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Abstract 
A forbidden zone theorem, hypothesis, and applied mathematical method and model are introduced in the present article. 

The method and model are based on the forbidden zones and hypothesis. The article is initiated by the well-known 

generic problems concerned with the mathematical description of the behavior of a man. The essence of the problems 

consists in biases of preferences and decisions of a man in comparison with predictions of the probability theory. The 

model is uniformly and successfully applied for different domains. The ultimate goal of the research is to solve some 

generic problems of behavioral economics, decision theories, and the social sciences. 

Keywords: Expectation; Variation; Boundary; Utility; Prospect theory. 
 

 

1. Introduction 
1.1. Preliminaries Main Contributions Organization of the Article  

Random variables whose values lie within a finite interval and whose variances are non-zero are analyzed in the 

present article. Such r.v.s can represent diverse types of data and information including measurement data. A 

theorem is proven that establishes the existence of certain non-zero boundary bounds (or forbidden zones) on the 

expectations of these r.v.s.  

The theorem provides mathematical support for the analysis (see, e.g., Harin [1]) of well-known generic 

problems (see, e.g., Kahneman and Thaler [2]) of behavioral economics, and mainly for a behavioral idea 

(hypothesis) of presupposed biases, and applied mathematical method (approach) and models.  

Two main contributions of the article can be preliminary noted.  

1) A necessity of corrections for situations that satisfy the theorem.  

2) A mathematical model that is uniformly true for different domains.  

The article is organized as follows.  

Section 1 presents its motivations and sources. Section 2 presents the forbidden zone theorem. Section 3 

presents practical examples of the forbidden zones. Section 4 presents the hypothesis. Section 5 presents the 

mathematical method. Section 6 presents the mathematical models. Section 7 presents a particular consequence of a 

special model and practical numerical examples of its application for different domains. Section 8 presents general 

consequences of the theorem and method. Section 9 presents conclusions.  

The Appendix presents lemmas for the theorem.  

 

1.2. Moments, Functions, Utility, Noise, Biases Review of the Literature  
Diverse bounds on moments and functions of random variables are considered in a wealth of works, see, e.g., 

Chernoff [3], Dokov and Morton [4], Madansky [5], Moriguti [6].  

The works Prékopa [7], Sharma and Bhandari [8], and, especially, Bhatia and Davis [9] consider mathematical 

situations those are the closest to that analyzed here. Additionally, the discrete part of the proof in the Appendix can 

be considered as another variant of the proof in Bhatia and Davis [9]. The continuous and mixed parts of the proof in 

the Appendix can be considered as its developments.  

Mathematical aspects of utility are considered in, e.g., Becherer [10], Biagini and Frittelli [11], Choulli and Ma 

[12], Von Neumann and Morgenstern [13]. Works Aczel and Luce [14], Steingrimsson and Luce [15] provide one of 

the two starting points for the theorem.  

Noise and its influence are the subject of a wealth of works.  
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The channel capacity and influence of noise are considered in a lot of works, see, e.g., Cheraghchi [16], 

Shannon [17], Smith [18]. The channel capacity is in a sense similar to the allowed zone that is complementary to 

the forbidden zones those are proposed here.  

Some qualitative influences of noise are considered as well. For example, stabilization and synchronization by 

noise are considered in a number of works, see, e.g., Arnold, et al. [19], Barbu [20], Cerrai [21], Flandoli, et al. [22]. 

Noise as a possible cause of some periodic behavior is considered in, e.g., Giacomin and Poquet [23], Scheutzow 

[24].  

So the cited articles and also, in a sense, this one (see below) show that noise can exert not only a quantitative 

but also some qualitative influence.  

Diverse types of biases are considered in a wealth of works. For example:  

Behavioral biases are considered in, e.g., Kumar and Goyal [25], Zahera and Bansal [26]. Psychological biases 

are considered in, e.g., Palomino [27], Tekin [28]. Home biases are considered in, e.g., Coeurdacier and Gourinchas 

[29], Correa, et al. [30], Gaballo and Zetlin-Jones [31]. Anchoring biases are considered in, e.g., Hao, et al. [32], 

Viscusi and Masterman [33]. Confirmatory biases are considered in, e.g., Aldashev, et al. [34], [35]. Optimism 

biases are considered in, e.g., Bracha and Brown [36], Wang, et al. [37]. Present biases are considered in, e.g., Meier 

and Sprenger [38], Wang [39].  

The nearest to the items of this article are: hypothetical biases (see, e.g., Menapace and Raffaelli [40], Penn and 

Hu [41], Taylor [42]), and pull-to-center biases (and close items such as newsvendor problem), see, e.g., Aj, et al. 

[43], Atalay, et al. [44], Greenacre, et al. [45], Zhang and Siemsen [46].  

 

1.3. Practical Need for Such Considerations  
A man, as an individual actor, is a key subject of economics and some other sciences. There are a number of 

problems concerned with the mathematical description of the behavior of an individual.  

Examples of these are the underweighting of high and the overweighting of low probabilities, the Allais 

paradox, risk aversion, loss aversion, equity premium puzzle, fourfold pattern of risk preferences, etc.  

 

1.3.1. Choices Between Uncertain and Sure Games  
One of the problems of this mathematical description is a comparison of choices between uncertain and sure 

games.  

The essence of the above examples of the problems consists in biases of choices of people (subjects) for the 

uncertain and sure games in comparison with the predictions of the theory of probability. These problems are generic 

and well-known. They are the most important in behavioral economics in utility and prospect theories and also in 

psychology, decision theory, and the social sciences. They are pointed out in a wealth of works.  

