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Abstract 
The two goals of the present article are: 1) To define transformations (named here as auto-transformations) of the 

probability density functions (PDFs) of random variables into some similar functions having smaller sizes of their 

domains. 2) To research and outline basic features of these auto-transformations of PDFs. Particularly, auto-

transformations from infinite to finite domains are analyzed. The goals are caused by the well-known problems of 

behavioral sciences. 
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1. Introduction 
1.1. Preliminaries  

The present article is devoted to modifications of the probability density functions (PDFs) of continuous random 

variables (r.v.s).  

The next stage of this work will be a mathematical description of influence of noise (and other causes that can 

cause dispersion of data) on measurement data near the boundaries of the measurement intervals.  

The article develops works [1-3], where biases of the expectations of random variables are revealed near the 

boundaries of finite intervals, and an applied mathematical method (approach) and model are created. The method 

and model have qualitatively explained some well-known generic problems of behavioral economics, decision 

theories, and the social sciences. The examples of such problems are the underweighting of high and the 

overweighting of low probabilities, risk aversion, the Allais paradox, risk premium, etc. 

 

1.2. Main Goals of the Article  
The main goals of the article are to determine transformations of probability density functions of continuous 

r.v.s from some larger (especially from infinite) domains into some smaller ones and to outline general properties of 

these transformations (named here as auto-transformations or ATs).  

The transformations can be performed from infinite into half-infinite, from infinite and half-infinite into finite, 

and also from larger finite into smaller finite domains (intervals). These transformations of probability density 

functions are the first example of such transformations and can be extended in future to the general case of the real-

valued random variables.  

Suppose PDFs whose domains are infinite. The initial point, that has motivated this goal, is a question how 

could such or similar PDFs be modified if their domains were half-infinite or finite. The modifications near the 

boundaries of the intervals (domains) are of particular importance. 

 

1.3. Review of the Literature  
Bounds for moments and functions are considered in many works, see, e.g., Cacoullos [4]; Chernoff [5]; 

Madansky [6]; Moriguti [7]. Situations considered in Bhatia and Davis [8]; Dokov and Morton [9]; Pinelis [10];  

Prekopa [11]; Sharma and Bhandari [12]; Sharma, et al. [13] are, in the mathematical aspects, the most similar to 

those analyzed here.  

Mathematical aspects of behaviour sciences, utility and prospect theories are considered in a number of works, 

see, e.g., Biagini and Frittelli [14]; Choulli and Ma [15]; von Neumann and Morgenstern [16]; Steingrimsson and 

Luce [17]. Similar aspects are kept in mind in the present article as well. Works Aczel and Luce [18] and 

Steingrimsson and Luce [17] constitute one of initial points for the considerations of Harin [1];  [2], and of this 

article.  

https://arpgweb.com/journal/journal/17
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Qualitative influences of noise are considered in some works. For example, stabilization and synchronization by 

noise are considered in a number of works, see, e.g., Applebaum and Siakalli [19]; Arnold, et al. [20];  Barbu [21]; 

Cerrai [22]; Flandoli and Gess [23]; Hua, et al. [24]. A noise as a possible cause of some periodic behavior is 

considered in, e.g., Giacomin and Poquet [25]; Scheutzow [26]. The forbidden zones that will be considered in the 

next section can be treated as some qualitative influence of noise (and of other sources of dispersion) upon the 

expectations of data. 

 

2. The Problematic That Has Motivated This Article  
2.1. Problems of Behavioral Sciences  

A man as an individual actor is a key subject of economics and some other sciences. There are basic problems 

concerned with the mathematical description of the behavior of a man. They are the most actual in behavioral 

economics, especially in utility and prospect theories, and also in decision theories, the social sciences and 

psychology, see, e.g., Kahneman and Thaler [27].  

Examples of the problems are the underweighting of high and the overweighting of low probabilities, risk 

aversion, the Allais paradox, risk premium, the four-fold pattern paradox, etc.  

The essence of the problems consists in biases of preferences and decisions of a man in comparison with 

predictions of the probability theory. These biases are maximal near the boundaries of the probability scale. 

 

2.2. Existence Theorem. Applied Mathematical Method and Model  
Bounds on the expectations of r.v.s (or bounding inequalities or, in other words, forbidden zones for the 

expectations of r.v.s) that take on values in a finite interval are considered in, e.g., Harin [1], and Harin [2]. 

Suppose a set  {Xi},  i = 1, … , n,  of random variables  Xi  whose values lie within an interval  [a, b].  If  0 < (b-

a) < ∞  holds for  [a, b],  and if the condition  ζ
2
i ≥ ζ

2
min > 0  of the minimal variance  ζ

2
min  holds for their variances  

ζ
2
i, then their expectations  μi  are separated from the boundaries  a  and  b  of the interval [a, b]  by forbidden zones 

of the non-zero width  

b
ab

b
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That is, the theorem proves the existence of forbidden zones of a certain non-zero width for the expectations of 

measurement data under the condition that the variance of the data is not less than some minimal variance of a non-

zero value.  

