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Abstract 
Genotype by environment interaction (GEI) linked to plant disease, soil properties and climate conditions add potential 

value for a breeding program to underpin decision making. In understanding genotype x environment interaction, the 

most challenging factors are the identification of genetic variation for a range of traits and their responsiveness to the 

climate change factors. In order to study the complex relationships with genetic and non-genetic factors, the application 

of Bayesian network tools will help understand and accelerate plant breeding progress and improve the efficiency of crop 

production. In this study, we proposed the application of Bayesian networks (BNs) to evaluate genotype by environment 

interaction under plant diseases, soil type, and climate variables.  An adapted to simulate multiple environmental trial 

(MET) data of maize (corn) was used to examine the performance of the BN predictive modeling using BayesiaLab for 

deriving knowledge and graphical structure for exploring GEI diagnosis and analysis. The results highlighted that 

genotypes have the same probability and the frequentist of rainfall, temperature, soil type, and disease type occurred as 

<=88 (46%), 35 (37%), clay (27%), and MB (47%) respectively, which have to monitor reflects in each discretization. 

This study provided a roadmap to knowledge modeling of GEI using BayesiaLab software. On a broader scale, this study 

helps predict the yield of crop varieties by understanding agronomic and environmental factors under farm conditions 

rather than conducting long-term agricultural testing under well-controlled conditions of the on-station trials. Future 

improvements of BNs application of METs should consider working on a larger and more detailed soil and irrigation 

system linked to agro system. 

Keywords: Bayesian networks; GEI; Climate condition; Diseases soils; Maize; BayesiaLab. 
 

 

1. Introduction 
Agricultural experiment station often involves a range of crops, livestock, and land variability on the natural soil 

variation. Accordingly, spatial variation of soil properties has implications for experimental station management in 

several ways: (1) accurate and reliable sampling for determining fertilizer application rates, (2) the degree of field 

uniformity influences the experimental design and plot size, and (3) possible carryover effects of residual nutrients 

where nutrients or soil moisture are not an experimental variable [1]. The classification of genotype and 

environmental interaction (GEI) occurs when differences between genotypes are not the same in all locations within 

and across years. Therefore, GEI is useful in the development and evaluation of plant varieties since it reduces the 

genotypic stability values under diverse environments [2]. Incorporation of different weather and soil physical 

variables into multi environmental trials can determine the potential causal factors of GEI modelling [3]. In order to 

better understand GEI from multi environmental trials (MET), it is important to understand the phenology of maize 

in relation to local environments [4]. Bayesian networks (BNs) are using a probabilistic propagation algorithm 

(Bayes Rule) to estimate the parameters of a network automatically from data. The degrees of uncertainty of the 

variables differed from various sources (such as expert opinion, empirical data or numerical data) for capturing the 

conditional dependence of a variable upon others [5]. BNs have been described by many authors (e.g. Laurila-Pant, 

et al. [6], Zhang, et al. [7], Do Amaral, et al. [8], Kocian, et al. [9]). BNs allow to study the causal relationships 

between variables and to calculate the probability of a variable when the other variables are known in the model, in 

BN, Monte Carlo analysis (MCA) can be considered a random sampling of probability distribution functions 

represent as inputs of Bayesian model to produce hundreds or thousands of possible outcomes [10]. BNs has been 

addressing in real applications in agricultural sciences, such as farming, water resources, reforestation and ecological 

modeling  for examples; [11] has  applied  Bayesian networks prediction of coffee rust disease using Bayesian 

networks; [12] have investigated Bayesian network in wheat and growing barley without pesticides; [13] have 
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discussed maize disease diagnosis system based on BN has (i.e.  A BN software package), which provide an 

effective tool for maize disease diagnosis; [14] have used BN for predicting energy crop yield; [15] have recently 

applied to analyze port variables in order to make sustainable planning and management decision [16]. Applied 

Bayesian network to visualize the complex interrelationships between interdisciplinary variables resulting from the 

impacts of climate change scenarios in agriculture [17]. Explored Bayesian networks as a convenient and 

interpretable framework for the simultaneous modeling of multiple quantitative traits in the plant breeding program 

from a Multiparent Advanced Generation Intercross (MAGIC) winter wheat population. BNs finally became 

accessible to a wide range of scientific research, particularly, in agricultural perspective. However, BNs can be built 

from agricultural knowledge, i.e. from multiple environments trials using machine-learned from qualitative and 

quantities data [18]. 