For example, we see in Kahneman and Thaler [2] (pp. 222):  

“A long series of modern challenges to utility theory, starting with the paradoxes of Allais (1953) ..., have 

demonstrated inconsistency in preferences.”  

For example, we see in Kahneman and Tversky [47] (pp. 265):  

 “PROBLEM 1: Choose between  

A: 2,500 with probability. 33, //  

    2,400 with probability. 66, //  

    0 with probability. 01;   

B: 2,400 with certainty.  

N = 72 18%, 82%.”   
My note. This is the clear inconsistency:  18%  for “A,” that is less than  82%  for “B” (for  72  trials) in 

opposition with the expectations  2,500×.33+2,400×.66 = 2,409  for “A,” that is more than  2.400  for “B.”  

For example, we see in Starmer and Sugden [48]:  

 “...a choice between two lotteries R’ (for “riskier”) and S’ (for “safer”). R’ gave a  0.2  chance of winning  

£10.00  and a  0.75  chance of winning  £7.00  (with the residual  0.05  chance of winning nothing); S’ gave  £7.00  

for sure.”  

My note. R’ = £10.00×0.2+£7.00×0.75 = £7.25 and  S’ = £7.00.  Here the expectations are  R’ = £7.25,  that is 

more than  S’ = £7.00,  but the results were  13  choices for R’ that is less than  27  choices for S’.  

 

1.3.2. Behavior of Subjects in Different Domains  
An additional problem (that is probably a lot harder than the previous one) is, moreover, the radically different 

behavior of subjects in different domains.  

Thaler [49] (pp. 1581–1582) wrote (the boldfaces are my own): 

 “Kahneman and Tversky’s research documented numerous choices that violate any sensible definition of 

rational. ... subjects were risk averse in the domain of gains but risk seeking in the domain of losses.”  

My note: at high probabilities.  

For example, the data in Kahneman and Tversky [47] (pp. 268) in Table 1 can be represented as:  

Problem 3:  (4,000 at 0.80) > (3,000 at 1.00) leads to choices [20%] < [80%].   

Problem 3’:  (-4,000 at 0.80) < (-3,000 at 1.00) leads to choices [92%] > [8%].   

My note. These data lead to the undoubted deduction of the clear inconsistency between the behavior of subjects 

in the domains of gains and losses.  
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This article is motivated in large measure by the need for mathematical support for the performed analysis (see, 

e.g., [1]) of the influence of the scatter and noisiness of data. This analysis is mathematically supported here. It has 

explained the above problems, at least partially or qualitatively.  

 

1.4. Two Ways Variance, Expectation, and Forbidden Zones  
Many efforts have been made to explain the above generic problems.  

One of the possible ways to explain them has been widely discussed, e.g., in Schoemaker and Hershey [50], Hey 

and Orme [51]. It consists in paying proper attention to imprecision, noise, incompleteness, and other reasons that 

can cause spread of data.  

Another possible way is to consider the vicinities of the boundaries of the probability scale, e.g., at p1.  Aczel 

and Luce [14], Steingrimsson and Luce [15] emphasized a fundamental question: whether Prelec [52] is equal to  1  

at  p = 1.   

In any case, one may suppose that a synthesis of these two possible ways can be of some interest. This idea of 

the synthesis turned out to be useful indeed. It has successfully explained, at least partially or qualitatively, the 

underweighting of high and the overweighting of low probabilities, risk aversion, and some other problems (see, e.g., 

[1]. There are also works providing experimental support of this synthesis (see, e.g., Starmer and Sugden [48], Harin 

[53].  

It is proved here that bounds on the variances and ranges of random variables lead to bounds (or forbidden 

zones) for their expectations near the boundaries of the ranges (intervals). The role of noise, as a possible cause of 

these zones, and their possible influence on the results of measurements near the boundaries of the intervals are 

considered in a preliminary way also.  

Keeping in mind the above bounds in, e.g., Chernoff [3], Madansky [5], Moriguti [6], [7] for functions, various 

functions of the expectations of r.v.s can be also investigated. 

 

2. Theorem  
2.1. Preliminaries  

Let us consider a set  {Xi},  i = 1, … , n,  of random variables  Xi  whose values lie within an interval  [a, b].  For 

the sake of simplicity,  Xi, µi, σi
2
  and similar symbols will often be written without the subscript  “i.”   

If there is at least one discrete value of  X,  then let us denote the discrete value(s) of  X  by  {xk}, 
,,...,1 Kk 
  

where  1K ,  and the probability mass function (PMF) by  pX(xk).  If there are none, then let us ignore all the 

expressions involving discrete value(s).  

If there are continuous values of  X,  then let us denote them by  x  and the probability density function (PDF) by  

fX(x).  If there are none, then let us ignore all the expressions involving continuous values.  

Under the normalizing condition  

1)()()()(
],[1
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let us consider the expectation and variance of  X,  and their relations.  

In connection with the terms “bound” and “forbidden zone,” the abbreviation “rµ” (arising from the first letter  

“r” of the term “restriction”) will be used here, due to its consonance with the usage in previous works.  

Non-trivial forbidden zones of non-zero width will sometimes be referred to as non-zero forbidden zones.  