Such non-zero minimal variances of measurement data can be caused, e.g., by noise, imprecision, errors, 

incompleteness, various types of uncertainty. Noise can be one of usual and important causes.  

This theorem has led to an applied mathematical method (approach) of the biases of the expectations. The 

method supposes that the subjects (peoples) make their choices (at least to a considerable degree) as if there were 

some biases of the expectations for games.  

The first stage of the approach is a concept of qualitative mathematical models. The models are concentrated on 

cases when the signs of the presupposed differences (for the choices of subjects), that are required to obtain the 

observed data, are not equal to the signs of the real differences between the expectations for the uncertain and sure 

games.  

These general models enable formal solutions of the considered paradoxes, but some problems were aroused. In 

particular, the limits of their applicability need additional research (see the next subsection).  

The first step of realization of the concept is a special qualitative mathematical model (see, e.g., Harin [3]) 

designed for the cases when the expectations for the sure and uncertain games are equal to each other. It had allowed 

working reliably within the above limits of the applicability, and the model was successfully and uniformly applied 

in more than one domain of experimental data.  

Nevertheless, the above general problems of the limits of applicability of the models still stand over.  

 

2.3. Need for Further Research  
One of main questions concerning these theorem of existence of forbidden zones and method of the biases of the 

expectations is to analyze the widths of the forbidden zones for various PDFs. In particular, the width  rµ  of the 

forbidden zones for the expectations can be determined from (1) as  

ab
r




min
2

 .          (2) 

We see that this width can evidently be neglected with respect to the minimal standard deviation (SD)  ζmin  when  

ζmin  0.   

Suppose the level of the noise (or other source of the variance of the data) tends to zero. Hence, the variance of 

the data also tends to zero. Then the width of the forbidden zones tends to zero as well. One can estimate also the 

ratio of this width to the SD. This ratio represents, in particular, the decreasing of the width with respect to the 

decreasing of the SD (when the noise level decreases).  

Therefore expression (2) leads to an important consequence: “When the minimum of the standard deviation 

tends to zero then the ratio of the width of the forbidden zones to the minimum of the standard deviation tends to 
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zero as well." It means (approximately) that the widths of the forbidden zones decrease much faster than the SD 

does. This means that, at least in some cases, the widths of such forbidden zones can be neglected at low levels of 

the noise (and other sources of the forbidden zones).  

So, the practical problem is whether the considered forbidden zones and biases for results of experiments can be 

neglected at low levels of their causes (such as noise). This leads to the future goals of the present research.  

There is an additional problem as well. The above theorem has been proven for finite intervals. However, a 

number of important PDFs are defined on infinite and half-infinite intervals. So there is a need for a tool for 

estimations or at least for hypotheses and assumptions about these or similar important PDFs. This leads to the main 

goal of the present article.  

 

3. Auto-Transformations. Main Definitions  
3.1. Auto-Transformations as a Tool for Modifications and Hypotheses  

The domains of many important probability density functions are infinite. The normal distribution can be 

mentioned as one of the most important examples. Questions can arise about how such or similar probability density 

functions could be modified if their domains were half-infinite or finite.  

Generally, questions can arise about how PDFs can be modified when their domains are modified from larger to 

smaller sizes of the domains. These questions may be relevant in particular in connection with possible expansions 

and generalizations of the results of, e.g., Harin [1] and Harin [2] obtained for finite intervals.  

Such questions can be too hard to be solved immediately and exactly. Therefore a tool can be proposed here to 

modify probability density functions, and put forward hypotheses and make assumptions about such modified 

functions. It will modify mainframe probability density functions into transformed ones those will be, depending on 

parameters of the transformations, similar to the mainframe functions to a greater or lesser degree.  

This tool can be named as auto-transformations of probability density functions.  

 

3.2. Main Definitions, Assumptions, and Abbreviations  

3.2.1. Preliminary Notes  
For the purposes of the present article and research, following definitions, assumptions, and abbreviations are 

used here.  

Random variables are abbreviated to r.v.s.  

For the sake of simplicity and to not increase excessively the volume of the present first article devoted to this 

item, only continuous and piecewise continuous probability density functions are considered here as a rule.  

The standard deviation is abbreviated to SD. Probability density functions are abbreviated to PDFs. The 

Heaviside step function is referred to as  θ(x) : θ(x|x < 0) = 0, θ(x|x ≥ 0) = 1. The symbol  Δ  is used both without 

round brackets as, e.g.,  Δf  and with them as, e.g.,  Δgen(E(X)).  

