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Abstract 
This manuscript presents a new univariate six parameters type I half-logistic inverse Weibull distribution. Explicit 

expressions for the quantile function, the moments, the moment generating function and the maximum likelihood esti-

mators are formulated. Simulation is employed to investigate the goodness of fit and to discuss the behaviour of the new 

model. Competitive models are compared via real data. The univariate one is used as a base line to construct a bivariate 

one named bivariate six parameters type I half-logistic inverse Weibull distribution. Mathematical properties of the new 

bivariate distrib-ution are investigated. The goodness of fit and the model performance are discussed via simulation. 

COVID-19 mortality data for Italy and Canada are treated as a bivariate random variable to prove the applicability of the 

new bivariate distribution. 

Keywords: Bivariate distribution; Six parameters type I half-logistic inverse Weibull dis-tribution; Maximum likelihood estimators; 

Bias; Standard error. 
 

 

1. Introduction 
Parametric probability distributions have a lot of applications especially in data analysis, statistical learning, and 

image processing [1-5]. Recently there has been a grating interest in formulating new parametric probability distrib-

utions. The inverse Weibull (IW) distribution is frequently considered in the literature. The suitable use of the IW 

model to describe the degeneration phe-nomena of mechanical components such as the dynamic components 

(pistons, crankshaft, etc.) of diesel engines has been discussed by Keller and Kamath [6]. It has been employed by 

Erto and Rapone [7] to model the times to break-down of the insulating fluid, subject to the action of constant 

tension. Akgul, et al. [8] considered the two-parameter IW model to investigate the wind speed. The three-parameter 

IW distribution has been constructed by De Gusmo, et al. [9]. Its properties have been discussed by Oluyede and 

Yang [10] and Jana and Bera [11]. Using the Marshall-Olkin method, another three-parameter IW model has been 

presented by Okasha, et al. [12]. The type I half-logistic two-parameter G family has been investigated by Cordeiro, 

et al. [13]. Alkarni , et al. [14] presented a new three parameter one as a generalized version. The univariate models 

can be applied only in the cases where there is an only one random variable or where there is a set of independent 

random variables. 

They fail in the case where there is a set of dependent random variables. The problem of constructing bivariate 

models has a grate attention [15-28]. Here we aim: to introduce a new univariate six-parameter type I half logis-tic 

inverse Weibull (SPTIHLIW) distribution; to derive explicit mathematical expressions for its statistical quantities; to 

show its flexibility; to discuss the goodness of fit; to prove its superiority in comparison with a set of well-known 

models; to investigate its applicability to real data; to extend the univari-ate one to a bivariate one named bivariate 

six parameters type I half-logistic inverse Weibull (BISPTIHLIW) distribution; to derive the properties of the 

BISPTIHLIW distribution including, joint density function, joint cumulative function, conditional distributions, joint 

moments, hazard bivariate function and copula function; to investigate its performance; to emphasize the goodness 

of fit; to show the applicability of the BISPTIHLIW distribution for different types of data. As far as I know, the 

most of available distribution can only be applied for well-behaved data. The new model can be applied for ill-

conditioned date including heavy tailed data. It has a joint probability density function with only one form with no 

singular parts. The pdf offers different shapes for different values of parameters. The hazard function has different 

shapes. It shows also good performance in terms of simulation study and application of real data. In addition, same 

algorithm was used to generate bivariate models with common properties including different shapes of the pdf, with 

singular part and no closed form of the maximum likelihood estimators. This paper uses a more general, easy, and 

different algorithm to present a bivariate dis-tribution, with absolutely continuous pdf with new marginals. The 
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marginal are flexible with so favorable properties. Although the statistical quantities are complected they are in 

closed forms. The pdf shows different shapes and characteristics for different values of parameters and so its hazard 

function. The forthcoming part of the manuscript is organized as follows: The new univariate six-parameter type I 

half-logistic inverse Weibull (SPTIHLIW) dis-tribution with its properties are constructed in Section 2. Section 3 is 

devoted to estimate the unknown parameters. Goodness of fit is discussed via simu-lation in section 4. Section 5 

gives a real data application with comparison to competitive well-known models. The bivariate six-parameter type I 

half logistic inverse Weibull (BISTIHLIW) distribution is formulated in section 6. Estimation of unknown 

parameters and goodness of fit are presented in sec-tions 7 and 8, respectively. Section 9 gives an application of the 

BISTIHLIW model. Concluding notes are given in section 10. 

 

2. The SPTIHLIW Model 
Definition 2.1. A one dimensional random variable is said to follow the SPTIHLIW distribution if its cdf has 

the following form. 

