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Abstract 
Eigenspace is a convenient way to represent sets of observations with widespread applications, so it is necessary to 

accurately calculate the eigenspace of data. With the advent of the era of big data, the increasing and updating of data 

brings great challenges to the solution of eigenspace. Hall, et al. [1], proposed that incremental method could update the 

eigenspace of data online, which reduces computational costs and storage space. In this paper, the updating coefficient of 

sample covariance matrix in incremental method is modified. Numerical analysis shows that the modified updating form 

has better performance. 
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1. Introduction 
Eigenspace is a convenient way to represent observation data and has a wide range of applications. Sharma, et 

al. [2], studied the application of eigenspace method in the detection and location of myocardial infarction. Li, et al. 

[3], studied the generalized sidelobe cancellation beamforming based on the eigenspace in medical ultrasound 

imaging. Ye, et al. [4], used eigenspace direct sum for cross-age face recognition. Many scholars also conduct 

research on large-scale eigenspace. Wen, et al. [5], proposed an unconstrained trajectory penalty minimization 

model, and established its equivalence with the eigenvalue problem. Ren, et al. [6], proposed an eigenspace divide-

and-conquer method, which proved that the method had strong robustness and good expansibility for the dimension 

of the problem. The eigenspace can be calculated by performing eigenvalue decomposition (EVD) on the sample 

covariance matrix of the data. However, with the advent of the era of big data, the increase and continuous update of 

data brings great challenges to the solution of the eigenspace. When the data increases, adding the increased data to 

the original data to recalculate, not only the operation is complicated, but also the calculation and storage will be 

increased.  

In 1998, Hall, et al. [1] described a construction method for progressively increasing the amount of observations 

in the eigenspace model, specifying the change in origin and the change in the number of eigenvectors required for 

the base set. This method updates the eigenspace online, and saves the cost of storage space and time without 

sacrificing the estimation accuracy. However, when the sample covariance matrix is updated, there is a certain error 

in the coefficient, which leads to a decrease in the estimation accuracy. This paper revises the updated sample 

covariance matrix in the incremental method, and the analysis of simulated data set and real data set shows that the 

revised updated form improves the estimation accuracy. 

 

2. Eigenspace Update 
2.1. Eigenspace Update with Incremental Method 

Hall, et al. [1], proposed an incremental method to update the eigenspace, which can be used to update the 

results of previous calculations. This method calculates a smaller eigenspace model representing the observed 

values, which is more effective for classification. The observation data matrix      
    

      
    of  -dimension 

has   samples, where sample mean is  ̅  ∑   
 
     . The eigenvalue decomposition of the sample covariance 

matrix can be obtained 

  
 

 
∑    

 
     ̅      ̅       ,                                            (2.1) 

where                is orthogonal eigenvector matrix,                    as the diagonal matrix, and 

satisfies             . Construct the current eigenspace     ̅       . 
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When the      th sample   comes, it's easy to get the updated mean can be  written as 

 ̅  
 

   
   ̅    .                                               (2.2) 

The updated covariance matrix is expressed as 

   
 

   
  

 

      
       ,                                               (2.3) 

where       ̅. The eigenvalue decomposition is performed for the updated sample covariance matrix    

       . Thus, we have the updated eigenspace      ̅            . 

 

2.2. Eigenspace Update with Modified Incremental Method 
We find that there are some errors in the update process above, and we correct the update of the sample 

covariance matrix. When the      th sample   arrives, it is easy to get the updated mean  ̅     ̅          . 

Derive from the definition of the sample covariance matrix, we can get the updated covariance matrix is expressed as  
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The result derived is    
 

   
  

 

      
        by Hall, et al, the result of our derivation is    

 

   
  

  

      
       . We find that there is only a difference of        . For the convenience of representation, we 

record the coefficient deduced by Hall, et al. [1] as   
 

      
, and our modified coefficient as   

  

      
, with the 

sample change of the quantity and the change of two different coefficients are shown in Figure 1.  

