

Whose exact solution is given by:     ( )    
 

 
  (

   

   
) 

 
Table-1.  Showing the exact solutions and the computed results from the proposed methods for Example 1, h=0.1 

X Exact Numerical Error   

0.1 1.0500417292784912682 1.0500417286203137097 3.2627 * 10
-10

 

0.2 1.1003353477310755806 1.1003353463682225667 1.3629  * 10
-9

 

0.3 1.1511404359364668053 1.1511404337684041921 2.1681 * 10
-9

 

0.4 1.2027325540540821910 1.2027325509092220570 3.1449 * 10
-9

 

0.5 1.2554128118829953416 1.2554128074875801923 4.3954 * 10
-9

 

0.6 1.3095196042031117155 1.3095195981268332349 6.0763 * 10
-9

 

0.7 1.3654437542713961691 1.3654437458319520626 8.4394 * 10
-9

 

0.8 1.4236489301936018068 1.4236489182848502431 1.1909 * 10
-9

 

0.9 1.4847002785940517416 1.4847002613646092135 1.7229 * 10
-8

 

0.10 1.5493061443340548457 1.5493061185565787340 2.5777 * 10
-9

 

 
Table-2. Comparison of error for Example 1 with existing literature 

x [5] NPM 

0.1  1.051251* 10
-8

 3.2627 * 10
-10

 

0.2 2.176690 * 10
-8

 1.3629 * 10
-9

 

0.3 3.462528 * 10
-8

 2.1681 * 10
-9

 

0.4 5.022104 * 10
-8

 3.1449 * 10
-9

 

0.5 7.018369 * 10
-8

 4.3954 * 10
-9

 

0.6 9.700952 * 10
-8

 6.0763 * 10
-9

 

0.7 1.3471588 * 10
-7

 8.4394 * 10
-9

 

0.8 1.9005788 * 10
-7

 1.1909 * 10
-8

 

0.9 2.749090 *10
-7

 1.7229 * 10
-8

 

1.0 4.1118559 *10
-7

 2.5777 * 10
-8

 

 

Example 2 

Considering a moderately stiff problem 

            ( )            ( )               
Whose exact solution is     ( )        (x) 

 
Table-3. Showing the exact solutions, computed results and error from the Example 2. h = 0:1. 

x Exact Numerical Error  

0.1 -0.1051709180756476248 -0.10517091712093952832 7.0148 * 10
-10

 

0.2 -0.22140277842597346028 -0.22140275606719731284 1.7915 * 10
-09

 

0.3 -0.3498588075760031040$ -0.34985880413316020699 3.0859  * 10
-09

 

0.4 -0.4918246976412703178 -0.49182469260503176334 4.6154 * 10
-09

 

0.5 -0.6487212707001281468 -0.64872126379067590946 6.4152 * 10
-09

 

0.6 -0.8221188003905089749 -0.82211879128679201709 8.5253 * 10
-09

 

0.7 -1.0137527074704765216 -1.01375269580463281180 1.0991 * 10
-08

 

0.8 -1.2255409284924676046 -1.22554091384352892690 1.3864 * 10
-08

 

0.9 -1.4596031111569496638 -1.45960309304374005930 1.7202 * 10
-08

 

1.0 -1.7182818284590452354 -1.71828180633217309130 2.1072 * 10
-08
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Table-4. Comparison of error for proposed scheme with existing literature for Example 2 

x Error in Anake, 

et al. [9] 

Error in Yahaya 

and Badmus [10] 

Error in Kayode 

and Adeyeye [11] 

Error in Adeniran 

and Ogundare [2] 
Error in NP 

0.1 0.84 *10
-05

 0.87*10
-04

 0.817*10
-06

 2.22*10
-08

 7.0148*10
-10

 

0.2 0.53*10
-05

 0.32*10
-03

 0.31*10
-0

 1.25*10
-07

 1.7915*10
-09

 

0.3 0.62*10
-05

 0.22*10
-02

 0.6510
-05

 3.25010
-07

 3.085910
-09

 

0.4 0.16*10
-05

 0.49 *10
-02

 0.6610
-0 5

 6.42410
-07

 4.615410
-09

 

0.5 0.10*10
-04

 0.9110
-02

 0.11*10
-0 5

 1.099*10
-06

 6.4152*10
-09

 

0.6 0.29*10
-04

 0.14*10
-01

 1.80*10
-04

 1.7213*10
-06

 8.5253*10
-09

 

0.7 0.59*10
-04

 0.21*10
-01

 0.26*10
-04

 2.538*10
-06

 1.0991*10
-08

 

0.8 0.10*10
-03

 0.29*10
-01

 0.37*10
-04

 3.583*10
-06

 1.3864*10
-08

 

