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Abstract 
The article presents a method for designing the trajectory of the UAV in space, taking into account the restriction on 

control. The chosen optimal controls are namely normal overload with restrictions, tangential overload with restrictions 

and lateral overload. The Pontryagin maximum principle allows the transition of the optimal control problem to a 

boundary value problem. The parameter continuation method is applied to solve the boundary problem. The article 

results reveal reference trajectories in different cases of UAV landing. This result allows the design of reference 

trajectories for the UAV to attain the highest landing efficiency. 

Keywords: Control restriction; Reference trajectory; Parameter continuation method; Normal overload; Tangential overload; Lateral 

overload. 
 

 

1. Introduction 
During the process of landing, the value of UAV landing speed is critically significant in case of landing on 

short runway or emergency landing… UAV is expected to land with a small landing speed; otherwise, the large 

landing speed may lead to unsafety circumstances such as the UAV going off the runway, the UAV may flip or 

change direction when landing. In addition to landing speed, control restrictions also have a significant effect on 

landing quality. During the landing process, the situation is diverse, and the drones should closely abide by some 

reference trajectories to achieve efficient landing with respect to some performance indices [1, 2]. Therefore, in this 

article, the authors establish a reference trajectory for UAV with consideration of values of different landing speed 

and optimal controls namely normal overload with restrictions, tangential overload with restrictions and lateral 

overload. This problem can be handled by 2 methods: analytical and numerical one. The analytical method offers 

feedback control, however, depending on the boundary conditions coupling with the restricted control during flight, 

seeking for an optimal control would be of arduousness. With the aim to establish a reference trajectory in the 

service of landing cases, the authors select the numerical method to solve the bespoken problem. This method 

burgeons results in a quick manner in case of restricted control and variable boundaries.  For better application of the 

numerical method, the authors convert the optimal control problem to the boundary problem, the parameter 

continuation method [3-7] is used to successfully handle the boundary problem. The simulation results show that the 

UAV lands with different speed values and the control is within the allowable range.  

 

2. Algorithm Establishment 
2.1. Optimal Landing Trajectory 

The system of equations of UAV movement in space includes the following differential equations [3]: 

https://arpgweb.com/journal/journal/17
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in which: 

V  – velocity of UAV 

  - flight path angle 

  - heading angle 

x, y, z - UAV coordinates 

g - gravity acceleration (g = 9,80665 m/s²) 

, ,x y zn n n - respectively corresponding tangential overload, normal overload, lateral overload.  

 , , , , ,
T

X V x y z  - UAV state vector 

Consider control [ , , ] .T

x y zu n n n , then the cost function given in Bolza form is: 

0

20,5 . . .
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In which: 
2 2 2 2

1 2 3( , , )k diag k k k - parameters of the cost function 

0t  и 
ft  - the beginning and the end of the flight 

( ), ( ), ( ), ( ), ( ), ( )f f f f f fV t t t x t y t z t   - boundary condition at the end time 

Then, the Halminton function holds the form [6] as follow: 
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and the equations for co-state variables have the form: 
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   (2) 

The authors find the optimal control at each time that makes Hamilton function H reach the maximum 
* * * * *max , , , ( , , , )

u U
H(x u P t) H x u P t


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Due to the fact that 
zn  is within the allowable range when conducting the survey or at the beginning of the 

landing phase, the movement direction of the UAV is asymptotical to or coincided with the runway direction, so 
zn  

in the given article is unrestricted. From the optimal condition 0,
z

H

n


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 . Accordingly, the system of equations for the 

UAV full movement includes the combination of the system of equations (1) and (2).  

 Then, there goes an essence to find the initial condition 

0 0 0 0 0 0( ), ( ), ( ), ( ), ( ), ( ),V x y z fP t P t P t P t P t P t t 
 which matches the boundary condition 

(t ) , (t ) , (t ) ,x(t ) , (t ) , (t ) , ( , , ) 0f f f f f f f f f f f f fV V x y y z z H X P t          . 

 With , , , , ,f f f f f fV x y z  - desired value given at the end time 
ft . 

To solve the boundary problem, the authors use the method of parameter continuation.  

 

2.2. Parameter Continuation Method 
The essence of the parameter continuation method lies at the formal reduction of the considered boundary value 

problem to the Cauchy problem [4-7]. The boundary problem for a dynamic system with boundary conditions can be 

represented as an equation for the residuals at the right end of the trajectory:    
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At some initial approximation for the unknown parameters of the boundary value problem z0, the residual vector 

is calculated as (3): 

0( ) f z b   
 

(4) 

Considering the immersion of equation (4) in a one-parameter family:    

  ( ) 1  f z b   (5) 

in which:  is the continuation parameter, and the writers represent the vector z as a function of this parameter: 

z = z (), moreover z (0) = z0 from equation (4). They require equality (5) for any 0    1. Obviously, for  = 0, 

equation (5) coincides with (4), and for  = 1 – the equation for residuals for the desired boundary value problem 

(3). 

Differentiating equation (5) with respect to the continuation parameter  and solving the resulting expression for 

the derivative dz/d, we obtain a formal reduction of equation (3) to the Cauchy problem: 
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Obviously, integrating (6) over  from 0 to 1, it is of ease to define the desired vector of unknown parameters of 

the boundary value problem (3) in the form z = z (1). 
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Thus, the value of the original parameter vector (1)z has been found. 