 

2.2. Maximality of the Variance  
A proof is given in Bhatia and Davis [9] that, for the variance  σ

2
  of a discrete random variable with range  [a, 

b]  and expectation  µ,   
2 ( )( )a b    

,                                                   (2) 

An alternate proof is given in the Appendix that this inequality holds also for any real-valued random variable  

Xi  as in above subsection 2.1.  

 

2.3. Existence theorem  
Theorem 1. Consider a set  {Xi},  i = 1, … , n,  of random variables  Xi  whose values lie within an interval  [a, 

b].  If  0 < (b-a) < ∞  and there exists a forbidden zone (or lower bound) of a non-zero width  σ
2

min  for the variances  

σi
2
  of  Xi,  such that for all  i,   

0min
22  i ,                                              (3) 

Then certain forbidden zones (or boundary bounds, or restrictions) of a non-zero width  rµ  exist for the 

expectations  μi  of each  Xi  such that  

brbraa i  )()(  
.                              (4) 
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Proof. Inequalities (2) and (3) lead to  
))((0

2
min

2

iii ba  
.  At, e.g., the boundary  a,  this 

leads to  σ
2
min ≤ σ

2
i ≤ (μi-a)(b-a)  and  
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At the boundary  b,  the considerations are similar and give  

ab
b

ab
b

i

i






min

22 


.  

Defining the bounds (restrictions)  rµ  on the expectation  μi  as  

abab
r

i







2
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,                                             (5) 

we obtain the inequalities    rbra i 
.   

Due to  0 < (b-a) < ∞  and  σ
2
min > 0, the bounds  rµ  are non-zero and this leads to the inequalities  

2 2

min min
ia a b b

b a b a

 


   
        

    
,              (6) 

Those are equivalent to (4).          □  

 

2.4. Comments to the Theorem  
We see that the particular bounds for the expectation of some a particular r.v. are determined by its variance.  If 

the variance is non-zero, then these bounds are non-zero also. If the minimal variance σ
2
min for the set of random 

variables {Xi} is non-zero, then the common bounds for the set of all Xi are non-zero as well. These bounds cannot 

be less than rµ in (5).  

The boundary bounds (restrictions) rµ can be considered as some forbidden zones of the width rµ for the 

expectations of the random variables Xi near the boundaries of [a, b].  Consequently the allowed zone for the 

expectations of Xi is located in the center of the interval. The allowed zone is compressed by the forbidden zones (in 

comparison with the entire interval), and the expectations are biased from the boundaries to the middle of the 

interval (in comparison with the case of zero forbidden zones). This is similar to the pull-to-center biases, see, e.g., 

Aj, et al. [43], Greenacre, et al. [45], Zhang and Siemsen [46]. 

The importance of this simple theorem lies in its particular and general consequences that are used and/or 

considered in next sections.  

 

3. Practical Examples of the Occurrence of the Forbidden Zones  
3.1. Practical Examples of the Forbidden Zones Boat and Waves  

Consider a calm or mirror-like sea and a small rigid boat or any other small rigid floating body at rest in the sea. 

Suppose that this boat or body rests right against (or is constantly touching) a rigid moorage wall. As long as the sea 

is calm, the expectation of their side can touch the wall.  

Suppose there is a heavy sea. Consider a small rigid boat or any other small rigid floating body which oscillates 

on the waves in the heavy sea. Suppose that this boat or body oscillates on the waves near this rigid moorage wall.  

When the boat is oscillated by sea waves, then its side oscillates also (both up–down and left–right) and it can 

touch the wall only in the (nearest) extremity of the oscillations. Hence the expectation of the side cannot touch the 

wall. Hence the expectation of the side is biased away from the wall.  

So, one can say that, in the presence of waves, a forbidden zone exists between the expectation of the side and 

the wall.  

This forbidden zone biases the expectation away from the wall. The width of the forbidden zone is roughly one-

half of the amplitude of the oscillations.  

 

3.2. Practical Examples of the Forbidden Zones Washing Machine, Drill  
Consider a washing machine or drill (or any other rigid body) that can vibrate when it works. Suppose its 

edgeless rigid side (or some rigid limiter of the movement of its side) is located near a rigid surface or wall.  

If the machine or drill is at rest, then the expectation of this side can be located right against (be constantly 

touching) the wall.  

If the machine or drill vibrates, then the expectation of this side is biased and kept away from the wall due to the 

vibrations.  

So, in the presence of the vibrations, a forbidden zone exists between the expectation of the side of the rigid 

body and the rigid wall. This is evidently true for any rigid body near any rigid surface or wall.  
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3.3. Vibration Suppression Sure Games  
Vibrations or oscillations can be suppressed by means of some efforts of some forces. Such efforts can be, e.g., 

physical in the case of physical vibrations.  

A vibrating rigid body can be pressed by some means. In this case the corresponding forbidden zone can be 

suppressed either partially or even totally, depending on the parameters of the suppression.  

This suppression can correspond to the case of sure games (and outcomes) in behavioral economics, decision 

theory, the social sciences, etc.  

In behavioral sciences, the term “sure” presumes usually that some efforts are applied to guarantee the sure 

games in comparison with the uncertain ones. Due to these guaranteeing efforts, the widths of the forbidden zones 

and, hence, the biases for the sure games can be less than the widths and biases for the corresponding uncertain 

games. In the limiting case, when the efforts are sufficiently hard, there are no forbidden zones for the sure games.  

So, sure games are guaranteed by some efforts. Due to these efforts, the forbidden zones and biases for the sure 

games can be suppressed and reduced.  