Recently [19] addressed a machine learning approach for crop improvement by leveraging phenotypic and 

genotypic big data to predict agricultural production based on phenotypic traits used in genomic selection in 

breeding. Furthermore, [20] reviewed the latest studies on machine learning in the field of plant breeding and 

biotechnology. There were more than fifty examples of recently applied machine learning models in classical and 

modern plant breeding studies, including neural networks, partial least square regression, and random forest in plant 

breeding and biotechnological studies [21-24]. Machine learning techniques are capable of handling large amounts 

of data in various areas of plant breeding for improved interoperability with more precise outcomes [25]. Stöckle and 

Kemanian [26], mentioned that the crop model development to assess genotypes performance across diverse target 

genetic × environment × management interaction practices will help understanding genotype suitability, best 

agronomic management in plant breeding programs ut results.  Also Lu, et al. [27] used Bayesian learning network 

model to explore the complex causal interactions between environments (i.e., climate, weather, drives and its impact 

severity), plant diseases for three different grape cultivars in Quebec, Canada. The problem is that uncertainty in 

agriculture is more extensive and complex; therefore, to create an effective intelligence system, uncertain knowledge 

must be dealt with. For the uncertainty in agriculture, there are some good model and application, but mainly rule-

based adapted to knowledge represented by Bayes rule [28]. In many situations GEI has been constituted due to the 

association between the environment and the phenotypic traits of a genotype, because GEI factors present in the 

environment as temperature, rainfall as well as the genetic constitution of an individual (genotype), influence the 

phenotypic expression of a trait [29]. Resende, et al. [30]. justified that with successful applications of traditional 

statistical methods in genotype, environment, and their interaction (G × E) studies have low efficiency in analyzing 

data obtained from multiple environmental trials due to nature of plant characteristics. Therefore, an adaptive and 

applied machine learning techniques is more effective than traditional statistical models in dealing with large 

amounts of complex and deterministic information [31]. The primary objective of this paper was to apply the 

Bayesian network for genotype by environment interaction under plant disease, land type and climate condition. This 

was addressed through the analysis and dynasties the factors affected genotype and environment interaction model in 

a simulation study and an application to maize dataset. The application of BNs in agricultural research, especially in 

METs will enable us to build comprehending Bayesian network probabilities for adapting strategies.  A Bayesian 

network is useful for better estimation and prediction of genotype by environment interaction outcome through 

visualization parametric distribution for describing interactions. The paper is attempting to apply BN at GEI model 

to provide an efficient support breeding in the decision-making process.  

 

2. Materials and Methods 
2.1. Experimental Data 

In this paper, a balanced dataset was used to meet the settings of the GEI models. GEI model obtains from 

simulating datasets based on genotypes and environments (three successive years and four locations/situations).   

Field experiment-based on location, soil type, year, total seasonal rainfall, total temperatures, and grain production 

were used to set the Bayesian networks' values. All the experiments were conducted at research stations at different 

locations to represent maize a production region. The phonotypic parameter consists of seed yield values in kg/ha on 

five genotypes of maize evaluated for three years (2010, 2011 and 2012) in different four locations.  A simulated 

multiple environmental trials data of maize (corn) were used to examine the performance of the BN model 

approaches under climate conditions, maize disease, soil types. In this paper we consider discrete cases as 

categorical variables and continue cases as a numerical variable. Climate conditions are commonly used in 

describing data consisting of variables, where the variable includes (temperatures, rainfall). Causal learning will be 

used to obtain a Bayesian network that predicts reasonably well (including outperforming NB. All statistical analyses 

were conducted with the BayesiaLab software.  BayesiaLab can be used for data analytics, diagnosis and knowledge 

modeling.  BayesiaLab has made Bayesian networks, convenient for obtaining in-depth information on problem 

areas. BayesiaLab uses the graphic structure inherent in Bayesian networks to explore and explain complex issues 

[32].  

In this study, the BNs components includes are  

I. Nodes represent variables of interest (the degree temperature, average rainfall, soil type, soil mixture, trail 

site, the seasons, the occurrence of an event (year).  

II. Direct and indirect causal dependencies among the variables. The directions are used to determine the 

relationship, i.e. genotype, genotype by environment interaction with diseases and climate condition.  

