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Abstract 

The molecular density-partition problem is reexamined and the information-theoretic (IT) justification of the stockholder 

division rule is summarized. The ensemble representations of the promolecular and molecular mixed states of constituent 

atoms are identified and the electron probabilities in the isoelectronic stockholder atoms-in-molecules (AIM) are used to 

define the molecular-orbital ensembles for the bonded Hirshfeld atoms. In the pure quantum state of the whole molecular 

system its interacting (entangled) fragments are described by the subsystem density operators, with the subsystem 
physical properties being generated by the partial traces involving the fragment density matrices.   
Keywords: Bonded atoms; Density matrices; Orbital ensembles; Stockholder partition. 
 

 

1. Introduction 
The Information Theory (IT) [1-8] has been successfully applied in an entropic interpretation of the molecular electronic 

structure, e.g., [9-12]. In particular, it has provided the IT basis [13-17] for the intuitive stockholder Atoms-in-Molecules (AIM) 

of Hirshfeld [18] and patterns of entropic bond multiplicities have been extracted from electronic communications in molecules 

[9-12, 19-24]. The nonadditive Fisher (gradient) information [2, 3, 9-12, 25, 26] has also been linked to Electron Localization 

Function (ELF) [27-29] of modern Density Functional Theory (DFT) [30-35]. This analysis has enabled a formulation of the 

novel Contragradience (CG) probe for localizing chemical bonds [9-12, 36], while the communication theory of the chemical bond 

has identified the bridge interactions between AIM [11, 37-39], realized via the “cascade” propagations in molecular information 

systems, through orbital intermediates. 

In the present analysis we intend to reexamine the molecular density/probability partitioning problems, e.g., into pieces 

attributed to interacting AIM or reactants. We shall focus on the IT basis of the stockholder principle of Hirshfeld [18] and argue 

that such subsystems can be properly described only by the mixed states of molecular Quantum Mechanics (QM) corresponding 

to statistical mixtures of the fragment states. The relevant ensembles representing the isolated and bonded molecular subsystems 

will be identified and fragment density matrices, for the pure state of the whole system, will be introduced.          

 

2. Density Partition/Combination Problem 
Consider the partition of the electron density (r) = Np(r) in a molecule containing (r)dr = N (integer) electrons into pieces 

{(r) = N p(r)} containing {(r)dr = N (fractional)} electrons, which correspond to the system chemical fragments,  

(r) =  (r) =  N p(r),                                             (1) 

e.g., Atoms-in-Molecules (AIM), substrate/products in reactive system, functional groups, etc. This general density partition 

scheme can be thus reversely interpreted as the associated combination rule for reconstructing the molecular electron distribution 

from its fragment densities.  

As also argued in Eq. (1), any division of the molecular electron density implies the associated partition of its (normalized) 

probability factor p(r), p(r)dr = 1, the shape-factor of the density, into the separately normalized subsystem distributions {p(r)}, 

p(r)dr = 1, giving rise to the reconstruction formula 

 P p(r) = p(r),                                            (2) 

where the condensed fragment probability P = N/N. The overall probability normalization then indeed reflects the combined 

normalizations of the global {P} and local {p(r)} probability factors of molecular subsystems: 

p(r) dr = ( P) [p(r) dr] = 1.                                          (3) 

As an illustration, consider now the simplest case of the partitioning into two complementary fragments   {A, B}, e.g., 

AIM in a diatomic molecule M = AB or the acidic (A) and basic (B) reactants in the reactive (acceptor-donor) complex R = [A-

---B]. The additive partition principle of Eq. (1),  

(r) = A(r) + B(r),                                             (4) 
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then translates into the associated probability division/combination rule:  

p(r) = PA pA(r) + PB pB(r).                                                (5) 

The latter correctly describes the mutual-opening of both fragments, e.g., in the equilibrium molecular system M* = (A*¦B*) 

or in the reactive complex R* = [A*¦B*], for the mutually open subsystems containing the fractional numbers {N
*} of electrons, 

when their probability distributions equalize at the global density:  

{p
*(r) = p(r)}      and      {

*(r) = N
*

 p(r)}.                                                         (6) 

Indeed, the relevant probability combination rule then reads: 

p(r) = PA pA
*(r) + PB pB

*(r) = (PA + PB) p(r).                                                        (7) 

The openness of both fragments indeed implies that their electrons explore the whole molecular distribution, so that  they become 

indistinguishable.   