 

4. Hypothesis of Presupposed Biases  
4.1. Preliminary Remark  

First of all, the above hard, complex, and old problems evidently cannot be solved by any single article. Such a 

solution needs a lot of elaborated works of a sufficient number of high-powered research teams. Hence and 

especially keeping in mind the above statement “… numerous choices … violate any sensible definition of rational” 

of a Nobel Laureate in this field in Thaler [49], one may formulate a principle of gradualism for the present research 

and article. This principle can sound like “stage by stage and step by step.”  

Hence the applied mathematical method (or approach) that will be proposed in the present article should be only 

a preliminary stage for subsequent verifications, changes, modifications and refinements by a sufficient number of 

independent research teams. So for such a preliminary stage, some good step can be even the above theorem with its 

consequences, and a collection of some suppositions and mathematical relations.  

 

4.2. Behavioral Hypothesis  
The practical examples of the previous section evidently illustrate possible forbidden zones of the theorem. 

Similar examples are widely disseminated in real life. Due to this dissemination, subjects (people) can keep in mind 

the feasibility of such forbidden zones and the biases of the expectations caused by the zones. This can influence the 

behavior and choices of the subjects.  

In consequence of this consideration, I propose a statement that can be named as a behavioral hypothesis:  

“People, as economic subjects, behave and decide (at least to a considerable degree) as if there were some 

presupposed (hypothetical) biases of the expectations for games.”  
Note. This hypothesis can be supported by the reason that such biases may be proposed and tested even from a 

purely formal point of view.  

This hypothesis can be found in hidden forms in the literature or derived from it (see, e.g., Harin [1], Kahneman 

and Tversky [47], Thaler [49]) in this particular field, and in an explicit form in neighboring fields (see, e.g., 

Menapace and Raffaelli [40], Penn and Hu [41]. Nevertheless one should state it in an explicit form and emphasize it 

in this particular field. 

 

5. Mathematical Method of Biases of Expectations (MMBE)  
5.1. Propositions  

Two main propositions can be suggested for a mathematical method of solution of the above problems. The first 

one is the above hypothesis. Shortly it is:  

Proposition 1. Presupposed (Hypothetical) biases of the expectations.  

Or in details: “Subjects behave and decide (at least to a considerable degree) as if there were some presupposed 

biases of the expectations for games.”  

Due to this proposition, the method (approach) can be called an Applied Mathematical Method of Biases of 

Expectations, or AMMBE, or shortly MMBE. The MMBE is to explain not only the objective situations but also and 

mainly the subjective behavior and choices of subjects.  

The second main proposition is:  

Proposition 2. Explanation by the forbidden zones of the theorem.  

That is these biases (real biases or subjective reactions and choices of the subjects) can be explained (at least to 

a considerable degree) with the help of the forbidden zones of the theorem.  

 

5.2. Notation  
One can introduce following denotations.  

Denote the real expectations for the games by  

sure
 and    uncertainuncert  

. 

Denote the presupposed biases (of the expectations) that are required to obtain the data corresponding to the 

choices of the subjects by  
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. .ch uncert choice uncertain    
 and 

. .ch sure choice sure    
. 

So the resulting expectations (i.e., expectations including these biases) for the observed choices of the subjects 

can be written as  
.uncert ch uncert  

  for the uncertain games and as  .sure ch sure 
  for the sure ones.  

 

5.3. General Relations of the MMBE  
Let us consider some essential features of the examined situations and, using the above notations, develop some 

relations.  

1. Condition for the MMBE. Due to the first main proposition, the method of biases of expectations can be 

useful only if these biases for the choices for the uncertain (see the third subparagraph below) games are non-zero  

.| | 0ch uncert 
  or     

.sgn ( ) 0ch uncert 
.   (7) 

2. Forbidden zones as, at least, one of the origins of biases. The presupposed bias  Δch-µ.uncert  may be introduced 

and considered purely formally. The question is not only whether  Δch-µ.uncert  can explain the problems. Due to the 

above second proposition,  Δch-µ.uncert  itself should be explained by the forbidden zones of the theorem, at least 

partially.  

First of all, the theorem should be applicable. Therefore inequalities (3), that is 0min
22  ,  of the non-

zero minimal variance are required to be true.  

Further, let us denote the bias caused by the forbidden zone of the theorem by Δtheorem.  The sign of the 

presupposed bias should coincide with that for the bias caused by the theorem  

.sgn( ) sgn( )ch uncert theorem  
.   

Then the conditions for the explanation can be written as Δch-µ.uncert ≈ Δtheorem in the case when the forbidden 

zones are the main source of the biases. If these zones are only one of the essential sources of the biases, then these 

conditions can be represented as Δch-µ.uncert = O(Δtheorem).   

So the relations of the explanation by the theorem are  

0min
22       and also     

.ch uncert theorem  
     or at least     . ( )ch uncert theoremO  

. (8) 

3. Biases for sure games. The above considerations about noise suppression and sure games emphasize the 

condition that the sure games are guaranteed by some guaranteeing efforts. Due to these efforts, the biases for the 

sure games can be suppressed and reduced. They can be moreover equal to zero.  

Therefore I assume that the presupposed biases of the data for the sure games are equal to zero or, more 

generally, are strictly less than the presupposed biases for the corresponding uncertain games.  

So, the relation for the sure and uncertain games is  

. .| | | |c ch sureh uncert    
.                               (9) 

 

5.4. Restrictions One of the Main Questions  
There are two causes of restrictions on the method and models.  

First. Evidently, if  σmin  0  then, due to (5),  rµ/σmin  0  as well.  