Understanding the behavior of complex traits involves modeling a Bayesian network of interactions among the 

effects of genes, environmental conditions, and other covariates 



Academic Journal of Applied Mathematical Sciences  

 

160 

2.2. Joint Probability Distribution Model  
The GEI probabilistic model represents the joint probability distribution (JPD) by the combination of the values 

of all the variables.  The conditional distributions for each variable in Bayesian networks always factoring by JPD. If 

   denotes some value of the variable Xi and     denotes some set of values for the parents of  , then           

denotes this conditional probability distribution [33]. From the frequentist point of view, we modelled plot grain 

yield data collected from multiple environments in terms of environmental effects, block effects within 

environments, genotype effects, and genotype-by-environment interactions,  under these assumptions, the local 

distribution          of each factor is a linear model. By using these results, the joint probability distribution    of a 

Bayesian network           can be factorized as follows: 

           ∏     

 

   

         

Where        stands for the set of random variables associated with the parents of the node corresponding to the 

variable  . Hence, the structure of the   acyclic directed graph (ADG) that used to decompose the joint probability 

distribution into factors. 

 

2.3. Bayesian Belief Networks  
In Bayesian belief networks (BBN) are well known and established as a way of representing problems involving 

uncertain relations among a collection of random variables. The nodes in a Bayesian network are graphical 

representations of events that exist in real life and they are termed variables or states [34]. Relations between such 

nodes are represented with and an arc drawn between the nodes. If there is a causal relationship between two 

variables, and so the bow will be directional or directed from the cause variable to the result variable. Figure 1 shows 

a Bayesian network where the genotype, environment, climate variables, disease types and soil types are 

conditionally independent. In this BBNs structure, at that place are nodes and sub symptom nodes, which correspond 

to variable. For example, the diseases type’s nodes are maize dwarf mosaic, maize sheath blight, maize northern 

blight and bipolarismaydis.  

 
Figure-1. The BNs framework model 

 
 

The BNs framework model is a proposed of GEI probabilistic modeling of the yield prediction system based on 

soil type, climate variables, effect of diseases applied to maize data. All the nodes in the network are associated with 

a probability distribution function which dimensions and definitions are dependent on the arcs that lead into the 

node. BNs can be considered as a special case of the more general class called graphical models where nodes 

represent random variables and the absence of arcs represents conditional independence assumptions between 

variables. In BNs, one node is used for each scalar variable, which may be discrete, continuous, or propositional 

(true/false). Moreover, results representation on GEI is a highly innovative point of this study, which allowed the 

assessment of a large amount of data gathering from multiple environmental databases to evaluate the model coupled 

with soil types, disease types and climate variables. The causal direction can be encoded by orienting the arcs from 

cause to effect.   

   

3. Results and Discussion  
The Bayesian network using supervised machine learning considered for discovering probabilistic relationships 

between many variables, without having to specify input or output nodes. The results of BNs outcomes has been 

selected the grain yield with a selection of genotype by environments interaction in locations or years, with others 

environmental variability such rainfall and temperature. Likewise, the choice of genotypes based on performance 

indices of grain yield rate related to temperature, plant diseases and rainfall. 
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3.1. BNs Node Relationships 
The relationships between the states of genotypes and environmental node in the GEI model were determined 

from the Bayesian estimation and learning. Figure 2 shows the conceptualization of BNs structure diagram 

developed around a selected priority issue by GEI model participants. 

 
Figure-2. Mapping of GEI Bayesian network 

 
 

Where: DisNmae= disease type (MD= Maize dwarf mosaic, SB= Maize sheath blight, NB=Maize northern 

blight and BM=Bipolarismaydis), Rep=replication/block, Rain=rainfall, Temp= Temperature  SoilT=Soil type (Clay, 

Heavy clay, heavy and Heavy craning), Location name= Sinnar (SIN), Wad Medani (Wad), Rahad (RAH) and 

Gaderf (GEF) and GY=Maize grain yield.  

 
Figure-3. Network consistency report of density function associated graph 

 
 

Figure 3 summarizes probability and density for overall current and straw model.  Both are a good model fit 

with consistency mean, standard deviation, minimum, maximum, and consistency gain that indicating an adequate 

fit.  

 

3.2. Probability Distributions of GEI Model 
On Bayesian networks, the probability distributions are the foundation of statistical models’ investigation and 

for building the probabilistic structure’s relationship between the variable/notes. In figure 4, we get two graphs, 

histogram joint probability and mean values and histogram with interactive inference among the notes/variables that 

assigning a probability to a subset of the possible outcomes’ relationship. The distribution and density function of 

the yield, temperature and rainfall are shown in figure 5, which presented a bunch of continuous density functions 

(probability distributions).  
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Figure-4. Histogram of genotypes, locations, years, rainfall, temperatures, soil type diseases and grain yield by bringing up its monitor 

<  

 

Figure 4 shows the histogram of genotypes, localizations, years, precipitation, temperature, and disease through 

its monitor. The results showed that genotypes had the same probability and that the frequency and probability of 

rainfall with <=88(46%), temperature with 35(37%), soil type of clay (27%), and disease were Manitoba (47%). 

