

International Journal of Economics and Financial Research

ISSN(e): 2411-9407, ISSN(p): 2413-8533

Vol. 2, No. 5, pp: 79-98, 2016

URL: http://arpgweb.com/?ic=journal&journal=5&info=aims

Non-Maturity Deposit Modeling in the Framework of Asset Liability Management

Saâd Benbachir^{*}

Faculty of Juridical, Economical and Social Sciences, Agdal University of Mohamed 5, Avenue des Nations-Unies, B.P. 721, Agdal – Rabat, Morocco

Mohammed Mehdi El Hamzi

Faculty of Juridical, Economical and Social Sciences, AgdalUniversity of Mohamed 5, Avenue des Nations, Agdal – Rabat, Morocco

Abstract: Liquidity risk is one of the major risks inherent in the banking business. It occurs when the bank does not have sufficient liquid assets to meet its commitments at the time of their occurrence. The most critical challenges confronting financial institutions when managing liquidity risk is so-called non-maturity accounts. These accounts are characterized by the fact that they have no specific contractual maturity, and their risk management is complicated by the embedded options that depositors may exercise. As part of an asset-liability management and for the purpose of healthy and prudential management of a liquidity risk, each bank must properly assess the deposits of its customers. Liquidity risk is not the risk that there are massive withdrawals, but the risk they are unanticipated. In this paper, we apply two methods to model non-maturity deposits of a Moroccan commercial bank. We treat separately individual deposits and enterprise deposits aiming an accurate analysis. We then select between the models by means of a selection criteria. Furthermore, we back-test and forecast future deposits using the selected model. Finally, we model the decay rates of non-maturity deposits by elaborating a flowing function of these latter.

Keywords: Non-maturity deposit; liquidity risk; Asset liability management; ARMA; Jarrow-Van Deventer model. **JEL Classification:** C50 : C51 C52 : C58 : G20 : G21

1. Introduction

Competitiveness and international openness of the financial sector play a key role in the growth and development of the Moroccan economy. In recent years, this sector has undergone several reforms to make the Moroccan financial system more efficient and to create a competitive and healthy climate between banks. Financial institutions have therefore realized that they were subject to a number of risks which must be managed well.

Several reforms have emerged to make the banking sector more dynamic and more efficient. The first regulations concerning the banking risks were issued by the Basel Committee. The Basel III accords Basel Committee on Banking Supervision (2013) taking effect in 2015 incite banks to develop a performing system in terms of risk management.

Liquidity risk is one of the major risks inherent in the banking business. It occurs when the bank does not have sufficient liquid assets to meet its commitments at the time of their occurrence. An uncontrolled and excessive risk-taking or even a bad anticipation of the environment changes can threaten not only the financial stability of the bank in question, but also the stability of the banking sector as a whole.

In the literature we find several definitions of liquidity risk. The first definition is given by the Basel Committee: « Liquidity [is] the ability to fund increases in assets and meet obligations as they come due », Basel Committee on Banking Supervision (2008). According to this definition, the position of the bank is sufficiently liquid if it is able to finance an increase in assets and to meet its commitments as they become due. From there, one can formulate the first definition of liquidity risk which result through the inability to meet its commitments on the same date they become due. This risk arises when the bank suffered from unexpected needs and cannot face them by its liquid assets. The Basel Committee, as part of its Basel II agreements, has issued recommendations on liquidity risk management and on the principles that banks should follow for a relevant prudential supervision

Harrington Richard (1987) gave a definition of liquidity risk for a bank which is situated on three levels:

- Funding risk: risk that results in the need for new resources when the resources the bank own in the past is no longer available (for example at time of the massive withdrawal of deposits).

- Time Risk: risk that appears when the bank cannot get expected cash flow (for example inability to repay a loan by a customer).

- Call risk: risk relating to the obtaining of new resources (for example after significant loans on credit lines).

The various points raised by Harrington, allows clearly to reveal the importance role played by the behavior of customers in the liquidity management of the bank. Indeed, the bank must manage its liquidity by the study of customer behavior:

- By assessing the resources it is sure to have in future dates through investments and deposits made by customers, assessing for example the worst flow it may consider on each station for the amounts available to it today (in terms of withdrawal of amounts placed on deposits of non-repayment of the loans ...)

- By developing its activity with necessary amounts to open new credits of customers when these request them. This requires to apprehend the new productions expected by the bank in the future.

Note that the sources of liquidity risk result mainly:

- From massive withdrawal and/or unanticipated deposits or from the withdrawal of client savings;

- From the general liquidity crisis of the market;

- From the market crisis of confidence with regard to the concerned bank.

Regarding unanticipated massive withdrawal of deposits or clients' savings withdrawal, often liquidity risk occurs when the institution does not have sufficient liquidity to cover unexpected needs. Generally banks are able to meet the withdrawals through their cash, however daily withdrawals are generally well anticipated and adequate reserve funds is retained. Liquidity risk is not the risk that there are massive withdrawals, but the risk they are unanticipated. For this, and due to the fact that the main resource of the bank in terms of liquidity consists of customer deposits, it is very important for the bank that the depositors do not make unanticipated massive withdrawals on their accounts so that the bank can protect themselves from a liquidity crisis that could lead to bankruptcy, or to a deterioration in the financial situation after a penalizing refinancing.

Demand deposits are an important part of commercial banks resources. The modeling of the stock of deposits represents a major challenge for these banks through the management of liquidity risk. These accounts are characterized by the possibility of immediate exigibility by the customers. They are in fact available to them at any time and without any charge. These accounts are considered non-maturities and present to the bank the risk to be payable by the holder at any time. This possibility, however, is to exclude since it is unlikely in normal situations that all customers withdraw their deposits at the same time. So the bank possess always an amount of deposits that is never affected by withdrawals over an agreed or calculated period. As part of an asset-liability management and for the purpose of healthy and prudential management of a liquidity risk, each bank must properly assess the deposits of its customers and the expected behavior of the latter in the normal case and in the case of a crisis.

In the case of the normal activity of the bank, it is sure that a significant part of these deposits will not be required, which allows the bank to convert this resource into remunerating but less liquid assets (loans, investments ...).

In terms of crisis situations that can lead to withdrawals from the accounts, they are the subject of simulated scenarios in "stress test". These methods assess the bank's position in case of serious liquidity problems. Banks must establish refinancing market strategies to address these liquidity crises.

In this paper, we suggest two methods to model the non-maturity deposits of a Moroccan commercial bank. We consider deposits as an example of non-contractual products of the bank and we propose two models to assess both the individual accounts owned by households and enterprise accounts owned by companies. We then select between the models by means of a selection criteria. After that, we apply the model selected to make a Back-Testing and a forecast of future deposits. Finally, we model the flowing function of individual deposits and enterprises deposits. The elaborations of flowing conventions of non-maturity deposit is fundamental in the asset liability management. It consists in describing how the stocks of the balance sheet elapse and consequently permits the measuring of the liquidity gap.

2. Review of Related Literature

In this paper we contribute to the literature of modeling the non-maturity accounts. These accounts have a noncontractual maturity, and their risk management is complicated by the embedded options that depositors may exercise. We apply two types of models to assess non-maturity deposits of a Moroccan commercial bank. The first model is ARMA time series model James and Hamilton (1994) and the second is Stochastic model of Jarrow and Van (1998).

Most papers use the risk-neutral modeling approach introduced by Jarrow and Van (1998) or a discounted cash flow framework under the probability distribution in a real-world. Jarrow and Van (1998) apply a one-factor Heath *et al.* (1992) model (Heath-Jarrow-Morton model) using the short rate dynamics and a product rate process depending on the shifts and changes of market interest rates. Brien (2000) uses a Cox *et al.* (1985) term structure model and an asymmetric partial adjustment model for the product rate. Kalkbrener and Willing (2004) apply a two-factor Heath-Jarrow-Morton model and a piecewise linear function which links product rates to market rates. Dewachter *et al.* (2006) apply a three-factor term structure model and an additional fourth factor for the product rate spread dynamics. We notice that the Hutchison and Pennacchi (1996) model assuming that short rates follow a Vasicek (1977) process can also be incorporated in the risk-neutral valuation approach. At the empirical level, Janosi *et al.* (1999) use the Jarrow and Van (1998) model to analyze a US commercial bank's deposit data and aggregate negotiable orders of withdrawal account data from the Federal Reserve. Hutchison and Pennacchi (1996) apply their models for almost 200 US banks, Brien (2000) for nearly100 US banks and Dewachter *et al.* (2006) for 8 major Belgian banks. The US bank data consists of Money market deposit accounts and negotiable orders of withdrawal

accounts and the Belgian bank data consists of savings deposits. Within the discounted cash flow framework, Selvaggio (1996) uses product rates as a function of the one-month money market forward rate minus a constant cost rate, Office of Thrift Supervision (2001) considers product rates as changes in the lagged product rate and forward 3-month money market rate changes and de Jong and Wielhouwer (2000) suppose that product rates follow a stochastic error-correction model. The models of Selvaggio (1996) and de Jong and Wielhouwer (2000) were calibrated on a subset of a US commercial bank's retail deposits and on one Dutch bank data, respectively. The Office of Thrift Supervision (2001) model is applied for the supervision of US savings associations.