 
Figure-1.   and   coefficient comparison 

 
 

As shown in Figure 1, when     , the difference between   and   is very large. As the number of samples   

increases, the difference between   and   becomes smaller and smaller. It shows that in the case of a small number 

of samples, the error of the coefficient is very large. If the inaccurate coefficient is substituted into the formula for 

updating, there will be a certain error every time it is updated, resulting in a continuous increase in the final error. In 

addition, the smaller the training sample    is, the larger the coefficient difference will be, and the more updates will 

be. Because online updates are very dependent on the results of the previous update, this will lead to very inaccurate 

estimates, which will affect subsequent calculations. The accuracy of the update coefficient is very important in the 

online calculation.  
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Table-1. Comparison result of a and b when N <10 

N 1 2 3 4 5 6 7 8 9 

a 0.25 0.22 0.19 0.16 0.14 0.12 0.11 0.1 0.09 

b 0.125 0.15 0.14 0.13 0.12 0.1 0.1 0.09 0.08 

 

When     , the values of   and   are shown in Table 1. It can be seen that the two coefficients are very 

different. When     and  ,   is basically twice  . As   increases, the difference is gradually reduced, but the 

minimum is 0.01. This is very large for the coefficient of formula updated, which may cause large errors in 

subsequent calculations.  

 

3. Numerical Analysis 
In this section, we use simulated data set and real data set to test the errors of the two update forms. Define Hall 

et al' s incremental update method as method 1, and our revised method as method 2. The mean square error (MSE) 

of the sample covariance matrix is used to represent the size of the error, and the mean square error is defined as 

follows  

     ̂  
 

  ‖ ̂   ‖
 

 
, 

where  ̂ is the sample covariance matrix obtained by incremental update, and   is the sample covariance matrix 

directly calculated off-line. 

Simulation: Fixed         , we set          , where         √   √       , |   |         ,     . 

Generate a data matrix  , take     sample data as training samples, and update the remaining     incrementally. 

The mean square error values of the two methods to update the sample covariance matrix are shown in Table 2. The 

error is 1.654074 of modified update form, and the error of method 1 is 1.818826, indicating that the sample 

covariance matrix estimated by method 1 has more big error.  

Real data set: The Immunotherapy data set is derived from the UCI database, and has 90 samples and 8 

variables. As with the simulated data,     sample data is taken as the training sample. As can be seen from Table 2, 

the error of the revised updated form is 67.22176, and the error of method 1 is 68.76202, which is consistent with the 

simulation data. It indicates that even if the two coefficients are very close to each other in the case of a larger 

sample, method 1 will still lead to a larger error, which indicates that it is very necessary to revise the update 

coefficient. 

 
Table-2. Comparison results of simulated data set and real data set 

method simulated data set     real data set     

method 1 1.818826 68.76202 

method 2 1.654074 67.22176 

 

We transformed the test results of the simulated data set and real data set into Figure 2. It is obvious that the test 

results of the simulated data are consistent with the real data. The MSE value of method 1 has larger error than 

method 2. The simulation data samples are 16 and the real data samples are 90. It shows that there are great errors in 

method 1 in the case of large sample size or small sample size. After the coefficient is modified, the estimation 

accuracy is improved obviously, which indicates that the accuracy of the coefficient is very important. 

 
Figure-2. Comparison results of simulated data set and real data set 
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4. Conclusion 
The incremental method proposed by Hall, et al. [1] can effectively solve the problem of large data samples or 

constantly updated data. However, the coefficient of the sample covariance matrix calculation formula has errors. In 

this paper, the coefficients with errors are modified. The experimental results show that there is a big difference 

between the coefficients   and  . The simulation study and real data analysis show that the modified update form 

has higher estimation accuracy, which indicates that the accuracy of the coefficients has a significant impact on the 

estimation error. 