Second. Preliminary estimate Harin [54] shows that the real relative biases are sometimes comparable with the 

upper bound of the relative biases that can be derived from biases (5) guaranteed by the theorem.  

Due to these two reasons, and also from general and formal points of view, one may suppose: “In general cases, 

along with the non-zero minimal variance, other sources of the biases cannot be excluded so far.” Hence, general 

models can be considered at present as only preliminary ones.  

So, one of the main questions is to determine whether the forbidden zones can lead to sufficiently high values 

for the biases (for both low and high minimal variances). So, one of the main questions of future research is to 

analyze the possible widths of the forbidden zones for various types of distributions.  

 

5.5. First Stage Qualitative Problems, Models and Explanations  
Due to the above principle of gradualism, the first stage of the approach (method) can be constituted by 

qualitative models. That is one can both deal with qualitative problems and give qualitative explanations.  

The statements of this first stage can be formulated as follows:  

Qualitative problems. Only qualitative problems will be considered.  

Qualitative analysis. Only a qualitative analysis will be performed.  

Qualitative explanation. Only qualitative explanations of the existing problems will be given. No predictions 

will be made in during this first stage.  

Choices of subjects. The method and models will explain mainly the subjective behavior and choices of 

subjects.  
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6. Qualitative Mathematical Models Novelty  
6.1. Need for Qualitative Models  

First of all, is there a real need for qualitative models?  

Suppose you are considering a confused situation where you know the exact magnitude of some effect, which 

can be either positive or negative, but you cannot predict its sign. Evidently the goal is, first of all, to explain the 

origins of the effect and predict its sign, and only then to calculate its exact magnitude.  

The literature analysis states that this problem of the determination of the signs was posed not later than in 1979 

(see, e.g., Kahneman and Tversky [47], pp. 268: ”The reflection effect”), but is still unsolved (see, e.g., Thaler [49], 

pp. 1581–1582: “violate any sensible definition of rational. ... subjects were risk averse in the domain of gains but 

risk seeking in the domain of losses”). So the theory takes into account the observed signs of the biases but does not 

explain them, and there is a critical need for such an explanation. 

 

6.2. Elements of a General Qualitative Model  
First let us define what problems can be named here as qualitative.  

Definition 1. A qualitative problem is defined for the purposes of the present article and research as the problem 

such that the sign of the difference between the resulting expectations for the choices of the subjects (people) for the 

uncertain and sure games is distinct from the sign of the difference between the real expectations for these games.  

This type of problems is chosen as the example that is usual in experiments (see, e.g., Kahneman and Tversky 

[47], Starmer and Sugden [48], Thaler [49]). It can make manifest a qualitative representation of the problems and 

can be a background for further research. Such problems will be the item of the first stage of the MMBE.  

So the inalienable feature of the analyzed qualitative problems is the necessary change of the sign. There can be 

only three combinations of the signs: the expectation for the uncertain game (or outcome) can be greater than, less 

than, or equal to that for the sure game. So, the signs of their differences can be correspondingly positive, negative, 

or zero.  

In other words, when the difference between the real expectations is, e.g., positive (that is,  sgn (µuncert - µsure) > 

0),  then, to obtain the observed data, the difference for the choices (resulting expectations) should be non-positive, 

that is, sgn (µuncert + Δch-µ.uncert - µsure – Δch-µ.sure) ≤ 0. When it is negative  (µuncert < µsure),  then the difference for the 

choices should be non-negative. When the difference between the real expectations is equal to zero  (µuncert = µsure),  

then the difference for the choices should be undoubtedly positive or negative.  

This feature can be represented by  

. .sgn( ) sgn( )uncert sure uncert ch uncert sure ch sure         
. (10) 

To overcome the real difference between the expectations for the uncertain and sure games, the absolute value 

of the presupposed bias for the uncertain game should be evidently not less than this real difference. That is  

          .| | | |unch ceunce rt s ert ur    
.                               (11) 

So, relations (10) and (11) constitute an addition to the method. Their sum can be named as a preliminary 

general qualitative mathematical model.  

Note. Relation (11) implies, in particular, that if uncert sure 
,  then (11) takes the form of (7) (that is  

.| | 0ch uncert 
).  For the other problems (11) remains the form .| | | |ch uncert uncert sure    

.   

The trial examples of Harin [54] of applications of the general model show that it can qualitatively explain the 

practical examples cited here. Nevertheless, this preliminary general qualitative mathematical model still needs 

proofs. 

 

6.3. Special Qualitative Mathematical Model (SQMM)  
Preliminary estimate of Harin [54] restricts applications of the general model. One of the main questions for 

future research is to analyze the possible widths of the forbidden zones for various types of distributions.  

Let us consider the qualitative problems under the special condition  

uncert sure 
.                                                                            (12) 

It asserts that the expectations for the uncertain games are exactly equal to the expectations of the corresponding 

sure games. This is the well-known and important case of real situations. Here (12) (keeping in mind (7)) substitutes 

(10) and (11).  

Such a special situation enables avoiding the constraints of preliminary estimate Harin [54] of the secure upper 

bound (5) for the bias, and making this special model less formal. The biases can be selected to be much less than the 

secure upper bound (5), and the suppositions will be simpler.  

This Special Practical Qualitative Mathematical Model (SPQMM or SQMM) can be considered as a first step of 

the first stage of the approach (method) MMBE.  