3. Data and Methodology

The observations of our analysis are two time series: the individual deposits series of a Moroccan commercial bank denoted by PATICULIERS and the enterprise deposits series of the same commercial bank denoted by ENTREPRISES. The data are monthly and spread over eight years, from January 2007 to December 2014. The 96 monthly observations were collected from the commercial bank web site. Using the Augmented Dickey Fuller Test, we conclude that the series PARTICULIERS and ENTREPRISES are not-stationary and are integrated of order 1. We use thus for our models the differentiated time series of PARTICULIERS and ENTREPRISES denoted respectively by DPARTICULIERS and DENTREPRISES.

In our paper we propose two models to assess both the individual accounts owned by households and enterprise accounts owned by companies. The first model is the ARMA time series model James and Hamilton (1994) defined by:

An Autoregressive Moving Average process of orders p and q is a stochastic process $(X_t)_{t \in \mathbb{Z}}$ which have the form:

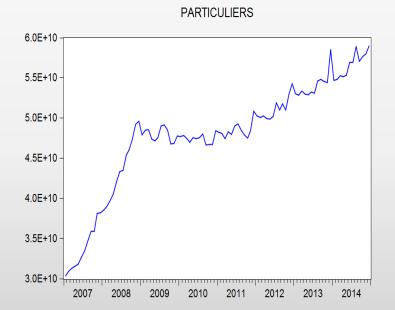
$$\Phi(L). X_t = c + \Psi(L). X_t \tag{1}$$

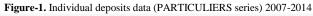
Where $\Phi(L) = \sum_{i=0}^{p} \Phi_i L^i X_t$ is a lag autoregressive polynomial of order p and $\Psi(L) = \sum_{j=0}^{q} \Psi_j L^j X_t$ is a lag moving polynomial of order q, with L is a lag operator defined by $L^i X_t = X_{t-i}$ and c is a constant.

The second model is the stochastic model of Jarrow and Van (1998) defined by:

$$X_{t} = c_{1} \times X_{t} + c_{2} \times t + c_{3} R_{t} + c_{4} (R_{t} - R_{t-1}) + \varepsilon_{t}$$
⁽²⁾

Where ε_t is a Gaussian white noise, R_t the weighted average rate of the secondary market and c_i are constants.


We select between the two models by means of a selection criteria. The selected model is used to Back-Test and a forecast the future deposits. We finally conclude our analysis by modeling the flowing function Paul *et al.* (2003) of individual deposits and enterprises deposits. The elaborations of flowing conventions of non-maturity deposit is fundamental in the asset liability management and permits the measuring of liquidity gap.


4. Modeling the Demand Deposits

4.1. Studies of Deposits Time Series

4.1.1. Studies of Individual Deposits Time Series

The first time series that we analyze is the individual deposits series. The data are spread over eight years, from January 2007 to December 2014. Thus we have 96 monthly observations. We denote this series by PATICULIERS.

This graph suggest that the series is non-stationary. We need to check this using the Augmented Dickey Fuller test (ADF) James and Hamilton (1994).

\succ	Augmented Dickey Fuller Test for the series PARTICULIERS
Moo	del 3: With constant and trend

Table-1. ADF-Test w	vith const	ant ar	nd trend	for PA	RTI	CULI	ERS s	eries
View Proc Object Proper	ties Print	Name	Freeze	Sample	Genr	Sheet	Graph	Stats
Augmented I	Dickey-Full	er Uni	t Root Te	st on P/	RTIC	ULIERS		°
Null Hypothesis: PARTIC Exogenous: Constant, Li Lag Length: 0 (Automatic	near Trend			11)				^
				t-Sta	istic	Pro	ob.*	
Augmented Dickey-Fuller Test critical values:	r test statis 1% level 5% level 10% level			-2.65 -4.05 -3.45 -3.15	7528 7808	0.2	579	н
*MacKinnon (1996) one- Augmented Dickey-Fuller Dependent Variable: D(P Method: Least Squares Date: 06/01/15 Time: 10 Sample (adjusted): 2007 Included observations: 9	r Test Equa PARTICULIE 0:45 /M02 20141	ation ERS) M12	ıts					
Variable	Coefficie	nt	Std. Erro	r t-S	tatisti	c F	rob.	
PARTICULIERS(-1) C @TREND("2007M01")	-0.09514 4.04E+0 1685565	9	0.035840 1.35E+09 8836936	9 3.0	54349 01303 07409	3 0	.0094 .0035 .0596	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.08342 0.06349 1.01E+0 9.37E+1 -2102.86 4.18666 0.01818	6 S.I 9 Ak 9 So 5 Ha 7 Du	ean depe D. depen aike info chwarz cr annan-Qu urbin-Wa	dent var criterior iterion uinn crite	ı ər.	1.04 44.3 44.4 44.3	E+08 E+09 33401 1465 36659 14461	

The observed t-Statistic is equal to -2.654349. It exceeds the critical value -3.457808 to 5%, so we accept the null hypothesis of non-stationarity of the series at 5% significance.

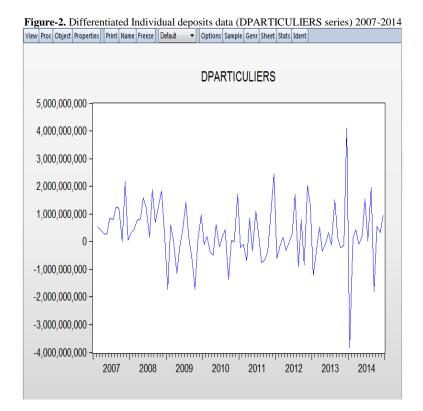
We now test the hypothesis of nullity of the trend, taking into account that the critical value is 2.79. The t-Statistic of the trend equals 1.907409, which is smaller than the critical value 2.79. So we accept the hypothesis of nullity of the coefficient of the trend. We move now to the model 2 of the ADF test.

Model 2: With constant and without trend

able-2. ADF-Test wit							
/iew Proc Object Prope	rties Print Na	ame Freeze	Sample	Genr	Sheet	Graph	State
Augmented	Dickey-Fuller	Unit Root Te	st on PAF	RTICU	JLIERS		
Null Hypothesis: PARTIC Exogenous: Constant Lag Length: 0 (Automati			1)				
			t-Statis	stic	Pro	ob.*	
Augmented Dickey-Fulle			-2.1458		0.2	276	
Test critical values:	1% level		-3.5006				
	5% level		-2.8922				
	10% level		-2.5831	192			
Augmented Dickey-Fulle	er Test Equatio	n					
Augmented Dickey-Fulle Dependent Variable: D() Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: S	er Test Equatic PARTICULIER 0:48 7M02 2014M1 95 after adjust	on S) 2 ments	t-Sta	atistic	. F	2rob	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: S Variable	er Test Equatio PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient	on S) 2 ments Std. Error		atistic		Prob.	
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: S Variable PARTICULIERS(-1)	er Test Equatio PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient -0.033332	2 ments Std. Error 0.015533	-2.14	5811	0	.0345	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: S Variable	er Test Equatio PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient	on S) 2 ments Std. Error	-2.14		0		
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: S Variable PARTICULIERS(-1) C R-squared	er Test Equatic PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient -0.033322 1.89E+09 0.047175	n S) 2 ments Std. Error 0.015533 7.49E+08 Mean depe	-2.14 2.52 ndent var	5811 6408	0. 0. 3.01	.0345 .0132 E+08	
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations: { Variable PARTICULIERS(-1) C R-squared Adjusted R-squared	er Test Equatic PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient -0.033332 1.89E+09 0.047175 0.036930	2 ments Std. Error 0.015533 7.49E+08 Mean depe S.D. depen	-2.14 2.52 ndent var dent var	5811 6408	0. 0. 3.01 1.04	.0345 .0132 E+08 E+09	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: 9 Variable PARTICULIERS(-1) C R-squared Adjusted R-squared S.E. of regression	er Test Equatic PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient -0.033332 1.89E+09 0.047175 0.036930 1.02E+09	2 ments Std. Error 0.015533 7.49E+08 Mean depe S.D. depen Akaike info	-2.14 2.52 ndent var dent var criterion	5811 6408	0. 3.01 1.04 44.3	.0345 .0132 E+08 E+09 35174	
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: S Variable PARTICULIERS(-1) C R-squared Adjusted R-squared Adjusted R-squared S.E. of regression Sum squared resid	er Test Equatio PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient -0.033332 1.89E+09 0.047175 0.036930 1.02E+09 9.74E+19	2 ments Std. Error 0.015533 7.49E+08 Mean depe S.D. depen Akaike info Schwarz cri	-2.14 2.52 Indent var dent var criterion terion	15811 26408	0. 3.01 1.04 44.3 44.4	.0345 .0132 E+08 E+09 35174 40550	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: { Variable PARTICULIERS(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	er Test Equatic PARTICULIER 0:48 7M02 2014M1 25 after adjust Coefficient -0.033332 1.89E+09 0.047175 0.036930 1.02E+09 9.74E+19 -2104.707	2 ments Std. Error 0.015533 7.49E+08 Mean depe S.D. depen Akaike info Schwarz cri Hannan-Qu	-2.14 2.52 ndent var dent var criterion terion inn criter	15811 26408	0. 3.01 1.04 44.3 44.4	.0345 .0132 E+08 E+09 35174 40550 37346	
PARTICULIERS(-1)	er Test Equatio PARTICULIER 0:48 7M02 2014M1 95 after adjust Coefficient -0.033332 1.89E+09 0.047175 0.036930 1.02E+09 9.74E+19	2 ments Std. Error 0.015533 7.49E+08 Mean depe S.D. depen Akaike info Schwarz cri	-2.14 2.52 ndent var dent var criterion terion inn criter	15811 26408	0. 3.01 1.04 44.3 44.4	.0345 .0132 E+08 E+09 35174 40550	