    As an illustrative example consider the “stockholder” partitioning,  


H(r) = 

0(r) [(r)/0(r)]  
0(r) w(r) = [

0(r)/0(r)] (r)  s
0(r)(r), 

 
H(r) = (r),                                                         (8) 

where w(r) and s
0(r) denote the Hirshfeld (H) enhacement and share factors, respectively. Therefore, in this partition  scheme all 

isolated-atom densities {
0(r)} are equally (molecularly) enhanced, and each AIM participates in the molecular “profit” (r) 

proportionally to its promolecular “share” s
0(r).   

This division principle was shown to have a strong information theoretic (IT) justification [9-17]. The overall reference 

distribution,     

0(r) =  
0(r),      0(r) dr = (r) dr = N,                                                                (9) 

represents the system atomic “promolecule” M0 consisting of the isolated-atom densities shifted to the molecular atomic 

positions.  

This reference state also defines the associated condensed probabilities {P
0 = N

0/N} and the subsystem-normalized 

distributions: 

{p
0(r) = 

0(r)/N
0,      N

0 = 
0(r) dr}.                                    (10) 

For the Hirshfeld fragment H this (normalized) probability distribution thus reads:     

p
H(r) = 

H(r)/N
H = [

0(r)/N
H] w(r) = s

0(r) [(r) /N
H],      N

H = 
H(r) dr,      p

H(r) dr = 1.                                   (11) 

Its molecular analog,  

p(r)  
H(r)/N = P

H
 [

H(r)/N
H] = P

H
 p

H(r) = P
0
 [

H(r)/N
0] = [P

0
 p

0(r)] w(r),                                       (12) 

is then normalized to the subsystem condensed probability in the whole system:  

p(r) dr = N
H/N =  P

H.                  

It fulfills the probability-combination rule of Eq. (2) [see also Eq, (5)]:  

 p(r) =  P
H p

H(r) =  (N
H/N) [

H(r)/N
H] = [ 

H(r)]/N = (r)/N = p(r).                               (13) 

    Therefore, for the fixed molecular density (r) and its promolecular reference 0(r), and hence also for the fixed p(r) = 

(r)/N and p0(r) = 0(r)/N, the determination of the optimum (Hirshfeld) fragment distributions amounts to finding the best 

(unbiased) probability distributions of subsystems: the internal (fragment-normalized) “shape” factors   

p
H(r) = {p

H(r) = 
H(r)/N

H,      p
H(r) dr = 1}                                      (14) 

or the molecularly-normalized distributions       

p(r) = {p(r) = 
 H(r)/N,    p(r) dr  = N

H/N = P
H},                                                  (15) 

which most resemble their respective analogs in the isoelectronic promolecule: 

N0 = 0(r) dr = (r) dr = N.                                      (16) 

 

3. Information-Theoretic Justification of Stockholder Principle  
A reference to Eq. (8) shows that the stockholder pieces {

H(r)} of the molecular electron density (r) are shaped by the 

optimum (local) AIM conditional probabilities of finding at r an electron attributed to fragment , PH(r)  {P(Hr)}, reflected by 

the subsystem share factors  

s
H(r) = (r)H/(r)  P(Hr) = 

0(r)/0(r) = s
0(opt.

r)  P(0r).                                                  (17) 

For the given electron position r their maximum silmilarity to the corresponding reference probabilities P0(r)  {P(0r)} in the 

atomic promolecule, eventually amounting to the identity of both probability vectors, 

P
H(r) = P0(r),       P(0r) =  P(Hr) = 1,                                                                (18) 

is assured by the minimum, vanishing value of the local entropy-deficiency between the trial P(r) = {P(r)} and promolecular 

sets of conditional-probability densities, 

S[P(r)P0(r)] =  P(r) ln[P(r)/P(0r)] = minimum,                                                 (19) 

subject to the normalization condition  P
opt.(r) = 1 [see Eq. (18)] of the optimum conditional probabilities [9-11]: 

{S[P(r)P0(r)]    P(r)}opt. = 0            P opt.(r) = P0(r).                                 (20) 

Above  denotes the Lagrange multiplier enforcing this local normalization constraint.  