 

6.4. Novelty  
The literature analysis including the above citation from Thaler [49], leads to the reliable statement that the 

forbidden zones, theorem, hypothesis, method, and models introduced here have not been described before and are 

new.  
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The responses and comments of journals’ editors and reviewers on the articles related to this research confirm 

this statement.  

 

7. Particular Consequence Practical numerical Examples for Different 

Domains  
The above theorem leads to both particular and general consequences. They will be considered in this and next 

sections.  

 

7.1. Particular Consequence Mathematical Support for the Analysis  
Some well-known generic problems (see, e.g., Kahneman and Thaler [2]) were analyzed in, e.g., Harin [1]. The 

problems include examples of typical paradoxes of prospect theories such as the underweighting of high and the 

overweighting of low probabilities, risk aversion, etc. The analysis was performed for the purposes of behavioral 

economics, psychology, decision theory, and the social sciences.  

The analysis explained, at least partially or qualitatively, the analyzed paradoxes. Experimental and analytical 

works (see, e.g., Starmer and Sugden [48], Harin [1]) devoted to the experimental methods of behavioral economics 

support it as well.  

The analysis used the idea of the considered forbidden zones of the theorem. The r.v.s considered in the theorem 

include those used in this analysis.  

So the theorem supports analysis Harin [1]. This mathematical support can be considered as a particular 

consequence of the theorem. 

 

7.2. Practical Numerical Example First Domain. Gains  
Suppose that the parameters of the special practical qualitative mathematical model for the gains are: the 

presupposed bias for the choices for the uncertain game is equal to $2, and for the sure game it is equal to $1.   

The typical examples (see, e.g., Kahneman and Tversky [47], Starmer and Sugden [48]) can be simplified to the 

special qualitative situations similar to that of the preceding section and Harin [1].  

Imagine that you face the following pair of concurrent games (a sure game and an uncertain game). Choose 

between:  

A) A sure gain of $99.   

B) A 99% chance to gain $100 and a 1% chance to gain or lose nothing.  

 

7.2.1. Ideal Case  
In the ideal case, without taking into account the dispersion of the data, the expectations  µsure  and  µuncert  are 

equal to each other:  
$99 100% $99sure   

  and  
$100 99% $99uncert   

.   

So, in the ideal case we have  

99$99$  ,   

That is, the uncertain and sure games are equally preferable.  

 

7.2.2. Forbidden Zones  
In the real case, one should take into account some dispersion of the data, and hence the minimal non-zero 

variance (3) caused by this dispersion, and the forbidden zones (4) caused by this variance, at least for the uncertain 

games.  

Let us consider the real case of a non-zero variance of the data, the corresponding forbidden zones, and 

presupposed biases.  

The biases are Δch-µ.uncert = $2 and  Δch-µ.sure = $1.  So we have µsure – Δch-µ.sure = $99×100% - $1 = $98 and  µuncert 

– Δch-µ.uncert = $100×99% - $2 = $97.  The expectation µuncert  is biased more than  µsure  and  

97$98$  .   

We see the clear and evident difference between the resulting expectations (with their biases caused by the 

forbidden zones of the theorem) and its correspondence with the salient and unequivocal choices of the subjects.  

 

7.3. Practical Numerical Example Second Domain Losses  
The case of gains has been explained many times, and in a wide variety of ways. But a uniform explanation for 

both gains and losses, without any additional suppositions (as, e.g., in Kahneman and Tversky [47]), had not been 

nevertheless recognized by the author of the present article (see a slightly similar work Egozcue, et al. [55]).  

SQMM turns out to be useful for such a uniform explanation.  

Let us consider the case of losses under the same suppositions as for the case of gains.  

Imagine that you face the following pair of concurrent games (a sure game and an uncertain game). Choose 

between:  

A) A sure loss of -$99.   

B) A 99%  chance to lose  -$100  and a  1%  chance to lose or gain nothing.  
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7.3.1. Ideal Case  

In the ideal case,  
$99 100% $99sure     

  and µuncert = -$100×99% = -$99.  So they are exactly equal 

to each other:  

99$99$  .   

Therefore the both choices (games) should be equally preferable.  

 

7.3.2. Forbidden Zones  
The forbidden zone biases the expectation from the boundary of the interval to its middle (see also, e.g., Aj, et 

al. [43], Greenacre, et al. [45], Zhang and Siemsen [46]). Therefore, at high probabilities, the biases are subtracted 

from the absolute values for both cases, gains and losses. That is, due to the opposite signs of the values for gains 

and losses, the bias is subtracted for the gains and added for the losses.  

Note. This is not a supposition but a rigorous conclusion. Hence the conditions of the SQMM are naturally 

uniform for more than one domain.  

Let us consider the forbidden zones under the same suppositions as for the gains, that is for the same, uniform 

parameters.  

The biases are Δch-µ.uncert = $2 and Δch-µ.sure = $1.  So we have µsure + Δch-µ.sure = -$99×100% + $1 = -$98 and  

µuncert + Δch-µ.uncert = -$100×99% + $2 = -$97.  The expectation µuncert is biased more than  µsure  and  

97$98$  .   

The expectation for the uncertain game is biased more than that for the sure one, as was also the case for the 

gains, but here the bias increases the preferability of the uncertain loss and it is (due to the obvious difference 

between the resulting expectations) more preferable than the sure one.  

We see the clear difference between the resulting expectations and its correspondence with the salient 

preferences and choices. So the SQMM provides the explanation for the domain of losses as well. Moreover, this 

explanation is uniform for the both domains of gains and losses.  