The observed t-Statistic is equal to -2.145811. It exceeds the critical value -2.892200 to 5%, so we accept the null hypothesis of non-stationarity of the series at the 5% significance.

We now test the hypothesis of nullity of the constant. The number of observations is 96, so the critical value is 2.54. It is superior to the t-Statistic of the Constant which is equal to 2.526408. We accept thus the hypothesis of nullity of the constant. So we move to the model 1 of the ADF test.


Model 1: Without constant and without trend

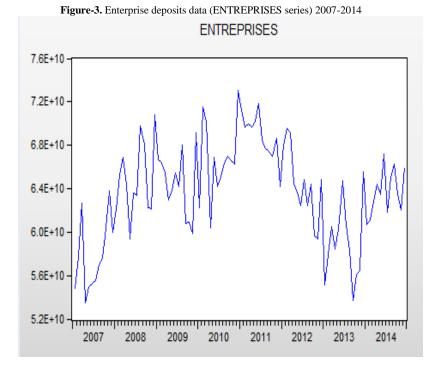
iew Proc Object Prope	rties Print Na	ame Freeze S	ample Genr S	heet Graph
Augmented	Dickey-Fuller	Unit Root Tes	t on PARTICUI	LIERS
Null Hypothesis: PARTI	CULIERS has	a unit root		
Exogenous: None				
ag Length: 0 (Automat	ic - based on S	SIC, maxlag=1	1)	
			t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic		2.468462	0.9966
Fest critical values:	1% level		-2.589531	
	5% level		-1.944248	
	10% level		-1.614510	
Augmented Dickey-Full	er Test Equatio	n		
Augmented Dickey-Full Dependent Variable: D Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations:	PARTICULIER 0:52 7M02 2014M1 95 after adjust	S) 2 ments		
Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200	PARTICULIER 0:52 7M02 2014M1	S) 2	t-Statistic	Prob.
Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations:	PARTICULIER 0:52 7M02 2014M1 95 after adjust	S) 2 ments	t-Statistic 2.468462	Prob.
Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations: Variable	PARTICULIER 0:52 7M02 2014M1 95 after adjust Coefficient	S) 2 ments Std. Error	2.468462	
Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations: Variable PARTICULIERS(-1) R-squared ddjusted R-squared	PARTICULIER 0:52 7M02 2014M1 95 after adjust Coefficient 0.005525 -0.018219 -0.018219	S) 2 ments Std. Error 0.002238 Mean depen S.D. depend	2.468462 dent var ent var	0.0154 3.01E+08 1.04E+09
Dependent Variable: D(Method: Least Squares) Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations: Variable PARTICULIERS(-1) R-squared Adjusted R-squared S.E. of regression	PARTICULIER 0:52 7M02 2014M1 95 after adjust Coefficient 0.005525 -0.018219 -0.018219 1.05E+09	S) 2 ments Std. Error 0.002238 Mean depen S.D. depend Akaike info c	2.468462 dent var ent var riterion	0.0154 3.01E+08 1.04E+09 44.39706
Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations: 1 Variable PARTICULIERS(-1) R-squared Adjusted R-squared B.E. of regression Sum squared resid	PARTICULIER 0:52 7M02 2014M1 95 after adjust Coefficient 0.005525 -0.018219 -0.018219 1.05E+09 1.04E+20	S) 2 ments Std. Error 0.002238 Mean depen S.D. depend Akaike info c Schwarz crite	2.468462 dent var ent var riterion erion	0.0154 3.01E+08 1.04E+09 44.39706 44.42395
Dependent Variable: D(Method: Least Squares) Date: 06/01/15 Time: 1 Sample (adjusted): 200 ncluded observations: Variable PARTICULIERS(-1) R-squared Adjusted R-squared S.E. of regression	PARTICULIER 0:52 7M02 2014M1 95 after adjust Coefficient 0.005525 -0.018219 -0.018219 1.05E+09	S) 2 ments Std. Error 0.002238 Mean depen S.D. depend Akaike info c	2.468462 dent var ent var riterion erion	0.0154 3.01E+08 1.04E+09 44.39706

The observed t-Statistic is equal to 2.468462. It exceeds the critical value -1.944248 to 5%, so we accept the null hypothesis of non-stationarity of the series at the 5% significance.

We conclude that the series PARTICULIERS is not stationary to the 5% significance.

We will now stationarize the series PARTICULIERS and check the stationarity of the differentiated series by the ADF test. The latter series will be denoted DPARTICULIERS.

This graph suggests that the series DPARTIUCILERS is stationary, which can be checked by applying the ADF test.


> Augmented Dickey Fuller Test for the series DPARTICULIERS

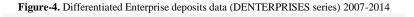
File Edit Object	View Proc	Quick Optio	ons Add-ins	Wind	low	Help	_ 0
/iew Proc Object Prope	rties Print N	ame Freeze	Sample Geni	Sheet	Grapl	h Stats	Ident
Augmen	ted Dickey-Fu	ller Unit Root	Test on DP/	RTICUI	LIERS		
Null Hypothesis: DPART	ICULIERS ha	s a unit root					
Exogenous: None							
Lag Length: 0 (Automati	c - based on S	SIC, maxlag=1	1)				
			t-Statistic	Pro	ob.*	-	
Augmented Dickey-Fulle			-10.59173	0.0	000		
Test critical values:	1% level 5% level		-2.589795 -1.944286				
	10% level		-1.614487				
*MacKinnon (1996) one-	-sided p-value	S.				:	
						:	
Augmented Dickey-Fulle	er Test Equatio	on				:	
Augmented Dickey-Fulle Dependent Variable: D(I	er Test Equatio	on				:	
Augmented Dickey-Fulle	er Test Equation	on				:	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares	er Test Equatio DPARTICULIE 1:10	on RS)				:	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1	er Test Equatio DPARTICULIE 1:10 7M03 2014M1	on RS) 2				:	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200	er Test Equatio DPARTICULIE 1:10 7M03 2014M1	on RS) 2	t-Statist	ic F	Prob.	-	
Augmented Dickey-Fulle Dependent Variable: D(b Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: 9	er Test Equatio DPARTICULIE 1:10 7M03 2014M1 94 after adjust	on RS) 2 ments	t-Statist -10.5917		²rob.	-	
Augmented Dickey-Fulle Dependent Variable: D(Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: S Variable	er Test Equatio DPARTICULIE 1:10 7M03 2014M1 94 after adjust Coefficient	on (RS) 2 ments Std. Error	-10.5917	3 0			
Augmented Dickey-Fulle Dependent Variable: D(b Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 2000 Included observations: S Variable DPARTICULIERS(-1)	er Test Equation DPARTICULIE 1:10 7M03 2014M1 94 after adjust Coefficient -1.096572	on (RS) 2 ments Std. Error 0.103531	-10.5917 ndent var	3 0. 484	.0000	=	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 2000 Included observations: S Variable DPARTICULIERS(-1) R-squared Adjusted R-squared S.E. of regression	er Test Equatio DPARTICULIE 1:10 7M03 2014M1 44 after adjust Coefficient -1.096572 0.546746 1.09E+09	2 ments Std. Error 0.103531 Mean deper S.D. depen Akaike info	-10.5917 Indent var dent var criterion	3 0. 484 1.61 44.4	.0000 0012. IE+09 15895	:	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 200 Included observations: 9 Variable DPARTICULIERS(-1) R-squared Adjusted R-squared SE. of regression Sum squared resid	er Test Equatio DPARTICULIE 1:10 7M03 2014M1 44 after adjust Coefficient -1.096572 0.546746 0.546746 1.09E+09 1.10E+20	on (RS) 2 ments Std. Error 0.103531 Mean deper S.D. depend Akaike info Schwarz crit	-10.5917 Indent var dent var criterion terion	3 0. 484 1.61 44.4 44.4	.0000 0012. IE+09 15895 18601	-	
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 06/01/15 Time: 1 Sample (adjusted): 2000 Included observations: S Variable DPARTICULIERS(-1) R-squared Adjusted R-squared S.E. of regression	er Test Equatio DPARTICULIE 1:10 7M03 2014M1 44 after adjust Coefficient -1.096572 0.546746 1.09E+09	2 ments Std. Error 0.103531 Mean deper S.D. depen Akaike info	-10.5917 Indent var dent var criterion terion	3 0. 484 1.61 44.4 44.4	.0000 0012. IE+09 15895	-	

