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Abstract 
The approximate formula for the associated Legendre function has been used for the determination of the wavelength and 

phase velocity of free oscillations of the Earth and long-period surface waves. The approximate formula is defined for 

several mathematical parameters. One of them is n >>1/ε, where n is the angular degree and εis a parameter related to 

the colatitude angle θ. In the present study  the relationship between n and ε is defined as n0 = [ 1/ε ] +1, where the 

notation [ ] denotes the Gaussian symbol.  If a condition n ≧ n0   (n>1/ε ) is assumed, the approximate formula may be 

reasonably applied for the angular degrees n ≧2 for π/6≦θ≦5π/6. This condition is in harmony with the practical 

usage implemented conventionally. 
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1. Introduction 
Theoretical computations of the free oscillation of a heterogeneous Earth model were studied by Pekeris and 

Jarosh [1] and Alterman, et al. [2]. The equation of wave motion for free oscillation of the Earth for the colatitude 

component can be represented by the associated Legendre function. Brune, et al. [3], theoretically determined  the 

phase velocities of an Earth model using the approximate formula of the associated Legendre function and compared 

those with the observed phase velocities from spheroidal oscillations caused by the Chilean earthquake of May 22, 

1960. The approximate formula has been conventionally implemented for the study of seismic surface waves for 

small and large angular degrees [4-7]. 

In the early years of wave motion studies, the threshold size of the angular degree n was discussed by 

Matsumoto and Sato [8] and Saito [9]. However, as far as the author is aware, no study of this threshold size has 

been published yet. The present study aims only to give a simple mathematical condition for the approximate 

formula, which is accordant with practical usage for small and large angular degrees.  

 

2. Associated Legendre Function 
The equation of wave motion in the spherical coordinate system [5, 10, 11] is: 
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where r is the radius of the Earth, θ and   are respectively the colatitude and azimuthal angles, and c is the 

wave speed. Introducing the constants m
2
 and n(n+1) into the wave equation for the colatitude angle yields the 

following: 
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For m≠0 the solutions are given by the associated Legendre functions Pn
m
(x) and Qn

m
(x) [12]: 
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where cosθ = x. Equation (2) is the associated Legendre differential equation. In Eq. (3), the first kind of  the 

associated Legendre function Pn
m
(x) and the second kind of the associated Legendre function Qn

m
(x) give 

independent solutions for -1 < x < 1. 

     The solutions of the free oscillations of the Earth have the following form Brune, et al. [13]; Saito [9]: 

u = Un(r) Yn(θ, ) e
iωt

 ,                                                                                (4) 

where Un( r ) is the displacement function which depends on r and n, ω is the angular frequency, and Yn(θ, ) 

represents a surface spherical function of degree n such that 
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Yn(θ, ) = Pn
m
(cosθ) e

im .                                                                        (5) 

The parameters n and m are the angular and azimuthal degrees, respectively. The former is the parameter related 

to the node in the latitudinal direction and the latter is related to the node in the longitudinal direction. 

 

3. Approximate Formula 
When n is much greater and satisfies n >> m, with n and m being positive real numbers, the associated Legendre 

function is approximated as Moriguchi, et al. [12]: 

Pn
m
(cosθ)∼emπi

 n
m
 (2/nπsinθ)

1/2
cos[(n+1/2)θ+ mπ/2-π/4]                   (6) 

[ε ≦ θ ≦ π-ε, ε > 0, n ≫ m, n >> 1/ε].                                          (7) 

The corresponding wavelength λ and phase velocity C are given by 

λ= 2πa/(n+1/2)                                                                                        (8) 

C = ωa/(n+1/2) = 2πa/(n+1/2)T,                                                                (9) 

where a is the radius of the Earth (a=6371 km) and T is the eigenperiod. Equation (8) is called the formula of 

Jeans [14]. In the present study, a spherically symmetric Earth is assumed and the parameter m=0 is assumed. 

The approximate formula Eq. (6) is derived from the first term of the infinite series of the associated Legendre 

function for mathematical conditions n>>1 and n>>m [12]. Brune, et al. [13], derived an asymptotic form similar to 

Eq. (6) from asymptotic expansions of Pn
m
(cosθ) and Qn

m
(cosθ). The asymptotic form may apply when  

n >> 1, ε < θ < π-ε, 0 < ε << π/6.                                                 (10) 

By an application of Stirling’s formula, Ben-Menahem and Singh [4] obtained an asymptotic expression similar 

to Eq. (6) for 

n >> m, ε ≦ θ ≦ π-ε, ε: a positive fixed number.                         (11) 

By an application of the JWKB approximation, Dahlen and Tromp [5] derived an asymptotic representation 

similar to Eq. (6) for. 

n >> 1, n >> m, 0 << θ << π.                                                             (12) 

Kunimasa [15], derived an approximate formula similar to Eq. (6) through Schlӑfli’s integral, Goursat’s 

theorem, Laplace’s integral and Saddle point method , for 

n ➝ ∞, n >> m.                                                                      (13) 

Although the derivation processes are different, the above mathematical conditions are approximately close to 

each other. 