 
Figure-5. Distribution and Density function of the yield, temperature, and rainfall 

 
 

Figure 5 shows the distribution and density function of rainfall is mostly close to lognormal distribution, while 

maize yield is close to the normal distribution and temperature is close to the power lognormal distribution. 

However, a Bayesian network is considered to specific the real-world phenomenon of the parameters, which have 

actual numbers as values, which we can estimate from the data. 

 

3.3. Bayesian Network Target Analysis of Maize Grain Yield  
Simulated data information such as mean value, modal value, a priori modal value, Bayes factor variation, 

maximal positive variation and maximal negative variation were presented in different three level states of grain 

yield in Table 1, 2 and 3 respectively. We also describe the NBS results of the comparison of GEI performance of 

corn yields using three classes. The significance of the node in relation to the information that the node provides to 

the knowledge of grain yield. 
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Table-1. Performance indices of maize at grain yield (GY) = <=524.9 (2/3) (41.11%) 

 
 

Table 1 presents performance indexes for all nodes (location, replication, years, genotypes, diseases, soil type, 

temperature and rainfall) identified by the node for grain yield (GY) <=524.9.  The modal value of the cereal yield 

was localized at Sinnar in relication2/block2 with soil-type clay during the 2011 season at a temperature of 38c with 

MD-type diseases of genotypes G3 to 88 mm of rain.  A performance index for the maximum positive variables was 

similar to the original modal value performance indexes, with temperatures and precipitation differing from 35c and 

115mm. While the performance indexes of the maximum negative variability were entirely different from the 

original modal value. The maximum negative modal value of the grain yield was located at Gedarif with a heavy 

clay soil type in the 2012 season at temperature 38 with NB-type diseases of genotypes G5 to 88 mm of rain.   

 
Table-2. Performance Indices of maize at grain yield (GY) = >524.9 (3/3) (29.44%) 

 
 
Table 2 presents the performance indexes for all nodes (location, replication, years, temperature, disease, 

genotype and precipitation) reported by the node to grain yield (GY) <=524.9.  The modal value of the cereal yield 

was located at Gedarif in relication3/block 3 with heavy clay soil type during the 2011 season at a temperature of 

38ºC with DG disease type G5 to 88 mm of rain. The maximum positive change performance indexes were similar 

to the original forecast modal value performance indexes, with temperatures and precipitation differing from 35c and 

115mm. The maximum negative modal value of cereal yield was located at Sinner with soil-type clay during the 

2013 season at temperature 38 with SB-type diseases from genotypes G1 to 88 mm of rain.   

 
Table-3. Performance Indices of maize at grain yield (GY) = <=346.2 (1/3) (29.44%) 

 
 

Table 3 presents the performance indexes for all nodes (location, replication, years, temperature, disease, 

genotype and precipitation) reported by the node to cereal yield (YG) <=346.2.  The modal value of grain yield was 

sited at Sinnar locations with soil type clay during season 2013 at a temperature 38 degrees with diseases type MD of 

genotypes G1 88 mm rainfalls. Performance indexes of the maximal positive variation were like performance indices 

of original modal value expected the disease type was SB. The maximal negative modal value of grain yield was 

sited at Gedarif location in relication3/block3 with soil type Heavy clay during season 2011 at temperature 35 with 

diseases type MD of genotypes G5 at 115 mm rainfall.   Generally, in terms of Bayes factor, the performance indices 

of maize at grain yield (GY) at GY =524.9 was performed better compared to other two values. 