For the purposes of this article, a finite boundary of an interval is defined as the boundary which coordinate is 

finite and an infinite boundary is defined as the boundary which coordinate is infinite.  

Consider the domain of the probability density function of a random variable. Suppose this domain is the 

infinite or a half-infinite (or a finite) interval. Further, this interval is referred to as a mainframe interval (MF-

interval or MFI). The corresponding probability density function of this variable is referred to as a mainframe PDF 

(MF-PDF or MFF or f).  

 

3.2.2. Auto-Transformations. General Definitions  
Auto-transformations are abbreviated to ATs.  

A half-infinite or finite part of the infinite MF-interval and a finite part of a half-infinite (or finite) MF-interval 

are defined as an interval of auto-transformation or an auto-transformation interval (AT-interval or ATI) under 

the following three determining conditions:  

1.  The AT-interval contains (at least at its boundary) at least one of the main features of the mainframe 

probability density function such as the expectation, median or mode.  

2.  The part of the MF-PDF that is situated in the ATI is identically mapped into the ATI (or, in other words, is 

unchanged).  

3.  The part or parts of the MF-PDF that lie outside the ATI are mapped into ATI. Types or modes of this 

mapping can be chosen in accordance with the goals and conditions of the mapping.  

So the summarized transformation of the MF-function is fully enclosed in the AT-interval and consists of the 

following two parts:  

1)  the part that is identically mapped (or, in other words, is unchanged);  

2)  part(s) that is (are) mapped from outside of the ATI into inside of the ATI (usually they are denoted as out-

ATI part(s)).  

This resultant transformed MF-function is referred to as an auto-transformed probability density function (AT-

PDF or ATF).  

 

3.2.3. Auto-Transformations. Specific Definitions  
The boundaries of mainframe intervals are usually denoted with a subscript “MF” as, e.g.,  aMF  or  bMF. They 

can be either infinite or finite.  
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The boundaries of AT-intervals are denoted either without any subscript as, e.g.,  “a”  or  “b”,  or with the 

subscript “AT” as e.g.,  “aAT”  or  “bAT”.   

Finite boundaries of AT-intervals those are the nearest to the expectations of the MF-PDFs are often marked by 

a subscript “boundary” and referred to as  aboundary  and/or  bboundary. Such left finite boundaries are often determined 

as aboundary = 0. So the minimal distance between the expectation of the variable and the nearest left boundary  

aboundary  of the interval is referred to as  min(|E(X)-aboundary|)  or simply  |E(X)-aboundary|  or simply  E(X).   

Finite AT-intervals are usually referred to as  [a, b],  where  -∞ < a < b < +∞  (while  aMF  and  bMF  usually can 

be supposed as infinite).  

The medians of MF-functions are referred to as  mX  or  m.   

Normal-like PDFs are defined as symmetric PDFs with non-increasing sides. In other words, for a normal-like 

PDF  f  we have:  

))(())(( cc xXEfxXEf     

and if  |)(||)(| XExXEx dc  ,  then  )()( dc xfxf  .   

 

3.2.4. Types of Auto-Transformations and Situations  
A contiguous situation is defined as the situation when a finite boundary of the MF-interval touches a finite 

boundary of the AT-interval.  

A hypothetical reflection situation is defined as the situation when the MF-PDF  f  is modified to the AT-PDF  

frefl  such that a part of  f  is reflected (as an addition) with respect to some point (dot)  drefl ≡ dreflection  of the 

reflection. This point can coincide with the median  mX  of MF-PDF.  In this case  mX  and  drefl  are often supposed 

to be  drefl = mX = 0  for the left point  drefl  and  

)]()()[()( xfxfxxfrefl  .   

The hypothetical reflection situation is, in a sense, similar to the reflection of a wave of light from a mirror.  

If an auto-transformation interval is finite, especially if the mainframe interval is infinite or at least semi-

infinite, then the reflection can be multiple. This can occur also in similar cases but in the absence of reflection. In all 

these cases the AT can be referred to as the repeated auto-transformation or multiple AT or many-fold AT or 

two-mirror AT. Otherwise (and as a rule in this article), ATs can be referred to as one-fold ATs.  

A hypothetical adhesion situation is modified from the reflection one. The reflected part of the MF-PDF is 

“adhered” (as an addition) to the boundary  drefl = aboundary = 0.  The MF-PDF is transformed to the function of the 

mixed type, such that its discrete part is equal to the integral of the reflected part of the MF-PDF. In other words, the 

reflected part of the mainframe PDF is adhered to the point  x = 0.  In Appendix 1 the necessary statement is proven 

that adhesion ATs provide the minimal distances from the boundaries of ATIs to the expectations of AT-PDFs.  