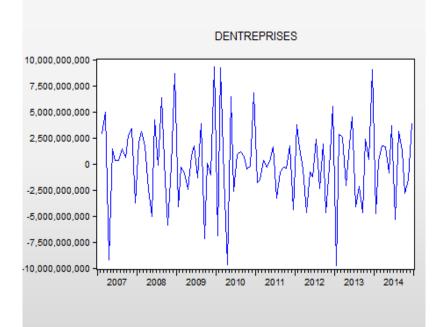
The observed t-Statistic is equal to -10.59173. It is smaller than the critical value -1.944286 to 5%, so we accept the hypothesis of the stationarity of the series DPARTICULIERS at the 5% significance. We conclude that the series PARTICULIERS is not-stationary and integrated of order 1.

4.1.2. Studies of Enterprise Deposits Time Series

The second time series that we analyze is the enterprise deposits series. The data are spread over eight years, from January 2007 to December 2014. Thus we have 96 monthly observations. We denote this series by ENTREPRISES.

The graph suggests that these series is non-stationary, which can be checked by the augmented Dickey-Fuller test.


> Augmented Dickey Fuller Test for the series ENTREPRISES


Table-5.	ADF-Test fo	r ENTREPR	ISES series	
Series: ENTREPRISES \	Norkfile: ENTI	REPRISES::Ent	reprises\	_ = >
View Proc Object Proper	ties Print N	ame Freeze	Sample Genr	Sheet Graph Sta
Augmented D	ickey-Fuller	Unit Root Te	st on ENTREPF	RISES
Null Hypothesis: ENTRE Exogenous: None Lag Length: 2 (Automatic			11)	
			t-Statistic	Prob.*
Augmented Dickey-Fuller	r test statistic		0.092925	0.7098
Test critical values:	1% level		-2.590065	
	5% level		-1.944324	
	10% level		-1.614464	
Augmented Dickey-Fuller Dependent Variable: D(E Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007	NTREPRISE	S)		
Included observations: 9	3 after adjust			Back
		ments Std. Erro	r t-Statistic	Prob.
Variable ENTREPRISES(-1)	3 after adjust Coefficient 0.000516	Std. Erro 0.00555	5 0.092925	0.9262
Included observations: 9 Variable ENTREPRISES(-1) D(ENTREPRISES(-1))	3 after adjust Coefficient 0.000516 -0.520934	Std. Erro 0.005555 0.100165	5 0.092925 5 -5.200743	0.9262
Variable ENTREPRISES(-1)	3 after adjust Coefficient 0.000516	Std. Erro 0.00555	5 0.092925 5 -5.200743	0.9262
Included observations: 9 Variable ENTREPRISES(-1) D(ENTREPRISES(-1))	3 after adjust Coefficient 0.000516 -0.520934	Std. Erro 0.005555 0.100165	5 0.092925 5 -5.200743 3 -2.782945	0.9262
Included observations: 9 Variable ENTREPRISES(-1) D(ENTREPRISES(-1)) D(ENTREPRISES(-2)) R-squared Adjusted R-squared	3 after adjust Coefficient 0.000516 -0.520934 -0.278011 0.235374 0.218382	Std. Erro 0.00555 0.10016 0.09989 Mean depe S.D. deper	5 0.092925 5 -5.200743 3 -2.782945 endent var	0.9262 0.0000 0.0066
Included observations: 9 Variable ENTREPRISES(-1) D(ENTREPRISES(-1)) D(ENTREPRISES(-2)) R-squared Adjusted R-squared S.E. of regression	3 after adjust Coefficient 0.000516 -0.520934 -0.278011 0.235374 0.218382 3.42E+09	Std. Erro 0.005553 0.100163 0.099893 Mean deper S.D. deper Akaike info	5 0.092925 5 -5.200743 3 -2.782945 endent var ident var criterion	0.9262 0.0000 0.0066 34825105 3.87E+09 46.77629
Included observations: 9 Variable ENTREPRISES(-1) D(ENTREPRISES(-1)) D(ENTREPRISES(-2)) R-squared Adjusted R-squared S.E. of regression Sum squared resid	3 after adjust Coefficient 0.000516 -0.520934 -0.278011 0.235374 0.218382 3.42E+09 1.05E+21	Std. Erro 0.00555 0.10016 0.09989 Mean depe S.D. deper Akaike info Schwarz cr	5 0.092925 5 -5.200743 3 -2.782945 endent var ident var criterion iterion	0.9262 0.0000 0.0066 34825105 3.87E+09 46.77629 46.85798
Included observations: 9 Variable ENTREPRISES(-1) D(ENTREPRISES(-1)) D(ENTREPRISES(-2)) R-squared Adjusted R-squared S.E. of regression	3 after adjust Coefficient 0.000516 -0.520934 -0.278011 0.235374 0.218382 3.42E+09	Std. Erro 0.005553 0.100163 0.099893 Mean deper S.D. deper Akaike info	5 0.092925 5 -5.200743 3 -2.782945 endent var ident var criterion iterion	0.9262 0.0000 0.0066 34825105 3.87E+09 46.77629

The observed t-Statistic is equal to 0.092925. It exceeds the critical value -1.944324 to 5%, so we accept the null hypothesis of non-stationarity of the series at the 5% significance.

We deduce that the series ENTERPRISES is not-stationary to the 5% significance.

We now stationarize the series ENTREPRISES and check the stationarity of the differentiated series by the ADF test. The latter series will be denoted DENTREPRISES.

.....

This graph suggests that the series ENTERPRISE is stationary. This can be checked by the ADF test.

> Augmented Dickey Fuller Test for series DENTREPRISES

Table-6	ADF-Test	IOF DENIK	EPRISES ser		
Series: DENTREPRISES	Workfile: EN	TREPRISES::Er	ntreprises\	-	
View Proc Object Propert	ies] [Print] N	ame Freeze	Sample Genr	Sheet Graph	Stat
Augmented D)ickey-Fuller	Unit Root Te	st on DENTRE	PRISES	
Null Hypothesis: DENTRI Exogenous: None Lag Length: 1 (Automatic			11)		
			t-Statistic	Prob.*	
Augmented Dickey-Fuller	test statistic		-10.83495	0.0000	
Test critical values:	1% level		-2.590065		
	5% level		-1.944324		
	10% level		-1.614464		
*MacKinnon (1996) one-s					
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007	Test Equation ENTREPRIS :22 M04 2014M1	on ES) 2			
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007	Test Equation ENTREPRIS :22 M04 2014M1	on ES) 2	r t-Statisti	c Prob.	
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007 Included observations: 93 Variable DENTREPRISES(-1)	Test Equation ENTREPRIS 22 M04 2014M1 3 after adjust Coefficient -1.797958	2 ments Std. Erro 0.165941	-10.8349	5 0.0000	
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007 Included observations: 93 Variable DENTREPRISES(-1)	Test Equation ENTREPRIS :22 M04 2014M1 3 after adjust Coefficient	on ES) 2 ments Std. Erro	-10.8349	5 0.0000	
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007i Included observations: 93 Variable DENTREPRISES(-1) D(DENTREPRISES(-1))	Test Equation ENTREPRIS 22 M04 2014M1 3 after adjust Coefficient -1.797958	on (ES) 2 ments Std. Erro 0.165941 0.099232 Mean depe	-10.83495 2.797007 ndent var	5 0.0000	
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007/ Included observations: 92 Variable DENTREPRISES(-1) D(DENTREPRISES(-1)) R-squared Adjusted R-squared	Test Equation ENTREPRIS 222 M04 2014M1 3 after adjust Coefficient -1.797958 0.277557 0.730097 0.727131	2 ments Std. Erro 0.165941 0.099234 Mean depe S.D. depen	-10.83499 2.797007 ndent var dent var	5 0.0000 7 0.0063 -10987143 6.51E+09	
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007i Included observations: 93 Variable DENTREPRISES(-1) D(DENTREPRISES(-1)) R-squared Adjusted R-squared S.E. of regression	Test Equati ENTREPRIS :22 M04 2014M1 3 after adjust Coefficient -1.797958 0.277557 0.727131 3.40E+09	2 ments Std. Erro 0.165941 0.099234 Mean depe S.D. depen Akaike info	-10.83499 2.797007 ndent var dent var criterion	5 0.0000 7 0.0063 -10987143 6.51E+09 46.75488	
Augmented Dickey-Fuller Dependent Variable: D(D Method: Least Squares Date: 04/05/16 Time: 22 Sample (adjusted): 2007 Included observations: 93 Variable	Test Equation ENTREPRIS 222 M04 2014M1 3 after adjust Coefficient -1.797958 0.277557 0.730097 0.727131	2 ments Std. Erro 0.165941 0.099234 Mean depe S.D. depen	-10.83495 2.797007 ndent var dent var criterion terion	5 0.0000 7 0.0063 -10987143 6.51E+09	