 
 

Proposition 2.2. For the cdf (1) the pdf is derived as 

 
 

Proposition 2.3. An expansion of the pdf (2) can be obtained as follows. 

 
 

Proposition 2.4. The survival function for the cdf (1) is computed as 

 
where > 0: 

 

Proposition 2.5. From (3) and (4) the hazard function is constructed as 

 
 

Figure 1, gives the pdf and the hazard function for different values of para-meters. It shows the flexibility of the 

pdf and changes of the hazard function according to parameters. 
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Fig-1. (a) pdfs (b) hazard functions, for different values of parameters 

 
 

Proposition 2.6. Expressions for the  moment and the moment generating function for the pdf (2) are 

respectively given by. 

 

 

 
 

Proposition 2.7. The quantile function for the cdf (1) is 

 
 

3. The SPTIHLIW Model: Estimation 
Proposition 3.1. (I) The maximum likelihood function for the pdf (2) is com-puted as follows 

 
 

(II) The score function  
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4. The SPTIHLIW Model: Simulation 
To investigate the goodness of fit the function (8) is used to generate samples with size (n = 20, 50, 100). Three 

different random variables are treated: SPTIHLIW (1.3, 1.7, 0.5, 0.9, 2.1, 2.0);  SPTIHLIW (1.8, 

0.7, 1.5, 1.3, 0.8, 1.3);  SPTIHLIW (0.9, 2.3, 2.1, 2.0, 1.4, 0.7). The maximum likelihood method is 

mployed to estimate the unknown parameters. The average esti-mates with bias and standard errors for 

 are presented in Table 1, Table 2 and Table 3, respectively. We can observe the good 

performance the ML method and the goodness of fit by following the bias and standard error for estimates. 
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Table-1. Estimates for  

 
 

Table-2. Estimates for  
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Table-3. Estimates for  

 
 

5. Relief Times Data 
Analgesics are the drugs used to treat pain. The relief times data (in minutes) of 20 patients receiving an 

analgesic given by Gross and Clark [20] are modeled by the 10 new SPTIHLIW. The data are: 1.1, 1.4, 1.3, 1.7, 1.9, 

1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, and 2. The ML estimates for the SPTIH-LIW model are 

= (0:3892779, 8:9029837, 2:6088263, 0:1860415, 0:1630330, 8:8436032). The 

pdf and the hazard function are plotted in Fig. 2. The predefined competitive models are used for comparison, the 

BGIWGc model, BTW model, EHL-W, EG-W, and Kum-W, the results are displayed in Table 4, see [14, 29] for 

more details. From Table 4, the new SPTIHLIW shows good performance regarding to the value of AIC and BIC. 

 
Table-4. The well-known models and the SPTIHLIW model with -L, AIC and BIC 
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Fig-2. The Ötted model for  = (0:3892779; 8:9029837; 2:6088263; 0:1860415; 0:1630330; 8:8436032) 

 
 

6. The BISPTIHLIW Model 
The new bivariate six-parameter type I half logistic model is constructed using (1) as a base line distribution. 

Definition 6.1. A two dimensional random variable   is said to fol - low the BISPTIHLIW 

distribution with parameters , where  

1 if its cumulative function is given by 

 

 
 

Proposition 6.2. The jpdf for 

has the following form, 
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Proposition 6.3. The marginals for 

are derived as 

 

 
 

Where  is given by (11). 
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Proposition 6.4. Expressions for the conditional densities for 

 

Where  is given by (11). 

Proposition 6.5. The conditional moments for 

as 
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Where  is given by (11). 

Proposition 6.6. The joint moments for  are 

 

 

Proposition 6.7. The bivariate reliability function for  

 
Proposition 6.8. The bivariate hazard rate function for 
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Proposition 6.9. The copula function for  is 

 
where  is given by (11),  [30, 31] 

 

7. The BISPTIHLIW Model: Estimation 
Proposition 7.1. Let  be a random sample of size n from a random 

variable  

Then:  

(I) The maximum log-likelihood function is given by  
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And  
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8. The BISPTIHLIW Model: Simulation 
Here we discuss numerically the characteristics of the new BISPTILIW distribution then use simulation to 

investigate the goodness of fit. We con-sider three different random variables. The first one is the BISPTIHLIW 

(1.3, 0.9, 2.5, 0.9, 0.3, 0.8, 0.2, 0.9, 0.6) whose jpdf, jcdf, marginals, and cop-ula are plotted in Fig. 3. We can 

observe the right skewness and unimodal-ity of the jpdf and marginals in Fig. 3 (a), 3(f), and 3(g). The jcdf  0.6, 