To clarify the characteristics of Eq. (6), the relationship between ε and θ is shown in Table 1. Here, the 

integer n0 is defined as 

n0 = [1/ε] + 1,                                                                                     (14) 

where the notation [ ] denotes the Gaussian symbol. The number n0 may be useful to evaluate the range n >> 1/

ε in Eq. (7). However, as shown in the column (C) in Table 1, we can not determine the integer n which satisfies 

the inequality equation n >>1/ε, because the distinction in symbols of inequality between >> and > seems to be not 

rigorously defined [16]. Table 1 shows that the relationship n ≧n0 can be satisfied if n > 1/ε; but not if n >> 1/ ε. 

By introducing parameter n0, we can explicitly determine the angular degree n. 

 
Table-1. Relationship between the colatitude angle θ and the angular degree n of Pn

m(cosθ). Columns (A), (B) and (C) are parameters which are 

defined on the basis of Eq. (7). Columns (D) and (E) are parameters defined in the present study 

( A ) ( B ) ( C ) ( D ) ( E ) 

ε ε⦤θ⦤Π-ε n > > 1 /ε n0= [ 1 /ε] + 1 n≧n0 

Π / 12 Π/12⦤θ⦤11Π/12 n > > 3.819            4 n≧4 

Π / 6 Π / 6⦤θ⦤ 5Π/ 6 n > > 1.909            2 n≧2 

Π / 4 Π / 4⦤θ⦤ 3Π/ 4 n > > 1.273            2 n≧2 

Π / 3 Π / 3⦤θ⦤ 2Π/ 3 n > > 0.954            1 n≧1 

5Π / 12 5Π/12⦤θ⦤7Π/12 n > > 0.763            1 n≧1 

Π / 2 Π / 2 ⦤θ⦤ Π / 2 n > > 0.636            1 n≧1 

 

4. Discussion  
The area of n0 given in Table 1 is shown in Figure 1. The θ-area related to parameter n0 depends on parameter. 

In  Table 1, parameter ε = π/12 is adopted, but if ε= π/24 is adopted, then 1/ ε≒ 7.6. Namely, n0 becomes n0 = 

[7.6]+1 = 8. Therefore, the inequality equation n ≧n0 is becomes n ≧8 for π/24≦θ≦23π/24.  For other θ-area, 

the relationship between  ε and   θ shown in Table 1 is preserved.  Figure 1 also shows that if n ≧n0 (n>1/ε) , the 

computation of the wavelength and phase velocity may be admissible for small angular degrees n ≧2 for π/6≦θ

≦5π/6.  The inequality equation n ≧ 1 in the column (E) in Table 1 is not in harmony with the mathematical 

conditions n >> 1 and n >> m for which the approximate formula Eq. (6) is derived as mentioned earlier. 
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Figure-1. Relationship between the colatitude angle θ and the integer n0 defined by n0 = [1/ε] + 1, where ε is a parameter related to the 

colatitude angle. The areas belonging to n0 are indicated by arcs with arrows 

 
 

Equation (6) is correct to terms of order (1/n)
1/2

 for m≠0 and order (1/n)
3/2

 for m=0 [8, 13].  Thus, the error 

increases with decreasing n. As mentioned in Section 3, Eq. (6) is derived from the first term of the infinite series of 

the associated Legendre function. The effect of higher terms of the infinite series on Eq. (6) will be studied in a 

future work. 

Near the pole and antipode, there is a phase advance of π/2 due to a polar phase shift when surface waves 

travel those regions [13]. The wavelength and phase velocity near the pole and antipode have been investigated by 

several authors [17-23]. However, a discussion of these works is beyond the scope of the present study. 

 

5. Conclusion 
A mathematical condition for the approximate formula of the associated Legendre function was considered from 

a point of practical usage. For the determination of the wavelength and phase velocity, a condition    n ≧n0 (n>1/ε) 

may be reasonable and practical rather than n>>1/ε. If  n ≧n0, the computation of wavelength and phase velocity 

can be admissible for the angular degrees n ≧2 for π/6≦θ≦5π/6.    
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