The observed t-Statistic is equal to -10.83495. It is smaller than the critical value -1.944324 to 5%, so we accept the hypothesis of the stationarity of the series DENTREPRISES at the 5% significance. We conclude that the series ENTREPRISES is not-stationary integrated of order 1.

4.2. Modeling the Individual Deposits4.2.1. Box Jenkins Method (ARMA) for the individual depositsIdentification

Identification

The correlogram of the series DPARTICULIERS is given below:

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.397	-0.397	15.451	0.000
101		2 -0.281	-0.247	15.701	0.000
.) .	· 🖬 ·	3 0.026	-0.122	15.771	0.001
1 (1	- iei i	4 -0.058	-0.139	16.115	0.003
101	· 🖬 ·	5 -0.031	-0.154	16.211	0.006
· 🗖	· Þ	6 0.238	0.178	22.066	0.001
10	1 1 1 1	7 -0.110	0.093	23.329	0.001
	1 1 1 1	8 -0.025	0.041	23.394	0.003
1 þ 1	1 1 1 1	9 0.051	0.077	23.671	0.005
-) -	· Þ	10 0.026	0.140	23.744	0.008
· 🗖 ·	· 🖬 ·	11 -0.188	-0.143	27.620	0.004
· 🗖	· Þ	12 0.275	0.117	36.002	0.000
1 1 1	· Þ	13 -0.018	0.178	36.040	0.001
· 🗖 ·	1 1 1	14 -0.153	-0.041	38.688	0.000
· þ.	1 1 1	15 0.093	-0.009	39.676	0.001
10	1 10 1	16 -0.071	-0.075	40.270	0.001
1 1	1 1		-0.007	40.270	0.001
· 🗖	· Þ	18 0.213	0.131	45.721	0.000
	1 10 1	19 -0.176	-0.070	49.458	0.000
· 🗖 ·		20 -0.163	-0.259	52.738	0.000
· Þ	1 1 1	21 0.198	-0.019	57.601	0.000
· 🖬 ·	(C)		-0.188	59.976	0.000
· þ ·	1 1	23 0.061	-0.066	60.450	0.000
1 þ 1	1 1 1	24 0.073	-0.017	61.146	0.000
	1 1	25 0.017	0.102	61.185	0.000
· 🗖 ·	1 1 1	26 -0.129	0.074	63.420	0.000
· · • ·	1 1 1	27 0.019	-0.058	63.467	0.000
	1 11	28 0.018		63.510	0.000
	1 I I I I I I I I I I I I I I I I I I I	29 -0.015	0.116	63.540	0.000
· 🗐 ·	1 1 1 1	30 0.105	0.056	65.107	0.000

The confidence interval is given by par $\left[\frac{-1.96}{\sqrt{T}}, \frac{1.96}{\sqrt{T}}\right] = \left[-0.20, 0.20\right]$. The two first AC and PAC of the table belong to the confidence interval, which suggests that $p_{max} = 2$ and $q_{max} = 2$. We test then the models : AR(1), MA(1), AR(2), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1), ARMA(2,2).

Estimation

We estimate all the previous models and we select only those whose the Student Statistic satisfies the condition: $|t \ de \ Student| > 1.96$ for all the coefficients. The only models retained are ARMA(1,2) and ARMA(2,2).

Validation

To validate the two models, we need to ensure that their residuals are white noises. This is the case if the p-value of the correlogram of residuals exceed 5%.

Table 9 Complement of mariduals series

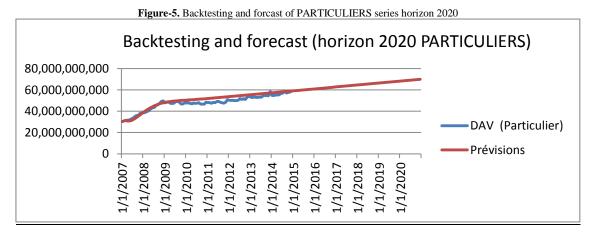
			1	abie-o.	Correlogral	n of residuals serie	8				
Equation: EQ8 Wo	orkfile: DAV::DAV\			0		Equation: EQ7 W					9 (X)
View Proc Object Prin	nt Name Freeze Estin	nate Forecast	Stats	Resids		View Proc Object Pri	nt)Name)(Freeze) (Estin	nate Forecas	t Stats	Resids	
	Correlogram (of Residuals				1	Correlogram o	f Residuals			
Date: 06/01/15 Time Sample: 2007M04 20 Included observation Q-statistic probabilitie	014M12 s:93	MA term(s)				Date: 06/01/15 Tim Sample: 2007M03 2 Included observatior Q-statistic probabilit	01 <mark>4</mark> M12	IA term(s)			
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		5 -0.070 6 0.131 7 -0.129 8 0.065 9 -0.050 10 -0.133 11 -0.019 12 0.290 13 0.005 14 -0.215 15 0.082 16 -0.080 17 0.143 18 -0.027 19 0.011 20 0.009 21 0.036 22 -0.134 23 0.056	-0.061 -0.076 0.029 -0.062 -0.090 0.032 -0.090 0.032 -0.030 -0.176 -0.059 0.250 0.240 0.047 -0.068 0.044 -0.018 0.014 0.044 0.048	3.3594 3.6787 3.9830 4.4728 6.2154 7.9171 8.3566 8.6182 10.499 10.540 19.710 19.710 19.713 24.898 25.664 26.399 28.786 28.873 28.889 28.898 29.055 31.295 31.295 31.691 34.207	0.763 0.799 0.849 0.422 0.150 0.182 0.175 0.205 0.212 0.536 0.628 0.628 0.629 0.723 0.150 0.182 0.150 0.182 0.150 0.828 0.628			$\begin{array}{ccccccc} 6 & 0.143 \\ 7 & -0.049 \\ 8 & 0.092 \\ 9 & -0.014 \\ 10 & -0.105 \\ 11 & 0.039 \\ 12 & 0.297 \\ 13 & -0.012 \\ 14 & -0.258 \\ 15 & -0.040 \\ 16 & -0.123 \\ 17 & 0.055 \\ 18 & -0.069 \\ 19 & -0.047 \\ 20 & -0.015 \\ 21 & 0.004 \\ 22 & -0.133 \\ 23 & 0.052 \end{array}$	-0.068 -0.080 0.024 -0.033 0.142 -0.055 0.113 -0.004 -0.110 0.075 0.262 -0.015 -0.276 0.020 -0.154 -0.014 -0.0148 -0.055 -0.0142 0.008 0.002 0.002 0.0012 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.020 -0.154 -0.020 -0.154 -0.020 -0.155 -0.255 -0.055 -0.255 -0.255 -0.255 -0.255 -0.255 -0.255 -0.014 -0.055 -0.014 -0.014 -0.004 -0.014 -0.004 -0	0.4678 1.1373 1.2075 1.2530 3.3431 3.5917 4.4881 4.5095 5.6860 5.8536 15.561 15.575 23.105 23.2045 25.397 25.966 26.237 25.966 26.237 26.264 26.266 28.487 28.832 31.422	0.628 0.699 0.723 0.786 0.637 0.717 0.694 0.694 0.763 0.799 0.849 0.849 0.422 0.150 0.182 0.150 0.182 0.175 0.205 0.215 0.536 0.628 0.628

The p-value column suggest that the residuals of the two estimated models are white noises. To choose between the two models, we use the AIC criterion for the best model.