Fig. 3 (b), and cdfs 0.5, Figs. 3 (g) and 3(i), where  (10, 10), that suggests applying this model for 

the data with measurements scale in the interval (0,20) (0,20). The hazard function is a decreasing function that 

approaches zero where  (10,10), Fig. 3 (c). The second one is the BISPTIHLIW (2.1, 1.1, 0.7, 1.2, 

0.9, 1.2, 0.6, 0.4, 0.8), its correspond-ing functions are displayed in Fig. 4. In this case the jcdf  0.2, Fig. 4 (b), 

and cdfs 0.9, Figs. 4 (g) and 4(i), where  (10, 10), that sug-gests applying this model for the 

data with measurements scale in the interval (0,80) (0,80): The hazard function changes its behaviour from 

increasing to decreasing for  (10,10), Fig. 4 (c). The right skewness and unimodal-ity will be clear 

for higher measurements scale, Figs. 4 (a), 4(f), 4(h). The third one is the BISPTIHLIW (0.9, 1.7, 1.9, 1.6, 1.3, 1.6,  

0.6, 0.7, 0.8) Its related functions are given in Fig. 5. The jcdf 1:0, Fig. 3 (b), and cdfs 1.0, Figs. 3 (g) and 

3(i), where  (4, 4), that suggests applying this model for the data with measurements scale in the 

interval (0,4) (0, 4): Also grantee the applicability of the new model of ratio data. The hazard function changes its 

behaviour from increasing to decreasing for  (10, 10), Fig. 5 (c). Comparison between Figs. 3(d), 

3(e), 4(d), 4(e) and 5(d), 5(e) shows the different levels of correlation between different set of variables. The 

goodness of fit is investigated via Monte Carlo simulation. Samples are generated with sizes (n=30, n=50, n=120) 

for different three sets of parameters. The average estimates with bias and standard errors are displayed in Table 5, 

Table 6, and Table 7. Using bias and standard errors as a comparison criteria, we can see that the maximum 

likelihood method gives good estimates for the unknown parameters. We consider  as 

chosen parameters. 

Fig-3. Functions corresponding to  = (1.3, 0.9, 2.5, 0.9, 0.3, 0.8, 0.2, 0.9, 0.6). 
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Fig-4. Functions corresponding to  = (2:1; 1:1; 0:7; 1:2;0:9; 1:2;  0:6;  0:4; 0:8) 
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Fig-5. Functions corresponding to  = (0.9, 1.7, 1.9, 1.6, 1.3, 1.6,  0.6, 0.7, 0.8. 
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Table 5. Estimated parameters corresponding to  = (3.0, 2.0, 1.0, 4.0, 3.0, 2.0). 
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Table-6. Estimated parameters corresponding to  = (1.4, 1.5, 1.8, 1.4, 1.8, 1.2). 

 
 

Table-7. Estimated parameters corresponding to  = (2:5; 1:7; 0:9;2:6; 2:7; 0:8). 
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9. Mortality COVID-19 Data 

Here the new BISPTIHLIW  is used to model the mortality 

COVID-19 data for Italy and Canada in the period from 1 April to 21 August 2020. Data is available at 

https://github.com/CSSEGISandData/ COVID-19/ and in [32, 33]. We consider the two dimensional random 

variable  with observed values the mortality COVID-19 data. The estimated parameters are given in Table 

8. Its corresponding functions are plotted in Fig. 6. 

Table-8. Estimated parameters for the  

 
 

Fig-6. Statistical quantities for the random variable (U,V )  BIETIHLIW (3.4884764, 0.5391180, 1.0062037, 2.9732696, 10.3121449,  

0.2651493, 0.9940035, 0.6297572) 

 

 

https://github.com/CSSEGISandData/
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10. Conclusion 
In this study a new univariate six-parameter type I half-logistic inverse Weibull distribution has been 

introduced, that is a generalization of the model intro-duced by Elhassanein [18]. Statistical properties of the new 

model including the pdf, the cdf, the  moment and the moment generating function have been computed in 

explicit forms. The flexibility of the model has been proved for different values of parameters. The results of 

simulation study showed the good performance of the model in terms of maximum likelihood method. The model 

showed good results via comparison with competitive models and ap-plicability for different types of data. The 

bivariate extension BISPTIHLIW model has been formulated. That has an absolutely continuous pdf and its 

statistical quantities are available in explicit forms. Simulation showed a good performance of the model with 

respect to the goodness of fit. The applicability of the bivariate model has been proved for different types of data 

using the COVID-19 mortality data for Italy and Canada that are treated as a bivariate random variable. 
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