ATs that transform the out-ATI parts of the MF-PDFs into linear additions to the AT-PDFs are referred to as 

linear ATs. ATs that transform the out-ATI parts of the MF-PDFs into stepwise additions to the AT-PDFs are 

referred to as stepwise ATs (the both linear and stepwise ATs can be many-fold).  

Auto-transformations are referred to as boundary-matched ATs if they transform the out-ATI parts of the MF-

PDFs into additions to auto-transformed PDFs such that those values are equal at the corresponding boundaries to 

the values of the MF PDFs. When those values are equal to the means of the MF PDFs, then these ATs are referred 

to as mean-matched ATs.  

For the purposes of the present research, one can denote a vanishing auto-transformation as the auto-

transformation such that the additional part  Δf  of the AT-PDF starts at the corresponding boundary of the ATI with 

a non-zero value and vanishes to the zero value.  

Vanishing ATs can be of convex, triangle, concave, and mixed types. Stepwise ATs can be considered in a 

sense as the upper (unattainable) limit cases for convex vanishing ATs.  

In all situations the non-modified standard deviations of the non-modified mainframe probability density 

functions are used to analyze and estimate the auto-transformed probability density functions.  

Usually,  ħ  denotes the value (height) of the probability density function (h  will be used in future for the 

probability mass function) and  l  denotes the length. Usually, the index “1” denotes the center or top of a function, 

that is  ħ1 ≡ ħcentre  and  l1 ≡ lcentre.  The index “2” denotes the side or tail or bottom of a function, that is  ħ2 ≡ ħside ≡ 

ħtail  and  l2 ≡ lside ≡ ltail.   

Let us denote the means of the mainframe PDFs within the AT-intervals as  fmean = fMF.ATI.mean.  They are equal 

to  




AT

AT

b

a

MF

ATAT

mean dxxf
ab

f )(
1

.   

These means can be used as objective reference points for various purposes.  

Auto-transformations can be used as a basis for approximation, modelling etc. Approaches and first 

approximation models that use auto-transformations can be referred to as AT-approaches and AT-models.  

 

3.3. Possible Generalizations  
Similar auto-transformations can be evidently used for functions beyond the scope of the theory of probability. 
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4. Auto-Transformations. General Considerations  
4.1. Modifications of Out-ATI Parts  

Let us denote the norms of  f  on the out-ATI parts as  

 

a

a

a

a

leftout

MF

AT

MF

dxxfdxxf )()(.    

and  
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MFMF

AT

b

b

b

b

rightout dxxfdxxf )()(.    

and denote  

rightoutleftoutout ..   .   

Let us consider some possible cases of modifications of the out-ATI parts of the mainframe probability density 

functions into the auto-transformed probability density functions.  

 

4.1.1. Non-Increasing Auto-Transformations  
Auto-transformations that transform the out-ATI parts of the MF-PDFs into the additions to the AT-PDFs (that 

are added to the unchanged parts of the MF-PDFs in the AT-intervals to constitute the resulting AT-PDFs) that do 

not increase in the directions from the corresponding boundaries to the middles of the AT-intervals (et seq.) are 

referred to as non-increasing ATs.  

Non-increasing auto-transformations correspond to intuitive condition that the auto-transformed out-ATI part 

should contribute near the boundary that is the nearest to this out-ATI part, at least, not less than near the opposite 

boundary. Stepwise ATs belong evidently to non-increasing ATs.  

Non-increasing auto-transformations are the main type of ATs considered in the present article.  

 

4.1.2. Full-ATI Auto-Transformations. Uniform Auto-Transformations  
ATs that transform the out-ATI parts of the MF-PDFs into the total AT-intervals are referred to as full-ATI ATs 

or filling ATs.  

Suppose that the out-ATI parts are uniformly mapped into the ATI, e.g., by means of some uniform coefficient 

or addition.  

Uniform multiplication (including increasing ATs). The MF PDF that is situated in the AT-interval is 

multiplied by the uniform rising coefficient  

out

MF
AT

baxxf
xf






1

]),[|(
)( .   

Uniform addition. The out-ATI parts are added uniformly to the unchanged part of the MF-PDF and the 

transformed PDF is  

ab
baxxfxf out

MFAT





]),[|()( .   

Uniform addition auto-transformations evidently belong to stepwise (and non-increasing) full-ATI ATs. In 

Appendix 2, statements are proven that uniform addition ATs provide the maximal distances from the expectations 

of the AT-PDFs to the sides of reflection of the ATIs (and the minimal distance to their opposite sides) among the 

non-increasing auto-transformations.  

 

4.1.3. Boundary-Matched and Mean-Matched Auto-Transformations  
Various types of boundary-matched (BM) and mean-matched (MM) ATs can be considered. Here are two 

examples of linear non-increasing ATs. 

The length of, e.g., left stepwise part of a stepwise MM AT equals  

mean

leftout

leftmeanstepwist
f

l
.

..


 .   