AIC selection criterion of the best model

We will retain the model with the smallest AIC. We remark that: AIC-ARMA(2,2) = 44.31 < AIC-ARMA<math>(1,2) = 44.37We retain the ARMA(2,2) model which can be written in the form:

$$X_{t} = 1,75X_{t-1} - 0,77X_{t-2} + \varepsilon_{t} - 1,92\varepsilon_{t-1} + 0,94\varepsilon_{t-2} + 1.51 \times 10^{8}$$
(3)


where X_t represent the process of DPARTICULIERS and ε_t is a white noise. Since $X_t = PARTICULIERS_t - PARTICULIERS_{t-1}$, the model can finally be written : **PARTICULIERS**_t

$$= 2,75 \times \text{PARTICULIERS}_{t-1} - 0,77 \times \text{PARTICULIERS}_{t-2} + \varepsilon_t - 1,92 \times \varepsilon_{t-1} + 0,94 \times \varepsilon_{t-2} + 1.51 \times 10^8$$

(4)

Back-Testing

We need to backtest the forecast model retained to ensure the performance of its predictive power. The results of the back-testing is given below.

Future Forcasts

The forecast of monthly future values of the individual deposits for the four future years 2015, 2016, 2017 and 2018 is given in the following table.

D (Date	Forecasts of	individual	deposits
Date	Forecasts of individual deposits (MAD)		(MAD)		-
31/01/2015	59 163 683 636	31/01/2017	62 795 767 861		
28/02/2015	59 314 997 266	28/02/2017	62 947 112 299		
31/03/2015	59 466 314 507	31/03/2017	63 098 456 617		
30/04/2015	59 617 635 236	30/04/2017	63 249 800 809		
31/05/2015	59 768 959 265	31/05/2017	63 401 144 874		
30/06/2015	59 920 286 360	30/06/2017	63 552 488 815		
31/07/2015	60 071 616 259	31/07/2017	63 703 832 637		
31/08/2015	60 222 948 685	31/08/2017	63 855 176 348		
30/09/2015	60 374 283 354	30/09/2017	64 006 519 957		
31/10/2015	60 525 619 988	31/10/2017	64 157 863 472		
30/11/2015	60 676 958 319	30/11/2017	64 309 206 904		
31/12/2015	60 828 298 094	31/12/2017	64 460 550 262		
31/01/2016	60 979 639 077	31/01/2018	64 611 893 556		
29/02/2016	61 130 981 055	28/02/2018	64 763 236 795		
31/03/2016	61 282 323 835	31/03/2018	64 914 579 987		
30/04/2016	61 433 667 245	30/04/2018	65 065 923 141		
31/05/2016	61 585 011 137	31/05/2018	65 217 266 263		
30/06/2016	61 736 355 382	30/06/2018	65 368 609 361		
31/07/2016	61 887 699 871	31/07/2018	65 519 952 438		
31/08/2016	62 039 044 512	31/08/2018	65 671 295 502		
30/09/2016	62 190 389 230	30/09/2018	65 822 638 554		
31/10/2016	62 341 733 966	31/10/2018	65 973 981 600		
30/11/2016	62 493 078 672	30/11/2018	66 125 324 641		
31/12/2016	62 644 423 312	31/12/2018	66 276 667 681		

Table-9. Forecast of monthly future values of the individual deposits 2015-2018

4.2.2. The Stochastic Model of Jarrow and Van Deventer for the Individual Deposits

The stochastic model of Jarrow and Van Deventer is based on the assumption that the behavior of depositors is influenced not only by the trend of the market rate, but also by its change to a monthly lag. The model is written in the form:

$$log(PARTICULIERS_t) = c_1 \times log(PARTICULIERS_t) + c_2 \times t$$
(5)

$$+c_3 R_t + c_4 (R_t - R_{t-1}) + \varepsilon_t$$

where ε_t is a Gaussian white noise and R_t is the weighted average rate of the secondary market.

We will denote: $LOGPARTICULIERS_t = log(PARTICULIERS_t)$.

The ordinary least squares gives the following results:

Table-10. Results of the Jarrow and Van Deventer Model for the individual deposits

Dependent Variable: LOGPARTICULIERS Method: Least Squares Date: 06/09/15 Time: 15:47 Sample (adjusted): 2007M02 2014M12 Included observations: 95 after adjustments Variable Coefficient Std. Error t-Statistic Prob. C 2.044769 0.674740 3.030453 0.0032 LOGPARTICULIERS(-1) 0.916581 0.027635 33.16782 0.0000 TMP 0.014703 0.295724 0.049720 0.9605 DTMP -0.700789 0.428920 -1.633848 0.1058 @TREND 0.000251 0.000158 1.587999 0.1158 R-squared 0.983439 Mean dependent var 24.58527 Adjusted R-squared 0.982703 S.D. dependent var 0.151245 S.E. of regression 0.019892 Akaike info criterion 44.94583 Sum squared resid 0.035611 Schwarz criterion -4.811420 Log likelihood 239.9272 Hannan-Quinn criter. -4.891521	Equation: UNTITLED V /iew)Proc)Object) Print)Na Akaike info criterion					×
C 2.044769 0.674740 3.030453 0.0032 LOGPARTICULIERS(-1) 0.916581 0.027635 33.16782 0.0000 TMP 0.014703 0.295724 0.049720 0.9605 DTMP -0.700789 0.428920 -1.633848 0.1058 @TREND 0.000251 0.000158 1.587999 0.1158 R-squared 0.983439 Mean dependent var 24.58527 Adjusted R-squared 0.982703 S.D. dependent var 0.151245 S.E. of regression 0.019892 Akaike info priterion 44.94583 Sum squared resid 0.035611 Schwarz criterion -4.811420 Log likelihood 239.9272 Hannan-Quinn criter. -4.891521	Method: Least Squares Date: 06/09/15 Time: 15 Sample (adjusted): 2007	:47 M02 2014M1:	2			
LOGPARTICULIERS(-1) 0.916581 0.027635 33.16782 0.0000 TMP 0.014703 0.295724 0.049720 0.9605 DTMP -0.700789 0.428920 -1.633848 0.1058 @TREND 0.000251 0.000158 1.587999 0.1158 R-squared 0.983439 Mean dependent var 24.58527 Adjusted R-squared 0.982703 S.D. dependent var 0.151245 S.E. of regression 0.019892 Akaike info priterion 44.94583 Sum squared resid 0.035611 Schwarz criterion -4.811420 Log likelihood 239.9272 Hannan-Quinn criter. -4.891521	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
TMP DTMP @TREND 0.014703 -0.700789 0.295724 0.428920 0.049720 -1.633848 0.9605 @TREND 0.000251 0.000158 1.587999 0.1158 R-squared 0.983439 Mean dependent var 24.58527 Adjusted R-squared 0.982703 S.D. dependent var 0.151245 S.E. of regression 0.019892 Akaike info priterion 44.94583 Sum squared resid 0.035611 Schwarz criterion -4.811420 Log likelihood 239.9272 Hannan-Quinn criter. -4.891521	С	2.044769	0.674740	3.030453	0.0032	
DTMP @TREND -0.700789 0.000251 0.428920 0.000158 -1.633848 1.587999 0.1058 R-squared 0.983439 Mean dependent var 0.982703 24.58527 Adjusted R-squared 0.982703 S.D. dependent var 0.019892 0.151245 S.E. of regression 0.019892 Akaike info priterion 44.94583 Sum squared resid 0.035611 Schwarz criterion -4.811420 Log likelihood 239.9272 Hannan-Quinn criter. -4.891521	LOGPARTICULIERS(-1)	0.916581	0.027635	33.16782	0.0000	
@TREND 0.000251 0.000158 1.587999 0.1158 R-squared 0.983439 Mean dependent var 24.58527 Adjusted R-squared 0.982703 S.D. dependent var 0.151245 S.E. of regression 0.019892 Akaike info priterion 44.94583 Sum squared resid 0.035611 Schwarz criterion -4.811420 Log likelihood 239.9272 Hannan-Quinn criter. -4.891521	TMP	0.014703	0.295724	0.049720	0.9605	
R-squared0.983439Mean dependent var24.58527Adjusted R-squared0.982703S.D. dependent var0.151245S.E. of regression0.019892Akaike info priterion44.94583Sum squared resid0.035611Schwarz criterion-4.811420Log likelihood239.9272Hannan-Quinn criter4.891521	DTMP	-0.700789	0.428920	-1.633848	0.1058	
Adjusted R-squared0.982703S.D. dependent var0.151245S.E. of regression0.019892Akaike information44.94583Sum squared resid0.035611Schwarz criterion-4.811420Log likelihood239.9272Hannan-Quinn criter4.891521	@TREND	0.000251	0.000158	1.587999	0.1158	
S.E. of regression0.019892Akaike info criterion44.94583Sum squared resid0.035611Schwarz criterion-4.811420Log likelihood239.9272Hannan-Quinn criter4.891521	R-squared	0.983439	Mean depend	lent var	24.58527	
Sum squared resid 0.035611 Schwarz criterion -4.811420 Log likelihood 239.9272 Hannan-Quinn criter. -4.891521	Adjusted R-squared	0.982703			0.151245	
Log likelihood 239.9272 Hannan-Quinn criter4.891521	S.E. of regression	0.019892	Akaike info cri	iterion	44.94583	
· 가지 등 이 가지 수가 가지 않는 것 이 이 가지 않는 것 같은 것 같이 있는 것 같이 있는 것 같은 것 같이 있는 것 같은 것 같이 있는 것 같이 없는 것 같이 없는 것 같이 있는 것 같이 있는 것 같이 없는 것 같이 없 같이 없는 것 같이 있는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 않는 것 같이 없는 것 같이 않는 것 같이 않 않이 않는 것 같이 않는 것 같이 않는 것 같이 않이 않 않이 않	Sum squared resid	0.035611	Schwarz crite	rion	-4.811420	
E-statistic 1336.088 Durbin-Watson stat 2.336269		239 9272	Hannan-Quin	n criter.	-4.891521	
	Log likelihood					