 

8. General Consequences  
8.1. Necessity of Corrections  

The expectations of r.v.s cannot lie within the forbidden zones.  

Suppose a situation of an uncertain game at very high or very low probabilities. Suppose that without taking into 

account the theorem, the expectation is calculated to lie within the forbidden zone. If the situation satisfies the 

conditions of the theorem, then this calculation should necessarily be corrected.  

So the descriptions of situations of uncertain games should be necessarily corrected when these situations satisfy 

the conditions of the theorem, at least within the forbidden zones.  

 

8.2. Possible Additional Tools for Various Theories and Models  
The ideas, considerations and results of the present article can be used in various theories and models of 

behavioral sciences. In particular the relations and formulae (5)-(12) can be used as additional mathematical tools.  

For example, relations (7) and (9) can be combined in a relation  

. .| | | | 0c uncert suh ch re     
,    (13) 

That is more compact than the sum of (7) and (9). This relation can be especially useful near the boundaries of 

the probability scale, that is at very high and very low probabilities.  

      For another example, the existence of the non-zero forbidden zones leads to the necessity of essential 

revision of the form of the probability weighting curve (or Prelec curve), see, e.g., Prelec [52].   

 

8.3. Possible Description of the Influence of Noise  
Let us make some preliminary considerations for possible general consequences of the theorem for a 

mathematical description of noise.  

If some type of noise leads to some non-zero minimal variance (3) for the considered set of random variables, 

then this non-zero minimal variance (and, consequently, this type of noise) leads to the above non-trivial forbidden 

zones (4) for the expectations of these variables. If some type of noise leads to an increase in the value of this 

minimal variance, then the width of these forbidden zones increases also.  

If this noise leads to a non-zero minimal variance  σ
2

min : σ
2
i > σ

2
min > 0  for the set  {σ

2
i}  of variances of the 

random variables Xi, then the theorem predicts that there will be forbidden zones whose width  rµ.noise  is not less than  

2

min
.noiser

b a





 . 

So, the proven theorem can be a preliminary step towards a general mathematical description of the possible 

influence of noise near the boundaries of finite intervals.  

Some general questions concerning this item can arise. For example, general determinations of level, strength, 

power, etc. of noise are needed. They should lead to the general determination of the non-negligible noise.  
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There are many types of noise. Another thing that is needed is the specification of common widespread types of 

measurement noise those can lead to a certain non-zero minimal variance of the measurement data in the usual 

circumstances and environments.  

Due to the general character of the above questions and due to the demand for widespread experimental support, 

there is a need for a variety of research teams to give reliable answers to these questions.  

 

8.4. Biases of Measurement Data  
Let us preliminary consider potential general consequences of the theorem for a general mathematical 

description of the biases of data.  

The forbidden zones (4) can lead evidently to some biases in measurements.  

Suppose a set (like the above {Xi}) of series of measurements whose data all lie within a common finite interval. 

The set of the data series forms the set of their expectations. If there is some non-zero minimal variance of the data 

such that the inequality (3) is true for the data of any series, then there exist forbidden zones (4) for the set of the 

expectations of the series.  

The allowed zone for the expectations is compressed by the forbidden zones (in comparison with the entire 

interval), and the expectations are biased from the boundaries to the middle of the interval (in comparison with the 

case of zero forbidden zones), see also the pull-to-center bias, e.g., Aj, et al. [43], Greenacre, et al. [45], Zhang and 

Siemsen [46].  

An analysis of the biases in the expectations of the data needs much more volume than the present article 

permits. Nevertheless some possible results of such an analysis can be briefly outlined.  

These biases can possess the following features:  

1) They have opposite signs near the opposite boundaries.  

2) Their moduli are decreased from the boundaries to the middle.  

3) They are directed from the boundaries to the middle (of the interval).  

When the minimal variance of the data is equal to zero (that is when (3) is not true), then the expectations of the 

data of measurements can touch the boundaries of the interval. When the above (non-trivial) forbidden zones exist 

and are not taken into the consideration, then the predicted results are located closer to the boundaries than in the real 

case. Hence the predicted results are biased in the comparison with the real ones.  

We will now look at a particular example of these biases. If the minimal variance (3) of the data is non-zero, that 

is if σ
2
 > σ

2
min > 0 is true, then the theorem predicts (5), i.e. near the boundaries of intervals the biases are  

ab
bias




min
2

||


. 

So, the theorem, and its consequences and applications can be considered as a preliminary step to the general 

mathematical description of the biases of measurement data near the boundaries of finite intervals.  

 

9. Conclusions  
Theorem 1 is presented in this article. The theorem proves the existence of the forbidden zones for the 

expectations of the random variables. This proof can be applied to various types of data. The theorem leads to the 

three main results (contributions) of the present article.  

One can summarize these three main new results as follows.  

1) The necessity of corrections of descriptions, at least within the forbidden zones (i.e., at very high and very 

low probabilities), for any situation that satisfies the conditions of the theorem.  

2) Estimate (6)  

b
ab

b
ab

aa i 






















min
2

min
2 




 
for the forbidden zones and their widths.  

3) The special qualitative mathematical model (SQMM) that is uniformly true for more than one domain.  

The relations of the SQMM can be compiled as follows:  

Relations (7) for the non-zero biases  

.| | 0ch uncert 
    or    

.sgn ( ) 0ch uncert 
. 

Relations (8) for the theorem and choices  

0min
22     and 

.ch uncert theorem  
    or at least    . ( )ch uncert theoremO  

. 