The length of, e.g., left triangle part of a triangle BM AT equals  

)(

2 .

..
af

l
leftout

leftboundtriangle


 .   

Trapezium auto-transformations are evidently an intermediate case between the stepwise and triangle ones. 

Stepwise, trapezium, and triangle linear ATs constitute a family of linear and piecewise linear auto-transformations.  

Necessary (see subsection 4.3) auto-transformations ensure the necessary condition (see proofs in Appendix 4) 

to provide mean-matched one-fold non-increasing (linear and nonlinear) auto-transformations.  

Suppose non-increasing auto-transformations, e.g., mean-matched ones. Let us consider out-ATI additions to the 

AT-PDFs. If the AT-intervals are sufficiently short, then the non-increasing mean-matched ATs cannot be one-fold 

and are many-fold. Let us increase the lengths of the ATIs. Then the transformed out-ATI parts will be stepwise 
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mean-matched one-fold. Further they will be consequently stepwise, trapezium, and triangle (and also convex, 

linear, and concave).  

 

4.2. About the Distances from the Expectations to the Boundaries  
One of the main goals of the auto-transformations is to estimate possible distances from the expectations of the 

PDFs to the boundaries of the intervals. In turn, the estimations of these distances in real economic measurements 

are the main ultimate goal of the present research. At that the auto-transformations are the tool for such estimations.  

Appendix 1 provides a simple but necessary proof that the distances from the expectations of the AT-PDFs to 

the nearest boundaries of the AT-intervals are the minimal for the adhesion auto-transformations.  

For the reflected auto-transformations one can prove (see Appendix 3) that the distances from the expectations 

of the AT-PDFs to the nearest boundaries of the AT-intervals are the minimal when the points of reflection coincide 

with the medians of the MF-PDFs.  

 

4.3. Necessary Auto-Transformations  
An auto-transformation of a PDF is referred to as a necessary AT or Norm-necessary AT or N-necessary AT 

if  

2

1
)(

2

1
)()(  

MF

MF

AT

AT

b

a

b

a

b

a

dxxfdxxfdxxf ,   

or, equivalently, if  

1
( ) ( ) ( ) ( )

2

MF AT AT MF

MF AT MF AT

b b a b

a a a b

f x dx f x dx f x dx f x dx       .   

That is the norm of the unchanged part of the MF-PDF is not less than  1/2. That is the difference between the 

norms calculated for the whole MF-PDF and its unchanged part is not more than  1/2.   

Necessary auto-transformations ensure the condition that provides some properties of transformed PDFs (see the 

proofs of the corresponding statements in Appendix 4) including the following.  

Necessary stepwise one-step auto-transformations ensure that if the values of the additions are  Δf ≥ fmean,  then 

the lengths of the stepwise one-step additions to the AT-PDFs are not more than the lengths of the AT-intervals. That 

is such ATs belong to the one-fold auto-transformations.  

Necessary uniform addition ATs ensure that the values of the uniform additions are  Δf ≥ fmean.   

Necessary symmetric triangle ATs ensure for symmetric PDFs that:  

a) if the boundary value (the height) of the AT addition is  Δfbound ≥ fmean  then the length of the triangle is not 

more than the length of the AT-interval;  

b) vice versa, if the length of the triangle is not less than the length of the AT-interval (that is if the auto-

transformation is at least filling), then its boundary value (its height) is Δfbound ≤ fmean.   

Necessary symmetric vanishing filling ATs ensure for symmetric PDFs that if  Δfbound ≥ fmean  then such ATs are 

concave (at least partially), except the triangle ATs in the case of  Δfbound = fmean  and  Δout = 1/2.   

 

4.4. Sufficient Auto-Transformations  
An auto-transformation of a PDF  f  is referred to as a sufficient auto-transformation or Norm-sufficient AT 

or N-sufficient AT if  

1)()()(  
MF

MF

MF

MF

b

a

out

b

b

a

a

dxxfdxxfdxxf  ,   

that is the difference between the norms calculated for the MF-PDF and unchanged part of the AT-PDF is negligibly 

small in comparison with the norm calculated for the MF-PDF. That is the difference is much less than unit.  

Sufficient ATs evidently belong to necessary ATs.  

For the normal distribution, the auto-transformation interval that corresponds to the “three-sigma rule” can be 

used as a sufficient AT-interval.  

Generally, a sufficient auto-transformation (and auto-transformation interval) can be referred to as the sufficient 

one with respect to some parameter, if the difference between the values of this parameter calculated for the MF-

PDF and AT-PDF is negligibly small in comparison with the value of this parameter calculated for the whole MF-

PDF. For example:  

An auto-transformation will be referred to as the V-sufficient one (where “V” denotes Variation) if the part(s) of 

the variation of the MF-PDF that is (are) calculated outside the AT-interval is (are) much less than the whole 

variation of the mainframe PDF.  