The R-squared is equal to 0.98, so the model explains 98% of the variation of the logarithm deposits. Only the constant and the variable $LOGPARTICULIERS_{t-1}$ are significant. So we retain the model:

$$LOGPARTICULIERS_{t} = 0,91 \times LOGPARTICULIERS_{t-1} + 2,04$$
(6)

On the basis of Akaike criterion, we remark that the ARMA(2,2) is better than the stochastic model in the case of individuals deposits. We thus use the ARMA(2,2) for forecasting the individual deposits and for elaborating of their flowing convention.

4.3. Modeling the Enterprise Deposits 4.3.1. The Box Jenkins Model (ARMA) for the Enterprise Deposits Identification

The correlogram of the DENTREPRISES series is given below:

v][Proc][Object][Pro	perties] [Print][Name][Fr	eeze	Sample	Genr	heet Gra	ph Stat
	Correlogram of	DENT	REPRI	SE		
Autocorrelation	Partial Correlation	_	AC	PAC	Q-Stat	Prob
1		1	-0.394	0.394	15.226	0.000
1 🛛 1	· ·	2	.0.228	-0.269	15.735	0.000
1 1 1	1 🔤 1	3	0.017	-0.159	15.763	0.001
i 🛛 i	1 🔤 1	4	-0.063	-0.186	16.167	0.003
4 4	1 🗖 1	5	-0.006	-0.172	16.170	0.006
· 🗖 ·	1 🛛 1	6	0.184	0.097	19.688	0.003
1 🖬 1	1 1 1	7	-0.102	0.027	20.769	0.004
C 🛛 C	1 1 1	8	-0.052	-0.040	21.051	0.007
1 D 1	1 1	9	0.042	-0.004	21.237	0.012
1 🛛 1	1 🗐 1	10	0.073	0.128	21.807	0.016
1 🔤 1	1 🛛 1	11	-0.146	-0.072	24.145	0.012
1 🔲 1	1 1	12	0.170	0.088	27.369	0.007
1 1	1 🗐 L	13	-0.010	0.137	27.381	0.011
1 🖬 1	1 1 1	14	-0.107	0.020	28.671	0.012
1 D 1	1 1 1	15	0.070	0.037	29.240	0.015
t 🕻 t	1 1 1	16	-0.053	-0.047	29.569	0.020
101	101	17	-0.036	-0.054	29.719	0.028
1 🔲	· 💷	18	0.228	0.174	35.945	0.007
1 1	1 1	19	-0.182	-0.041	39.957	0.003
1 🔤 1		20	-0.155	-0.256	42.905	0.002
· 🗩	1 1	21	0.199	-0.006	47.860	0.001
1 🗖 1		22	-0.140	-0.194	50.330	0.001
i 🛛 i	1 🗖 1	23		-0.139	50.777	0.001
r h r		24	0.052	-0 112	51 125	0.001

The confidence interval is given by par $\left[\frac{-1.96}{\sqrt{T}}, \frac{1.96}{\sqrt{T}}\right] = \left[-0.20, 0.20\right]$. The two first AC and PAC of the table belong to the confidence interval, which suggests that $p_{max} = 2$ and $q_{max} = 2$. We test then the models : AR(1), MA(1), AR(2), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1), ARMA(2,2).

Estimation

We estimate all the previous models and we select only those whose the Student Statistic satisfies the condition: $|t \ de \ Student| > 1.96$ for all the coefficients. The only model retained is ARMA(1,2).

Table-12. Estimation of DENTREPRISES by ARMA(1	,2) model
--	-----------

Equation: EQ4 Work				e (e) (; ts)
Dependent Variable: Di Method: Least Squares Date: 11/05/15 Time: Sample (adjusted): 200 Included observations: Convergence achieved MA Backcast: 2007/M01	10:55)7M03 2014M1 94 after adjust after 18 iteratio	ments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	87181036	2.41E+08	11.19535	0.0000
AR(1)	0.928337	0.165006	5.626067	0.0000
MA(1)	-1.580932	0.203032	-7.786621	0.0000
MA(2)	0.599547	0.150039	3.995950	0.0001
R-squared	0.271762	Mean depend	lent var	87181036
Adjusted R-squared	0.247488	S.D. depende	ent var	3.88E+09
S.E. of regression	3.37E+09	Akaike info cr	iterion	46.75466
Sum squared resid	1.02E+21	Schwarz crite	rion	46.86289
Log likelihood	-2193.469	Hannan-Quin		46.79838
F-statistic	11.19535	Durbin-Watso	on stat	1.902852
Prob(F-statistic)	0.000003			
Inverted AR Roots	.93	0.000		
		.63		

Validation

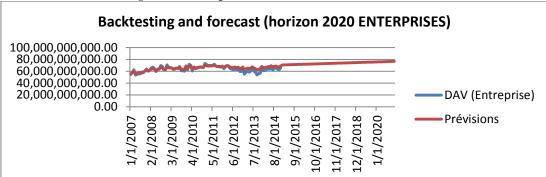
To validate the model retained, we need to ensure that its residual is a white noise. This is the case if the p-value of the correlogram of the residuals exceed 5%.

Table-13. Correlogram of residuals for ARMA(1,2)	model
--	-------

	Correlogram o	of Re	siduals										
Date: 11/05/15 Time: 11:08 Sample: 2007M03 2014M12 Included observations: 94 Q-statistic probabilities adjusted for 3 ARMA term(s)													
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob							
1 1	1 11	1			0.0452								
יםי	1 1		-0.057		0.3691								
	1 1		-0.037		0.5078								
10	1 1				0.8836								
	L .	100 100			1.0790	0.583							
<u>'</u> P'		6			4.4177								
					4.6567								
1 1 1	1 1				5.0198								
· • •	1 <u>; E</u> ;	10	0.033		5.1372								
i d' i	1 121	10000			5.6378 5.9324								
			0.137		5.9324	0.534							
					8.0217								
					9.4514								
					9.4514								
i di i		- C 27 7			9.4523								
. 1 .	1 1				9.9120								
2001			0.013		11.035								
		10	0.030	0.030									
i fili		10	-0.247	-0.260	1 1 1 1 1 1 1 1 1 1								
		20	-0.237	-0.211	18.402 25.233 25.445								

The p-value column suggest that the residuals of the estimated model is a white noise. The model ARMA(1,2) can be written :

$$Y_{t} = 0,92 \times Y_{t-1} + \varepsilon_{t} - 1,58 \times \varepsilon_{t-1} + 0,59 \times \varepsilon_{t-2} + 8,71 \times 10^{7}$$
(7)


where Y_t represents the process DENTREPRISES and ε_t is a white noise. Using $Y_t = \text{ENTREPRISES}_t - \text{ENTREPRISES}_{t-1}$, the model can finally be written : $\text{ENTREPRISES}_t = 1,92 \times \text{ENTREPRISES}_{t-1} - 0,92 \times \text{ENTREPRISES}_{t-2} + \varepsilon_t - 1,58 \times \varepsilon_{t-1}$ (8) $+ 0,59 \times \varepsilon_{t-2} + 8,71 \times 10^7$

This model will be used in backtesting and forecasting future values of enterprise deposits.

Back-Testing

We need to backtest the model to ensure the performance of its predictive power.

Figure-6. Backtesting and forecast of ENTREPRISES horizon 2020

Future Forecasts of Enterprise Deposits

The monthly forecast of future values of the enterprise deposits for the four years 2015, 2016, 2017 and 2018 is given in the following table.