 

3.4. Multi Target Performance  
Table 4 shows the precision and mean, coefficient of determination and mean square error of grain yield of the 

different percentages of values randomly suppressed (mean, minimum and maximum) for corn grain yield. The 

highest overall accuracy was achieved at 41% and the average was 36% with a 4.5% determination factor. This 

indicates that the Bayesian efficiency of grain yield is reasonable using suitable simulated data. 
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Table-4. Overall and means precision, coefficient of determination, and mean square error of GEI factors performance 

Node Overall Precision Mean Precision R2 RMSE NRMSE 

Disease type 45.00% 26.10% 0.0035 0.9665 32.22% 

Grain yield  53.33% 53.24% 0.2176 133.1776 17.24% 

Genotype 28.89% 28.89% 0.0456 1.3816 34.54% 

Location Name 32.78% 31.39% 0.0112 1.0967 36.56% 

Rainfall  46.11% 33.33% 0.0178 24.0101 18.61% 

Replication  39.44% 39.44% 0.0011 0.8161 40.80% 

Soil type  32.78% 31.39% 0.0033 1.1305 37.68% 

Temperature  47.22% 33.33% 0.0003 2.1982 21.98% 

Year 44.44% 44.44% 0.1011 0.7741 38.71% 
R2= coefficient of determination, RMSE= root mean square error, NRMSE= the normalized root mean square error. 

 

Table 4 provides the overall and average precision, coefficient of determination and mean square error of the 

GEI variables used in this study. Years and block site (replication) gave a high overall accuracy, while disease, grain 

yield rainfall gave a global accuracy and a temperature of about 60%, and locations (sites) have given an overall 

accuracy of about 50 percent. Genotypes had a general accuracy of 31%.  On the basis of the coefficient of 

determination, grain yields and the season proved to be strongly linked. Different levels of precision were found for 

the different traits. Overall accuracy forecasts were 53.3% with a global coefficient of determination of 47%. 

However, grain yield and rainfall were subject to a high forecast error of 133.17 and 24, respectively. For 

quantitative evaluations, discrete output states may be replaced by NRMSE values of 17.24% and 18.6% for greater 

efficiency.  The optimization tree has constructed like (grain yield with location, rainfall with (genotypes and 

temperatures), soil types and plant disease. The target interpretation tree prescribed in this study to obtain maximum 

information to a GEI model, also taking into account the fact that the data were adapted or simulated. Conceptual 

model of the links between genotype and environmental values (precipitation and temperature) and disease.  The 

target grain yield (GY) influence analysis represents the management actions and attributes of a priority in response 

to changes in grain performance metrics.  The study provided a road map for modeling knowledge on plant diseases 

and climatic conditions using factual reasoning with Bayesian networks.   This study is being proposed as a Bayesian 

network framework for GEI model inference at managerial levels and to highlight the need of this interference as an 

integral part of the classification, optimization and predication in BNs. While the use of BNs is already becoming a 

standard practice, the coherence of the BayesiaLab software will be useful and appropriate in the application of 

Bayesian research and also in improving the capacity of decision analysis plans.  The results demonstrated that 

applies the Bayesian network for genotype efficacy by the interaction of the environment under plant diseases, the 

model of land types and climate variables as a synthesis framework enables the agronomist to establish the 

uncertainty that characterizes the definition and implementation of the GEI analysis. As observed in other studies, 

Bayesian networks can investigate appropriate and interpretable framework for the simultaneous modeling of 

multiple quantitative traits in better predictive power result in the context of additive genetic models [35] Among the 

other studies that had good performance for example [36] used VW-4DEnSRF algorithm to study the area and 

winter wheat yield estimation based on the WOFOST crop model and a crop yield assimilation system. Wei, et al. 

[25], study highlighted that despite of the impact machine learning approaches in understanding and exploiting GEI 

for prediction, there is still some room for expanding and improving their use in applications not yet explored. [37] 

used the deep learning model such as convolutional neural network (CNN) and artificial neural network (ANN) to 

Self-Predictable Crop Yield Platform (SCYP) based on crop diseases using deep learning that collects weather 

information (temperature, humidity, sunshine, precipitation, etc.) and farm status information (harvest date, disease 

information, crop status, ground temperature, etc.), diagnoses crop diseases by using and predicts crop yield.  

 

4. Conclusions 
The study is well addressed, the diagnosis of maize grain yield under climate, soil types and disease types. 

Indeed, the role of Bayesian network has identified the elements that determine a management scheme that ensures 

sustainability of maize yield resources.  Bayesian network is a potent tool for interpreting and dealing with uncertain 

knowledge. Thus, it is instinctive to use Bayesian network for yield prediction using GEI model.  However, the 

results obtained by this method are dependent on with the structure and parameters of the GEI Bayesian network.  

The results of this study were the ideal example to be concerning of future research application of Bayesian network 

in plant breeding programs of the big data related to GEI problem.  Future development of Bayesian network of 

multiple environmental trials based on data, experimentation in the agricultural project will highly affect the 

agricultural classification.   
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