An auto-transformation will be referred to as the SD-sufficient one (where “SD” denotes the Standard 

Deviation) if the part(s) of the standard deviation that is (are) calculated for the mainframe PDF outside the AT-

interval is (are) much less than the standard deviation calculated for the whole MF-PDF.  

Sufficient auto-transformations are evidently the most prospective auto-transformations for hypotheses and 

estimations.  

 



Academic Journal of Applied Mathematical Sciences  

 

173 

5. Conclusions  
The present article proposes a new tool to modify and transform the probability density functions of random 

variables into similar functions having smaller sizes of their domains.  

The tool can be used, e.g., for hypotheses and assumptions. It is named as the auto-transformations (ATs) of 

PDFs. It can be treated as a first step to general ATs of real-valued random variables.  

Evidently, the considerations of the article can be developed also to transformations of other functions beyond 

the scope of the probability theory.  

The ultimate goal of this research is a mathematical description of influence of noise (and other causes that can 

cause dispersion of data) on measurement data near the boundaries of the measurement intervals.  

The two main results of the present article are:  

First result. The concept of the auto-transformations is proposed.  

Second result. Some general properties of the auto-transformations are considered and the corresponding 

statements are proven.  

 

Appendix 1. Adhesion 
Let us consider a piecewise continuous mainframe probability density function  fMF ≡ f  that is defined on a 

mainframe interval whose left boundary is anyway finite or infinite. Let us consider an auto-transformation such that 

the coordinate of the left boundary of the AT-interval (that is the left dot of reflection) is  dleft ≡ aAT = a.  For the left 

out-ATI part we have  






leftd

MFleftout dxxf )(.    or    
AT

MF

a

a

MFleftout dxxf )(. .   

Let us compare two cases:  

1) The first is the case when the out-ATI part is adhered to the left boundary  aAT  of the AT-interval. The 

contribution of this adhered part  Δadh(E(XAT))  to the expectation of the AT-PDF can be written as  

leftleftoutATadh dXE  .))((  .   

2) The second is the general case when the out-ATI part is mapped into the ATI as a general addition  Δgen(f(x))  

to the MF-PDF, at least not only at the boundary  aAT  of the ATI. Its contribution to  E(XAT)  is  

 

b

a

genATgen dxxfxXE ))(())(( ,   

where  

leftout

b

a

gen dxxf .))((  .   

The multiplier  x  (under the integral sign) is not less than  dleft.  Therefore, the contribution of this general part 

to the expectation of the auto-transformed PDF is not less than  

( ( )) ( ( )) ( ( )) ( ( ))

b b b

gen AT gen left gen left gen

a a a

E X x f x dx d f x dx d f x dx            

. ( ( ))left out left adh ATd E X    .   

So, the left boundary adhesion auto-transformation provides the minimal expectation of the auto-transformed 

PDF. Evidently, the right boundary adhesion AT provides the maximal expectation of the AT-PDF.  

 

Appendix 2. Uniformity  

A2.1. Uniformity for Contiguous Situations  
Suppose a continuous or piecewise continuous PDF  f  such that: the domain of  f  is an interval  [0; 2l], E(X) = l, 

f(l + y) = f(l - y)  and if   |x2 – l| ≥ |x1 - l|  than  f(x1) ≥ f(x2)  (that is  f  is normal-like).  

Due to  E(X)  is predetermined, the ratio E(X)/SD  depends only on  SD.  

The maximal value of  f(x)  can be denoted as  max(f(x)) = f(l) ≡ ħ  and the expression for the variance can be 

rewritten as  

 

ll

dxxflxdxxflxXVar

2

0

2

2

0

2 )]}([{)()()()(     

2

2 2

0

2
( ) [ ( )]

3

l
l

l x l f x dx    . 

The members  (x-l)
2
  and  [ħ-f(x)] ≡ [max(f(x))-f(x)]  are nonnegative. Hence the variance is maximal when  

[max(f(x))-f(x)] = 0.  That is it is maximal when  f(x) = max(f(x)) = ħ.  This condition implies the normalization 

equality  2ħl = 1.  Under this condition the standard deviation is not more than the well-known value  
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33

22 ll
lSD 


.   

So the ratio  |E(X)-aboundary|/SD  is equal to  

3
3)(




l
l

SD

aXE boundary
   

and we have  

( ) boundaryE X a SD  .   

So, in the general case, for the contiguous situation, for any continuous or piecewise continuous normal-like PDF 

with finite domain, the minimal distance from its expectation to the nearest boundary cannot be much less than its 

standard deviation.  

Moreover, this minimal distance is more than the standard deviation.  

 

A2.2. Non-Increasing and Uniform Addition Auto-Transformations  
Let us consider non-increasing, including uniform addition, one-fold ATs. Consider a piecewise continuous MF-

PDF  fMF  and the AT-PDF  f ≡ fAT.   