 

Appendix 
The R code of the modified increment method is presented. (modified increment-code.docx) 

## Simulation 

rm(list=ls(all=TRUE)) 

library(MASS) 

library(matrixcalc) 

N=16;p=8 

mu0=as.matrix(runif(p,0))     

sigma0=as.matrix(runif(p,0,10)) 

ro=as.matrix(c(runif(round(p/2),-1,-0.5),runif(p-round(p/2),0.5,1))) 

R0=ro%*%t(ro);diag(R0)=1     

Sigma0=sigma0%*%t(sigma0)*R0  

data=mvrnorm(N,mu0,Sigma0)   

 

x<-as.matrix(data)                      

N0<-round(0.5*N)         

p<-ncol(x)                     

xbar<-colMeans(x[1:N0,]) 

CZ=cov(scale(x))  

C<-cov(x[1:N0,])           

lambda<-eigen(C)$values       

U<-eigen(C)$vectors 

C1=C2=C 

 

for (i in (N0+1):N){ 

xbar<-((i-1)/i)*xbar+(1/i)*x[i,] 

xcenter<-t(t(x[i,]-xbar))  

C1<-(1/i)*C1+((i-1)/(i^2))*xcenter%*%t(xcenter) 

C2<-(1/i)*C2+((i-1)^2/(i^3))*xcenter%*%t(xcenter) 

} 

MSE1=frobenius.norm(C1-CZ);MSE1 

MSE2=frobenius.norm(C2-CZ);MSE2 

 

## Real data set 

data<-read.csv("C:/data/Immunotherapy.csv") 

x<-as.matrix(data)    

N<-nrow(x)                

N0<-round(N/2)           

p<-ncol(x) 

en<-matrix(rep(1),1,p)                     

xbar<-colMeans(x[1:N0,])  

CZ=cov(scale(x)) 

C<-cov(x[1:N0,])           

lambda<-eigen(C)$values       

U<-eigen(C)$vectors 

C1=C2=C 

 

for (i in (N0+1):N){ 

xbar<-((i-1)/i)*xbar+(1/i)*x[i,]  

xcenter<-t(t(x[i,]-xbar)) 

C1<-(1/i)*C1+((i-1)/(i^2))*xcenter%*%t(xcenter) 

C2<-(1/i)*C2+((i-1)^2/(i^3))*xcenter%*%t(xcenter) 

} 

MSE1=frobenius.norm(CZ-C1)^2/(p^2);MSE1 

MSE2=frobenius.norm(CZ-C2)^2/(p^2);MSE2 

 



Academic Journal of Applied Mathematical Sciences  

 

191 

References 
[1] Hall, P. M., Marshall, A. D., and Martin, R. R., 1998. "Incremental eigenanalysis for classification." In 

British Machine Vision Conference. pp. 286–295. 

[2] Sharma, L. N., Tripathy, R. K., and Dandapat, S., 2015. "Multiscale energy and eigenspace approach to 

detection and localization of myocardial infarction." In IEEE Transactions on Biomedical Engineering. pp. 

1827-1837. 

[3] Li, J., Chen, X., Yi, W., Wei, L., and Yu, D., 2016. "Eigenspace-based generalized sidelobe canceler 

beamforming applied to medical ultrasound imaging." Sensors, vol. 16, p. 1192.  

[4] Ye, J. H., Guo, Q., Y., Jiang, A., W., and X., L., 2021. "Cross-age face recognition method based on direct 

sum of Eigenspace. (Engineering Science), 1-6 in Chinese." Journal of Zhengzhou University (Engineering 

Science), pp. 1-6.  

[5] Wen, Z., Chao, Y., Xin, L., and Yin, Z., 2016. "Trace-penalty minimization for large-scale eigenspace 

computation." Journal of Scientific Computing, vol. 66, pp. 1175-1203.  

[6] Ren, Z., Liang, Y., Wang, M., Yang, Y., and Chen, A., 2020. "An eigenspace divide-and-conquer approach 

for large-scale optimization." Applied Soft Computing, vol. 99, p. 106911.  

 

 