    Indeed, the vanishing partial derivative of the above subsidiary entropy density with respect to the unknown P(r) gives 

the following Euler equation: 

ln[Popt.(r)/P(0r)] + (1 )  ln{Popt.(r)/[CP(0r)]} = 0,      C = exp(  1),                                                            (21) 

or  

Popt.(r) = CP(0r) = P(0r) = s
0(r) = s

H(r),                                                  (22) 
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since from the constraint value            

 P
opt.(r) = C  P(0r) = C = 1.                                                    (23) 

    The optimum (stockholder) densities H(r) = {
H(r)} of AIM also result from the integral entropic principle [9-11, 14, 

16, 17], determining the minimum overall information distance between the optimized atomic densities (r) = {(r)} and their 

known promolecular analogs 0(r) = {
0(r)}, subject to the exhaustive division constraint  (r) = (r):  

{S[0]  (r)  (r) dr} = 0            (r) = H(r).                                  (24) 

The stockholder pieces of the molecular electron density also minimize the nonadditive part of the entropy deficiency, between 

the promolecular (nobonded) and molecular (bonded) atomic densities [9-11]. The Hirshfeld partition rule can be also extended to 

include the least biased partitioning of the molecular many-electron densities [14, 15].   

 

4. Isoelectronic AIM and Mixed States of Atomic Fragments 
The molecular and promolecular AIM distributions correspond to the mixed quantum states of these atomic subsystems, 

which cannot be described by single wavefunction [14]. The statistical mixtures of the pure quantum states of isolated subsystems 

are specified by the relevant density operators defined by the corresponding state probabilities, e.g., those reflecting the imposed 

thermodynamic conditions.  

In the promolecular ensemble the statistical mixture of atomic wavefunctions must involve the same (condensed) probability 

P
0 for all states contributed by the free-atom 0. In the orbital approximation its ground-state configuration  

(N
0) = r0 = det(ψ

0)                                                (25) 

is determined by N
0 (singly-occupied) molecular orbitals (MO):  

ψ
0(r) = {s(r; 

0)  rs(0),      s = 1, 2, …, N
0}.                              (26) 

    The promolecular MO-ensemble is thus defined by the density operator 

D0 = D(M0) =  P
0

 [(N
0)1

 s s(0) s(0)]   
0 P

0 0   P
0
 P(0),                                  (27) 

where   

P(0) = (N
0)1 s s(0) s(0) = 00                                (28) 

is the projection operator onto the electronic subspace spanned by the ground-state occupied MO of atom 0, s(0) denotes the s-

th MO state in the molecularly-placed atom 
0
 with rs(0) = s(r; 

0) standing for its wavefunction analog. In this position 

representation D0 defines the promolecular probability density: 

D0(r) = rD0r =  r
0 P

0 0r =  P
0 [(N

0)1s rs(
0) s(0)r] 

                         =  P
0 [(N

0)1 s s(r; 
0)2] =  P

0 [
0(r)/N

0] =  P
0

 p
0(r) = p0(r).                              (29) 

Let us now define an analogous ensemble of the promolecular atomic states, which represents the bonded (stockholder) 

AIM. One first realizes that the Hirshfeld electron distributions {
H}, while conserving the molecular density (r) and hence also 

the overall number of electrons N, give rise to the finite effective electron transfers between the chemically-bonded atoms, since 

the (fractional) AIM occupations NH = {N
H} differ from the corresponding (integer) numbers of electrons in isolated fragments:   

N
H = 

Hdr = N P
H  N

0 = 
0dr = N P

0      or      P
H  P

0.                                                                     (30) 

In various chemical considerations one also discusses the integer electron transfers, corresponding to the reference 

(“formal”) oxidations or reductions of atomic or molecular fragments. The atomic occupations then correspond to some 

hypothetical (integer) numbers of electrons {N
(i)}, each conserving the overall electron number in the molecule as a whole:  