Left auto-transformations. Suppose that  fMF  is defined on the mainframe interval whose left boundary  aMF  is 

anyway finite or infinite and whose right boundary  bMF  is finite. Suppose the auto-transformation interval is  [aAT, 

bAT]  where  a ≡ aAT > aMF  and  b ≡ bAT = bMF.   

The left out-ATI part  δout.left  can be defined similarly to Appendix 1.  

The left out-ATI contribution to the expectation of the AT-PDF is  

( ( )) ( ( ))
MF

AT

a

left AT left AT

a

E X x f x dx      

under the condition  

.( ( ))
MF

AT

a

left AT out left

a

f x dx   .   

The boundary left value of the addition  Δleft(f(x))  to the MF-PDF is  Δleft(f(aAT)).  Due to the non-increasing 

character of the AT,  

))(())(( ATleftleft afxf  .   

That is in any point of the AT-interval the addition  Δleft(f(x))  is not more than its boundary value.  

The minimal possible left value  f(aAT)  for a non-increasing one-fold AT can be obtained from  

Δleft(fAT(aAT))(bAT-aAT) ≥ δout.left.  It is  

ATAT

leftout

ATATleft
ab

af



.

))((


.   

Hence, left uniform addition ATs provide the maximal expectations  









b

a

ATleftATATMF

ATleftATATMF

b
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b

MF AT AT left AT AT

a

MF AT AT left AT AT AT AT

E X x a b x f a dx

E X x a b f a b a

   

    


.   

for the auto-transformed PDFs.  

Right auto-transformations. Considerations for the right ATs lead to the same conclusions as for the left ATs.  

So, stepwise, including uniform addition, auto-transformations provide the maximal distances from the 

expectations for AT-PDFs to the nearest boundaries and the minimal distances from the expectations to the opposite 

boundaries for non-increasing ATs.  

 

Appendix 3. Reflection. The Minimal Distance  
Let us consider reflection auto-transformations and determine conditions for the minimal distances from the 

expectations of auto-transformed PDFs to the boundaries of the AT-intervals.  

Let us consider a piecewise continuous probability density function  f.  For the sake of generality of 

consideration, assume that, if  f  is defined on a finite interval  [a; b] or on a semi-infinite interval, then it will be 
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expanded on the infinite interval by supposing that  f(x) ≡ 0  for  ),( MFax    and/or  ),(  MFbx   

respectively.  

Let us perform a reflection auto-transformation with respect to an arbitrary finite reflection point (dot)  d ≡ drefl.   

The auto-transformed PDF is  

)2()()2()()|( xdfxfxdfxfdxxf MFMFAT  .   

The expectation of the AT-PDF (as a function of  d)  is  





dd

ATAT dxxdxfdxxxfXE )2()()(  .   

Let us consider the integral on the far right. Let us introduce temporarily a new and formal argument  y = 2d - x.  

Then  








d

dd

dxxfxddyyfyddxxdxf )()2()()2()2(    

and  








d

d

AT dxxfxddxxxf )()2()( .   

The distance from this expectation to the reflection point is  

ddxxfddxxxfdxxxf

ddxxfxddxxxfd
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d

d

d
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


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
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)(2)()(
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.   

Using the median  m,  the two right terms can be identically transformed to  

 


d

m

d

m

m

dxxfddxxfdddxxfd )(2)(2)(2 .   

So the distance from this expectation to the reflection point is  

 


 d

m

d

d

AT dxxfddxxxfdxxxfd )(2)()( .   

Let us use another reflection point, e.g.,  drefl.2 = d + ε.  Then  



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The difference between the distances is equal to  


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.   

Let us consider two cases: 1)  d > m  and 2)  d+ε < m,  under the conditions  f(x) ≥ 0  and  ε ≥ 0.   

1)  d > m.  The result is  

 



 d

m

d

d

ATAT

dxxfdxxfxd

dddd

)(2)()(2

])([])([






.   

The both integrals are non-negative. So the difference between the distances is non-negative as well.  

2)  d + ε < m.  The result is  
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





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dxxfdxxfxd
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The both integrals (taking into account the signs before them) are non-positive. So the difference between the 

distances is non-positive as well.  

So in these two cases, when  d  is shifted, e.g., to the right, the distance from the expectation to the boundary is 

changed in two different ways. In the first case, when  d > m, that is when  d  moves from  m,  the change is non-

negative. In the second case, when  d + ε < m,  that is when  d  moves toward  m,  the change is non-positive.  

The minimal distance from the expectation to the boundary is attained when the median belongs to  [d; d + ε].  If  

ε  0  then we obtain  

mdrefl min. .          (3) 

So the reflection point  drefl.min  of the reflection auto-transformation that provides the minimal distance from the 

expectation of the auto-transformed PDF to the boundary of the AT-interval is equal to  m.   