0.9 0.15*10
-03

 0.4*10
-01

 0.51*10
-04

 4.896*10
-06

 1.7202*10
-08

 

1.0 0.23*10
-03

 0.52*10
-01

 0.67*10
-04

 6.522*10
-06

 2.1072*10
-08

 

 

Example 3 

We consider a highly stiff problem  

                             ( )          ( )    

whose exact solution is  ( )     ( ) 

 
Table-5. Numerical result for Example 3 with h = 0:05 

x Exact Numerical Error  

0.1 0.90483741803595957316 0.90483741802371542157 3.5092*10
-13

 

0.2 0.81873075307798185867 0.81873075305510954668 1.0314*10
-11

 

0.3 0.74081822068171786607 0.74081822065024362953 1.9954*10
-11

 

0.4 0.67032004603563930074 0.67032004599739126976 2.7903*10
-11

 

0.5 0.60653065971263342360 0.60653065966918341872 3.4194*10
-11

 

0.6 0.54881163609402643263 0.54881163604671052571 3.9041*10
-11

 

0.7 0.49658530379140951470 0.49658530374135690883 4.2656*10
-11

 

0.8 0.44932896411722159143 0.44932896406538162995 4.5229*10
-11

 

0.9 0.40656965974059911188 0.40656965968776524454 4.6927*10
-11

 

1.0 0.36787944117144232160 0.36787944111827317188 4.7892*10
-11

 

 
Table-6. Comparison of error for Example 3 with existing literature 

x Error in Abhulimen and 

Okunuga [12] 

Error in Adeniran and 

Ogundare [2] 
Error in NPM  

0.1 - 2.05*10
-11

 3.5092*10
-13

 

0.2 0.26*10
-05

 4.39*10
-11

 1.0314*10
-11

 

0.3 0.40*10
-05

 6.55*10
-11

 1.9954*10
-11

 

0.4 0.53*10
-05

 8.38*10
-11

 2.7903*10
-11

 

0.5 0.66*10
-05

 9.86*10
-11

 3.4194*10
-11

 

0.6 0.79*10
-05

 1.10*10
-10

 3.9041*10
-11

 

0.7 0.93*10
-05

 1.19*10
-10

 4.2656*10
-11

 

0.8 0.11*10
-04

 1.24*10
-10

 4.5229*10
-11

 

0.9 0.12*10
-04

 1.28*10
-10

 4.6927*10
-11

 

1.0 0.13*10
-04

 1.30*10
-10

 4.7892*10
-11

 

 

Example 4 

We consider a highly oscillatory test problem: 

              ( )         ( )                                                                                                           (12) 

for     , the exact solution is known to be :   ( )     (  )     (  ).  

 
Table-7. Numerical result for Example 4 with h=0.01 

x Exact Numerical Error  

0.01 1.0197986733599108578 1.0197986733259586886 4.3881*10
-11

 

0.02 1.0391894408476120998 1.0391894407785766525 7.9019*10
-11

 

0.03 1.0581645464146487647 1.0581645463094435496 1.1525*10
-10

 

0.04 1.0767164002717920723 1.0767164001293760990 1.5252*10
-10

 

0.05 1.0948375819248539184 1.0948375817442325458 1.9079*10
-10

 

0.06 1.1125208431427856122 1.1125208429230113669 2.3002*10
-10

 

0.07 1.1297591108568736536 1.1297591105970470164 2.7014*10
-10

 

0.08 1.1465454899898729124 1.1465454896891430734 3.1112*10
-10

 

0.09 1.1628732662139455929 1.1628732658715111736 3.5291*10
-10

 

0.10 1.1787359086363028466 1.1787359082514125890 3.9545*10
-10
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Table-8. Comparison of error for Example 4 with existing literature 

X [12] [2] NPM 

0.01 - 0.00 4.3881 *10
-11

 

0.02 0:26*10
-05

 0.00 7.9019*10
-11

 

0.03 0.40 *10
-05

 0.00 1.1525*10
-10

 

0.04 0.53 *10
-05

 0.00 1.5252*10
-10

 

0.05 0.66*10
-05

 0.00 1.9079 *10
-10

 

0.06 0.79 *10
-05

 0.00 2:3002 *10
-10

 

0.07 0.93*10
-05

 0.00 2:7014 *10
-10

 

0.08 0:11*10
-04

 0.00 3:1112 *10
-10

 

0.09 0:12 *10
-04

 0:00 3:5291*10
-10

 

0:10 0:13 *10
-04

 0:00 3:9545 *10
-10

 

 

5. Conclusion 
The half method are derived via multistep collocation technique and implemented in block form. The method 

are of order 3 and 4, consistent, zero stable and convergent. The method is reliable, efficient display better accuracy 

than most of the existing ones in literature. 
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