N
(i) = N. The densities for such i-th hypothesis can be obtained by a straightforward renormalization scaling of the Hirshfeld 

distributions:  


(i)(r) = (N

(i)/N
H) 

H(r) = N
(i)

 p
H(r),      

(i)(r) dr = N
(i).                 (31) 

In particular, by setting {N
(i) = N

0} one determines electron densities in the isoelectronic (ie) stockholder atoms:  


ie(r) = N

0
 p

H(r) = 
0(r) [(N

0/N
H) w(r)]  

0(r) w
ie(r),      N

ie = 
ie(r) dr  N

0.                                (32) 

 The isoelectronic AIM thus conserve the local Hirshfeld probabilities and they equalize the condensed stockholder and 

promolecular probabilities:   

{p
ie(r) = p

H(r)},      {P
ie = P

0}.                                                     (33) 

They generate the overall electron density 

ie(r) =  
ie(r)                                                       (34) 

reflecting the probability (shape) polarization in Hirshfeld’s AIM, for their conserved electron numbers. They define the 

associated overall probability distribution 

pie(r) = ie(r)/N =  P
0 p

H(r).                                       (35) 

In order to introduce the molecular MO-ensemble we refer to Eq. (29). The common, atom-independent enhancement factor 

w(r) for atomic densities of isolated atoms in stockholder distributions, 
H(r) = 

0(r) w(r), is seen to imply the atom-dependent 

enhancements in isoelectronic AIM:  


ie(r) = 

0(r) w
ie(r)      or      p

ie(r) = p
0(r) w

ie(r) = p
H(r).                                                       (36) 

Moreover, the probability densities of the isolated and isoelectronic atoms can be both expressed in terms of their related orbital 

contributions [see Eq. (29)], due to the singly occupied MO {s(r; 
0)} of Eq. (26) and the (normalized) “enhanced” MO [see Eq. 

(36)], 

s(r; 
ie) = rs(ie) = Rs

ie [w
ie(r)]1/2s(r; 

0)  Rs
ies(r; 

ie),      Rs
ie

 = s(
ie)s(

ie)1/2,              (37) 

p
0(r) = (N

0)1 s s(r; 
0)2      and      p

ie(r) = (N
0)1 s s(r; 

ie)2 = p
H(r).                                 (38) 

These locally scaled MO of isoelectronic bonded atoms ultimately define the MO density operator of the Hirshfeld AIM,  

DH = DH(M) =  P
0 [s s(ie) s(ie)]   P

0 ie ie   P
0
 P(ie),                                                  (39) 
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where  

P(ie) = s s(ie) s(ie) =  ie ie                                                      (40) 

denotes the projection onto the electronic subspace spanned by the ground-state (singly) occupied MO of atom ie. The position 

representation of the density operator DH then represents the molecular probability distribution [see Eq. (35)]: 

DH(r) = rDHr =  r
ie P

0 ier =  P
0 [(N

0)1s rs(
ie) s(ie)r] 

                           =  P
0 [(N

0)1 s s(r; 
ie)2] =  P

0
 p

H(r) = pie(r).                                (41) 

To summarize, the interacting molecular fragments are described by the corresponding ensembles of the occupied MO in the 

ground states of constituent free atoms. This is also true for the embedded substrates in the pure quantum state of the reactive 

system as a whole. The subsystem physical descriptors are then given by the ensemble-averages of the property operators, 

determined by partial traces involving the fragment density matrices. 

   

5. Density Matrices of Interacting Subsystems 
In describing the mixed states of complexes of interacting subsystems it is useful to apply the density matrix formalism of 

QM [40, 41]. Consider again the complementary acid(A) and base(B) reactants X  (A, B), in the polarized acceptor-donor 

reactive system of Section 2,  

R+ = [A+(x)  B
+()],                       (42) 

where x and  denote their sets of internal coordinates, respectively.  