 

Appendix 4. Necessary Auto-Transformations  
Let us consider necessary auto-transformations (that is auto-transformations such that  δout ≤ 1/2)  of piecewise 

continuous mainframe probability density functions  fMF ≡ f  into finite AT-intervals [bAT, aAT] ≡ [b, a].  

Let us refine that a full-ATI AT or filling AT is an AT such that the AT-addition to the MF-PDF is non-zero in 

the entire ATI (at least except of no more than one point). That is the AT-addition fills the entire AT-interval.  

First of all, necessary auto-transformations ensure by their definition (for arbitrary mainframe PDFs  fMF) that  

1 1
( )

2( )

AT

AT

b

mean AMF

AT AT AT ATa

f f x dx
b a b a

 
  .   

 

A4.1. One-Step Stepwise Auto-Transformations  
Let us consider, e.g. left, stepwise one-step auto-transformations and denote the coordinates of the right ends of 

the steps as  bstep ≡ bs.  Without taking into account possible additions from right auto-transformations, we obtain the 

auto-transformed PDFs  fAT(x) = fMF(x) + Δfleft  for  
],[ sbax

,  where  Δfleft = δout.left/(bs-a).   

Consider the length  bs-a  of the step of a necessary one-step AT.  

Statement A.4.1. If, for a necessary, e.g. left, one-step auto-transformation, the value of the addition  Δfleft  is 

not less than  fmean,  then the length  bs-a  of the step is not more than the length  b-a  of the AT-interval. In other 

words this auto-transformation is one-fold.  

Proof. The length of the left one-step out-ATI addition is  

. . 1
2( )

2

out left out left

s

left mean

b a b a b a
f f

 
      


.     □   

So, this auto-transformation is one-fold.  

 

A4.2. Uniform Addition Auto-Transformations  
Consider the value  Δfun.left  of, e.g., the left addition of a necessary uniform addition auto-transformation to AT-

PDF.  

Statement A.4.2. If a necessary uniform addition auto-transformation is a filling one, then the value of its side 

addition is not more than  fmean.   

Proof. The value of, e.g., the filling left addition  Δfun.left  to AT-PDF is  

.

.

out left out
un left meanf f

b a b a

 
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 
.      □   

 

A4.3. Vanishing Symmetric Auto-Transformations  
Remember that the vanishing auto-transformations are referred to as the ATs such that the addition parts  Δf  of 

the AT-PDFs start at the corresponding boundaries of ATIs with non-zero values and end with the zero values.  

Vanishing ATs can be of convex, triangle, concave, and mixed types. The above stepwise one-step ATs can be 

considered in a sense as the upper (unattainable) limit cases for convex vanishing ATs.  

Symmetric auto-transformations of symmetric PDFs can be defined as ATs such that their AT-intervals are 

symmetric with respect to the centers of symmetry of the MF-PDFs.  

Let us prove three interrelated statements.  

Consider the lengths of triangle ATs.  

Statement A.4.3.1. If the boundary addition value  Δfbound  of a necessary symmetric triangle AT of a symmetric 

PDF is not less than  fmean,  then the length of the triangle is not more than the length of the AT-interval.  

Proof. The length of, e.g., the left triangle  bt-a  is  
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..

.2
.    □   

Consider the boundary addition value of a triangle AT.  

Statement A.4.3.2. If the length of the triangle of a necessary symmetric triangle AT of a symmetric PDF is not 

less than the length of the ATI (if AT is at least filling), then its boundary addition value is not more than  fmean.   

Proof. The boundary addition value, e.g.  Δfbound.left,  is  

.

.

2 1 1

2

out left out out
bound left mean

t t

f f
b a b a b a b a

  
     

   
.   □   

Consider the concavity of vanishing ATs for symmetric PDFs.  

Statement A.4.3.3. The addition of a necessary vanishing filling symmetric AT of a symmetric MF-PDF, such 

that  Δfbound ≥ fmean,  is concave (at least partially) except in the case of both  δout = 1/2  and  Δfbound = fmean.   

Proof. Under these conditions, the boundary value  Δfbound  of the addition to the AT-PDF is, similar to the 

preceding case,  

.

.

2 out left out out
bound left mean

t t

f f
b a b a b a

  
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  
.   

Therefore, the addition of this AT is evidently concave (at least partially) except in the case of both  δout = 1/2  and  

Δfbound = fmean  when it is triangle.   □   

Note. If the lengths of the triangles of a symmetric triangle AT of a symmetric PDF is equal to  b-a,  then 

evidently this AT produces the uniform addition AT. If these lengths are less than  b-a,  then a certain flat portion of  

ΔfAT  will evidently exist in the middle of the AT-interval.  
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