Relation (9) for the choices for the sure and uncertain games  

. .| | | |ch uncert ch sure    
. 

And relation (12) for the special qualitative problems  
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uncert sure 
. 

The SQMM is a qualitative model both for practical estimation of special qualitative situations and for 

determination of the turning points in the conditions of quantitative experiments and situations.  

At least one of the main goals for future research is to analyze the possible widths of the forbidden zones for 

various types of distributions.  
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A. Appendix. Lemmas  
Let us prove three lemmas for theorem (1). Namely let us prove that the maximal variance of any discrete or 

continuous or real valued random variable whose values lie within a finite interval is not more than the variance of 

the discrete random variable whose probability mass function has only two non-zero values, which are located at the 

boundaries of the interval.  

 

A1. Lemma 1: Discrete Part  
Lemma 1. If the values of a random variable  X  lie within an interval  [a, b] :   0 < (b-a) < ∞,  (1) holds, and the 

variance of  X   can be represented as   

 


b
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X

bax
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Proof. Consider the difference between these transformed and initial expressions for the discrete part of the 

variance for the cases  xk ≥ µ  and  xk ≤ µ.   

Case  xk ≥ µ.  If  a ≤ µ ≤ xk ≤ b,  then   
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So in the case  xk ≥ µ,  the difference between the transformed and initial expressions for the discrete part of the 

variance is non-negative.  

Case  xk ≤ µ.  If  a ≤ xk ≤ µ ≤ b,  then, analogously to the above case,   
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So in the case when  xk ≤ µ,  the difference between the transformed and initial expressions for the discrete part 

of the variance is non-negative also.  

Maximality. So the difference  
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is non-negative for any  xk  such that  a ≤ xk ≤ b.   

Let us estimate the difference between the transformed and initial expressions for the discrete part of the 

variance   

2 2 2
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.   

Every member of the sum is non-negative. Hence the total sum is non-negative as well. Lemma 1 has been 

proved.                    □   

So, the variance of any discrete random variable whose values lie within a finite interval is not more than the 

variance of the discrete random variable (with the same expectation) which has only two values at the two boundary 

points of the interval. And the discrete part of the variance of  X  is not more than the variance for the PMF (with the 

same norm and expectation as for this discrete part) which has only two values, located at  a  and  b.   

 

A2. Lemma 2: Continuous Part  

Lemma 2. If the values of an r.v. X lie within  
[ , ] :a b

 
0 ( )b a   

, condition (1) holds, and the 

variance of  X  can be represented as (14), then   
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Proof. Let us find the difference between these transformed and initial expressions for the continuous part of the 

variance. Let us consider separately the cases  x ≥ µ  and  x ≤ µ.   

Case  x ≥ µ.  If  a ≤ µ ≤ x ≤ b,  then, analogously to the above cases, for   
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So in the case when  x ≥ µ,  the difference between the transformed and initial expressions for the continuous 

part of the variance is non-negative.  

Case  x ≤ µ.  If  a ≤ x ≤ µ ≤ b,  then considerations that are entirely analogous to the above cases lead to the 

conclusion   
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So in the case when  x ≤ µ  the difference between the transformed and initial expressions for the variance is 

non-negative as well.  

Maximality. Let us estimate the difference between the transformed and initial expressions of the continuous 

part of the variance   
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.   

Since the integrand is non-negative for every point in the scope of the limits of integration, the integral is non-

negative as well. The difference between the expressions is therefore non-negative. Lemma 2 has been proved. □   

So, the variance of any continuous r.v. whose values lie within a finite interval is not more than the variance of 

the discrete r.v. (with the same expectation) which has only two values located at the two boundary points of the 

interval.  



Academic Journal of Applied Mathematical Sciences  

 

24 

And the continuous part of the variance of  X  is not more than the corresponding part (with the same norm and 

expectation as for this continuous part) of the variance of the probability mass function which has only two values 

located at the boundary points  a  and  b.   

 

A3. Lemma 3: General Mixed Case  
Lemma 3 (General mixed case). If the values of a random variable X lie within an interval  

 )(0:],[ abba
,  normalizing condition (1) holds, and the variance of the variable  X  can be represented 

as   
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Proof. The discrete part of this inequality has been proved (by means of lemma (1)) to be true independently of 

its continuous part for any combination of norms within the framework of normalizing condition (1).  

The continuous part of this inequality has been proved (by means of lemma (2)) to be also true independently of 

its discrete part for any combination of norms within the framework of normalizing condition (1).  

Therefore the sum of these two parts is true as well.  

So lemma (3) has been proved.               □   

So in any case, the variance is maximal for the PMF that has only two values located at the two boundary points 

of the interval.  

The transformations that are considered in lemmas (1) and (2) evidently do not change the expectation of the 

variable X.  The expectation of the PMF for these two boundary points is therefore equal to the expectation of the 

initial random variable. Any two-point PMF  pab ≡ pab(a) + pab(b)  is determined by its expectation (and these two 

points).  

So pab(a) = (b-µ)/(b-a),  and  pab(b) = (µ-a)/(b-a), and   
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This expression agrees naturally with the result of Bhatia and Davis [9] for discrete variables.  

So, Lemma 1 can be treated as another version of this result and Lemmas (2) and (3) can be treated as its 

expansions.  

So the variance of any random variable whose values lie within a finite interval  [a, b]  is not more than that in 

inequality (2), that is,   

))((][ 2   baXE
.   
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