The physical properties of subsystems are represented by the corresponding quantum operators acting on their internal 

degrees-of-freedom. The mutually-closed fragments of R+ conserve the (integer) number of electrons in isolated subsystems, 

{NX
+ = NX

0}, so that their molecular Hamiltonians in the Born-Oppenheoimer approximation,   

{HX(NX)v  HX(NX)},                                       (43) 

are well defined. Here,  

v(r)= vA(r) + vB(r),                       (44) 

denotes the molecular external potential, due to the fixed nuclei in both reactants, and the interacting-fragment Hamiltonian 

HX(NX) acts on the position variables of the NX
0  electrons belonging to X+. Moreover, since R+ is assumed to represent an isolated 

system, it will be described by the specific wavefunction (x, ), the pure quantum state of the whole R+. 

The mutually-closed reactants in R+ determine the separate complete sets of the stationary states in subsystems. For example, 

the fixed-energy states of HA(NA
0)  HA(x),  

HA(x) s(x) = Es(A
+) s(x),                                           (45) 

are capable of expanding the “molecular” state (x, ) of the whole reactive system: 

(x, ) = s s() s(x),      s() = s
*(x) (x, ) dx.                                                  (46) 

The quantum operator of the physical property L(A) = Lx of subsystem A+ will act only on variables x. Its average value in 

the pure state (x, ) of the reactive system as a whole then reads: 

L = *(x, ) Lx (x, ) dx d = ss’ [s’
*() s() d] [s’

*(x) Lx s(x) dx] 

          ss’ s,s’(A) Ls’,s (A) = trA[ρ(A) L(A)].                             (47) 

Here ρ(A) = {s’,s(A)} stands for the effective density matrix of subsystem A+(x), already integrated over coordinates of 

electrons in the complementary subsystem B+(). The partial trace of the preceding equation thus enables one to calculate the 

ensemble average of the subsystem quantity L(A) as if this part of R+ were isolated, being in the effective mixed state defined by 

the subsystem density matrix ρ(A) in the stationary representation {s(x)} of A+.  

Finally, writing the preceding equation in the subsystem position representation,   

L = A(x, x’) x’Lxx dx dx’,                                      (48) 

where  

x’Lxx = Lx(x’  x),                                         (49) 

gives the following expression for the subsystem density matrix: 

A(x, x’) = *(x’, ) (x, ) d = ss’ s,s’(A) s’
*(x’) s(x) 

               ss’ s,s’(A) s’,s(x, x’) = trA[ρ(A) ΩA(x, x’)].                                                                   (50) 

These ensemble expectation values of subsystem operators in the mixed quantum states are independent of the applied 

representation. The corresponding dynamics of the partial density matrix is also determined by the molecular Schrödinger 

equation. 

To conclude, the polarized (interacting) reactants {X+} in R+ cannot be described by a single wavefunction, i.e., the pure 

quantum state. They have to be instead characterized by the density matrix reflecting an incoherent mixture of subsystem states, 

weighted by the ensemble probability factors. The bonded AIM in both polarized fragments {X+} and the equilibrium parts of the 

whole (molecular) reactive system  

R* = [A*(x) ¦ B
*()]  M                                           (51) 

containing the mutually-open substrates {X*}, provide other chemical examples of such entangled subsystems. 

 

6. Conclusion 
Several intuitive concepts of chemistry still require more rigorous definitions in the molecular QM. Indeed, the exact 

semantics of chemical bonds, AIM, reactants and molecular fragments in general, the entangled quantum subsystems, still 
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escapes such an exact description. This paper has argued that such interacting molecular pieces cannot be described by the pure 

quantum states. Instead, they have been shown to be in the mixed states, which require an ensemble description  invoking density 

operators and density matrices of subsystems.   

The density/probability partition/combination rules have been illustrated using the popular stockholder division scheme of 

Hirshfeld. Its IT justification, in terms of the constrained  minimum principles of local and global entropy-deficiency (information-

distance) quantities has been summarized and the relevant MO-ensembles, for the isolated and (isoelectronic) Hirshfeld atoms, 

respectively, have been identified. The former generates the promolecular electron density while the latter gives rise to the 

molecular electron distribution. We have also explicitly demonstrated that in the pure quantum state of the molecular system as a 

whole its fragments are in the effective mixed states thus requiring an ensemble representation.                
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