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Abstract 
In this work, we consider a nonlinear epidemic model with a saturated incidence rate. we consider a population of size 

N(t) at time t, this population is divided into six subclasses, with N(t)=S(t)+I(t)+I₁(t)+I₂(t)+I₃(t)+Q(t). Where S(t), I(t), 

I₁(t), I₂(t), I₃(t), and Q(t) denote the sizes of the population susceptible to disease, infectious members, and quarantine 

members, respectively. We have made the following contributions: 1.The local stabilities of the infection-free 

equilibrium and endemic equilibrium are; analyzed, respectively. The stability of a disease-free equilibrium and the 

existence of other nontrivial equilibria can be determined by the ratio called the basic reproductive number. 2. We find 

the analytical solution of the nonlinear epidemic model by Homotopy perturbation method. 3. Finally the stochastic 

stabilities. The study of its sections are justified with theorems and demonstrations under certain conditions. In this work, 

we have used the different references cited in different studies in the three sections already mentioned. 
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1. Introduction 
This paper considers the following epidemic model with saturated incidence rate. 

 
 

 Consider a population of size N(t) at time t, this population is divided into six subclasses, with 

N(t)=S(t)+I(t)+I₁(t)+I₂(t)+I₃(t)+Q(t). Where S(t), I(t), I₁(t), I₂(t), I₃(t) and Q(t) denote the sizes of the 

population susceptible to disease, infectious members and quarantine members, respectively. 

 The positive constants μ represent rate of incidence. The positive constant β is the average numbers of 

contacts infective for S to I. The positive constant ν is the parameter of emigration. 

 The positive constant 
r

 is the parameter of immigration. 
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 The positive constants γ₁, γ₂, and γ₃, are the numbers of transfer or conversion of infected people 

quarantined. The positive constant α₁, α₂ and α₃ are the average numbers of contacts for I to Ii, i=1,2,3. 

 The positive constants μ, μ0, μ₁, μ₂, μ₃ and μ₄ represent the death rates of susceptible, infectious and 

quarantine.  

 Biologically, it is natural to assume that μ ≤ min {μ₀, μ₁, μ₂, μ₃, μ₄}. The positive constant d is natural 

mortality rate. 

 The formulation of the incidence rate  which ai, i=0, 1, 2, 3 is saturated rate with the 

susceptible. 

The initial condition of (1) is givens as: 

 

Where such that: 

 

Let  denote the Banach space  of continuous functions mapping the interval 

 [-τ, 0] into ℝ⁶. With a biological meaning, we further assume that  

, for i =1, 2, 3, 4, 5, 6. 

Hence, system (1) rewritten as: 

 
With the initial conditions (2), where 

, for i =1, 2, 3, 4, 5, 6.                                                                       (4) 

 

The region is positively invariant set of (1). 

 

2. Equilibrium and Local Stability   
An equilibrium point of system (3) satisfies. 

 
    We calculate the points of equilibrium in the absence and presence of infection. 

In the absence of infection, 
0; 0, i 1,2, 3.iI I= = =
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The system (3) has a disease-free equilibrium E₀. 

 
Theorem 2.1  

The disease-free equilibrium E₀ of the system (3) is locally asymptotically stable if R₀<1. 

So 
*E is the unique positive endemic equilibrium point which exists if R₀>1.  

Proof 

The eigenvalues can be determined by solving the characteristic equation of the linearization of (3) near E₀. 
Therefore, the eigenvalues are: 

 
In order to A6 will be negative, and then we define the basic reproduction number of the infection R₀ as follows: 

 
If R₀<1, A6 <0. 

We have Ai<0, i=1, 2, 3, A₄<0, A₅<0 and A₆<0, if R₀<1. 

Then E₀ of the system (3) is locally asymptotically stable. 

In the presence of infection , substituting in the system, Ω also contains a unique 

positive, endemic equilibrium.  Where 

 

So is the unique positive endemic equilibrium point which exists if R₀>1. W 

 

Theorem 2.2  

If R₀>1, the system (3) has a unique non-trivial equilibrium 
*E which is locally asymptotically stable. 

 

3. Solution of Model by HPM 

We define the operator

d
L

dt
=

,  

By applying the homotopy perturbation method to system, (3) we obtain the following form:  
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The initial condition is  

 
We assume the solution for system (8) in the form 

 
Using (10) in (8), and comparing the coefficients of the same power, then we obtain 

 
Moreover, we have 

 
 With the conditions  

 
We have  
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With the conditions  

 
Moreover, we have 

 
We suppose that p=1 in (10), we have the solution is in the form  

 
Finally the solution is 

1. The zero order solution 

 
 

2. The first order solution 
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3. The second order solution 

 
 

4. Stochastic Stability 
The system (3), is transformed to the Itô Stochastic differential equations. We replace β by β+ab (t) where b (t) 

is white noise. 
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Theorem 4.1   

If , S(t) converge exponentially almost surely to   

Proof 

We use Itô formula to the first equation in system (21), we obtain 

 
We suppose that 
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If the determinant of the equation is negative, then for all x. 

 
We have 

 
With integration, we obtain 

 
   

Since 

, almost surely. 

Therefore 

 

, almost surely.                                                                                         

S(t) is exponentially almost stable.  

 

5. Conclusion 
This paper addresses a the equilibrium and local stability of the epidemic model with saturated incidence rate, in 

the absence of infection, the system has a disease-free equilibrium, in the presence of infection the system, has a 

unique positive, endemic equilibrium. Then we applied the Homotopy perturbation method, we obtained The zero, 

first and second order solutions.  
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