 

3. Simulation Results 
Calculating aerodynamically with specific UAV model: UAV mass m = 56.5 Kg, wing area S = 1.05 m, the 

results are limited to [ 0,82 1], [ 0,4 1,2]x yn n    . The value of the parameters of the cost function is 

chosen as follows: 1 2 3k 0,1; 0,1; 0,1k k   . 

Case 1: Survey with a fixed initial state and variable landing speed 

The initial state of UAV with: (0) 50 / ;V m s  (0) 0 ;radian  (0) 0 ;radian  (0) 0 ;x m

(0) 1000 ;y m
 

(0) 800 .z m  

The desired state of UAV: 25;35;45 / ;fV m s 0 ;f radian  0 ;f radian  2000 ;fx m

0 ;fy m 0fz m .  

With the use of Matlab 2015 application, the results are received as follows: 

 

Figure-1. UAV trajectory with variable 
fV  

 
 

Figure-2. Hamilton function with variable 
fV  

 
 

Figure 1 illustrates the UAV trajectory in space corresponding to various landing speeds. It can be apparently 

seen that the higher the landing speed is the more tension the trajectory has. 

The results shown indicate that the value of the Hamilton function at the end ft  is close to 0 in all cases, which 

demonstrates that the landing time has been optimized (Figure 2). The values of in 3 different cases landing speed 

respectively take the values 36,27; 36,36; 36,56. Hence, the landing time with different landing speeds is almost 

unchanged. 

Figure 3 and figure 4 depict the change of UAV trajectorial tilt and flight path angle in real time corresponding 

to different landing speeds fV . The figure visualizes the angle change in almost the same cases.  

Figure-3. UAV tilt angle with different fV  
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Figure-4. UAV flight path angle with different 
fV  

 
 

Figure 5 delineates the speed change of UAV in time corresponding to different 
fV . It unveils that the lower the 

landing speed is in 0-25s stage, the higher the UAV landing speed becomes.  

 

Figure-5. UAV velocity with different 
fV  

 
 

Figure-6. Change of xn  with different 
fV  

  
 

Figure 6, 7 and 8 presents the change of control , ,x y zn n n in time with different landing speed fV . It can be 

clearly seen from Figure 6 that from 20s onwards, the lower the landing speed is, the higher the absolute value 
xn  is. 

In case 25fV  m/s, in the range from 27 to 30s, the value 
xn  reaches the extreme since the problem in 

consideration restricts the control for yn . 

Figure-7. Change of yn with different fV  
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Figure-8. Change of zn
 with different

fV
 

 
 

Figure 7 shows that at the end in 3 cases, value of 
yn reaches the extreme and the lower 

fV  is, the longer it 

takes 
yn to reach the extreme. Whereas, figure 8 indicates values of 

zn are approximately equal at the beginning (end) 

time at different landing speeds.  

Case 2: Changing initial state of UAV and fixed landing speed 

When changing the initial location of UAV with:  

( 0 0 0 0 0 0600 , 600 ; 800 , 800 ; 1000 , 1000y m z m y m z m y m z m       ) 

the results gained after running the program with the landing speed 35 /fV m s are as follows: 

Figure  9 exhibits the UAV trajectory in space when the initial location was changed. It can be clearly seen that value 

of Hamilton function at the end 
ft  approaches 0 (Figure 10). 

 
Figure-9. UAV trajectory with initial location change 

 
 

Figure-10. Hamilton function with initial location change 

 
 

Figure 11 and 12 illustrate the change of UAV tilt and flight path angle when its initial location was changed. It 

indicates that the larger the distance between the UAV at the initial time and the landing position, the greater the 

change in its UAV tilt and flight path angle. 

 
Figure-11. UAV tilt angle with initial location change 
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Figure-12. UAV flight path angle with initial location change 

 
 

Figure 13 depicts the change of UAV velocity in time when its initial location was changed. 

 
Figure-13. UAV speed with initial location change 

 
 

Figure-14. Change of xn  in time with initial location change 

 
 

Figure 14, 15 and 16 present the change of control , ,x y zn n n in time when the initial location was changed. It 

demonstrates that the value range of xn  and total flight time ft  also increases when the initial distance from UAV to 

landing position extends.  

Figure-15. Change of yn  in time with initial location change 
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Figure 16. Change of   in time with initial location change 

 
 

4. Conclusion 
Via surveying the flight trajectory, the authors may state that in case 1, landing with low speed holds more 

advantages in emergency circumstances in which the aircraft encounters alarming problems and must land on a short 

runway, but the decreasing landing speed comes with the increase of tangential overload. Hence, the actualization of 

flight will be of difficulty if the UAV fails to meet the tangential overload as calculated during flight. In case 2, with 

different beginning positions, the landing trajectory would be variable, the more the landing direction deviates from 

the runway direction, the greater the control energy consumes. The research results claims that different flight 

trajectories can be designed and the feasibility may be evaluated when realizing flight trajectory, thereby offering 

reference trajectories. In this article, there remains a point mis-considering the noise influence during flight since 

using numerical method instead of analytical method would reveal several disadvantages with noise involvement. 

Therefore, the authors are expected to consider the impact of noise in flight in the coming studies. 
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