			Table-14. Fo	precast of enter	prise deposits 20	015-2018			
Date	Forecast (MAD)	of	enterprise	deposits	Date	Forecast (MAD)	of	enterprise	deposits
31/01/2015	70 573 482	650			31/01/2017	72 628 91	15 659		
28/02/2015	70 659 345	065			28/02/2017	72 714 42	24 412		
31/03/2015	70 745 177	022			31/03/2017	72 799 92	28 053		
30/04/2015	70 830 980	706			30/04/2017	72 885 42	26 948		
31/05/2015	70 916 758	141			31/05/2017	72 970 92	21 437		
30/06/2015	71 002 511	210			30/06/2017	73 056 41	1 836		
31/07/2015	71 088 241	658			31/07/2017	73 141 89	98 438		
31/08/2015	71 173 951	106			31/08/2017	73 227 38	31 515		
30/09/2015	71 259 641	059			30/09/2017	73 312 86	51 320		
31/10/2015	71 345 312	915			31/10/2017	73 398 33	38 087		
30/11/2015	71 430 967	970			30/11/2017	73 483 81	12 034		
31/12/2015	71 516 607	428			31/12/2017	73 569 28	33 363		
31/01/2016	71 602 232	407			31/01/2018	73 654 75	52 262		
29/02/2016	71 687 843	945			28/02/2018	73 740 21	8 904		
31/03/2016	71 773 443	004			31/03/2018	73 825 68	33 452		
30/04/2016	71 859 030	480			30/04/2018	73 911 14	46 056		
31/05/2016	71 944 607	201			31/05/2018	73 996 60)6 854		
30/06/2016	72 030 173	940			30/06/2018	74 082 06	55 977		
31/07/2016	72 115 731	411			31/07/2018	74 167 52	23 544		
31/08/2016	72 201 280	278			31/08/2018	74 252 97	79 667		
30/09/2016	72 286 821	158			30/09/2018	74 338 43	34 449		
31/10/2016	72 372 354	624			31/10/2018	74 423 88	37 987		
30/11/2016	72 457 881	206			30/11/2018	74 509 34	10 369		
31/12/2016	72 543 401	398			31/12/2018	74 594 79	91 678		

4.3.2. Stochastic Model of Jarrow and Van Deventer for Enterprise Deposits

The stochastic model of Jarrow and Van Deventer can be written:

$$log(ENTREPRISES_t) = c_1 \times log(ENTREPRISES_t) + c_2 \times t$$
(9)

$$+c_3 R_t + c_4 (R_t - R_{t-1}) + \varepsilon_t$$

where ε_t is a Gaussian white noise and R_t is the weighted average rate of the secondary market. We denote: $LOGENTRE_t = log(ENTREPRISES_t)$.

The ordinary least squares gives the following results:

Dependent Variable: L0 Nethod: Least Squares Date: 11/05/15 Time: Sample (adjusted): 200 ncluded observations:	15:29)7M02 2014M1:			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	9.873304	1.978994	4.989053	0.0000
LOGENTRE(-1)	0.604535	0.079272	7.626091	0.0000
@TREND	6.81E-06	0.000207	0.032868	0.9739
TMP	-0.884694	0.818215	-1.081249	0.2825
DTMP	-2.174763	1.168491	-1.861172	0.0660
R-squared	0.452858	Mean depend	lent var	24.87649
djusted R-squared	0.428541	S.D. depende	ent var	0.071568
B.E. of regression	0.054102	Akaike info cr	iterion	239.9272
um squared resid	0.263430	Schwarz crite	rion	-2.810291
.og likelihood	144.8735	Hannan-Quin	in criter.	-2.890392
.og intennood				

The R-square is equal to 0.45, thus the model explains only 45% of the change of the logarithm of enterprise deposits.

Only the constant and $LOGENTRE_{t-1}$ variable are significant. The model is reduced to:

$$LOGENTRE_{t} = 0,60 \times LOGENTRE_{t-1} + 9,87$$
(10)

On the basis of Akaike criteria, we remark that the ARMA (1,2) model is better than the stochastic model for the enterprise deposits. Thus the ARMA (1,2) model is used to forecast enterprise deposits and to elaborate the flowin convention.

5. Modeling Flowing Conventions of Deposits

The flowing function in liquidity of the production (Paul *et al.*, 2003) gives the probability that a new production of one dirham entering the balance sheet at a time t will be still present at a later date T. If we denote by PN(t) the new production appeared at t and PN(t,T) the amount of this production still present at time T, the flowing function of the production will be defined by the following relationship:

$$S(t,T) = \frac{PN(t,T)}{PN(t)}$$
(11)

This flowing function defines the flowing convention in liquidity of the production and it has the following properties:

S(t, t) = 1: A dirham entering the balance sheet at time t is still in the balance sheet at time t;

 \checkmark $S(t, +\infty) = 0$: The production disappears sooner or later from the balance sheet. Precisely, we impose a time limit, not infinite, of the presence on the balance sheet.

The flowing seems in this case quite simple, but only for contractual products where the theoretical flowing convention corresponds to the flowing as implied by the terms of the contract, though in reality, the customer has several options (for example the prepayment option) that will change the flowing convention.

Unlike contractual products, the definition of an effective flowing remains fairly problematic for deposits, for which there is no contractual flowing. They are subject to a rather complex modeling.

In a global context, we can assume that the flowing functions of the production depend on:

 \checkmark the date *t* of the entry of the production in the balance sheet;

 \checkmark the time elapsed between the date t of the entry on the balance sheet and the date considered T;

✓ other variables such as market rate between t and T.

The most common practice assumes that only the time between dates t and T affects the probability that a dirham entered in the balance sheet at time t will still be present at time T. This means that past and future new productions elapse in the same way and that their entry date in the balance sheet is irrelevant.

There are several types of flowing conventions that the bank may choose to adopt for its deposits. These depend on the degree of prudence necessary to apprehend the liquidity risk and on the investment and expansion policy of bank.

In continuous time, we also define the flowing rate (or velocity) $\lambda(t, T)$ at a given time t by:

$$\lambda(t,T) = -\frac{\partial \ln S(t,T)}{\partial T}$$
(12)

Therefore, the flowing function ca be written as:

$$S(t,T) = exp(-\int_{t}^{T} \lambda(t,s)ds)$$
⁽¹³⁾

If we assume the flowing rate is constant, we get:

$$S(t,T) = exp(-\lambda(T-t))$$
 where $\lambda > 0$ (14)

We remark that this formulation complies with the properties mentioned above which are: S(t, t) = 1 and $S(t, +\infty) = 0$.

Thus if the flowing rate is constant we obtain:

$$D(t,T) = D(t) \times exp(-\lambda(T-t))$$
(15)

Where D(t) = PN(t) is the stock of deposits at date t and D(t,T) = PN(t,T) is the stock of deposits which is still present at date T.

To estimate the flowing rate λ , we rely on the series of the deposits and on the rate of growth of deposits:

$$\lambda_h = \frac{D_{h+1} - D_h}{D_h} \tag{16}$$

Assuming that the exit rate and the entry rate are equal, we define the flowing rate λ as the geometric mean of λ_h :

$$\lambda = \sqrt[n]{\prod_{h=1}^{N} (1 + |\lambda_h| - 1)}$$
(17)

Indeed, the geometric mean is less sensitive than the arithmetic mean upon the great values of a data series. To simplify, we will assume in the following that t = 0.

5.1. Modeling Flowing Convention of Individual Deposits

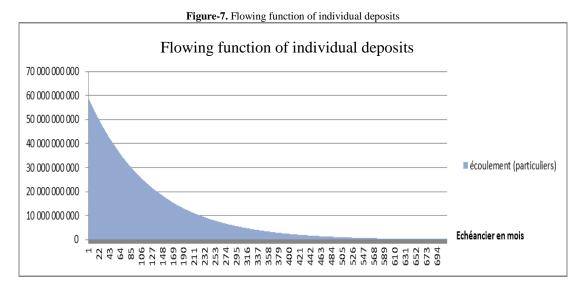
We consider that at the origin date t = 0, the month of December 2014, the bank stops its activity of collecting the individual deposits. The flowing function can be written:

$$S(0,T) = exp(-\lambda T) \tag{18}$$

Using

$$\lambda_h = \frac{D_{h+1} - D_h}{D_h}$$
 and $\lambda = \sqrt[n]{\prod_{h=1}^N (1 + |\lambda_h| - 1)}$

we obtain

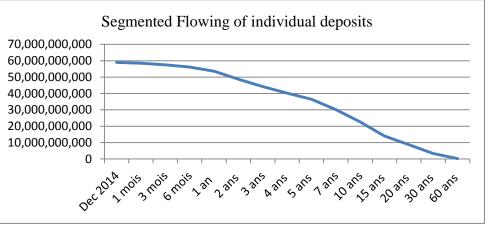

 $\lambda = 0.0079692$ (0.8%) The flowing of individual deposits is obtained from the formula:

$$D(0,T) = D(0) \times exp(-\lambda T)$$
⁽¹⁹⁾

D(0) being the individual deposits at time 0, the month of December 2014 when the bank stops its collection activity for individual deposits. We have here:

$$D(0) = 58\,947\,362\,241\,\mathrm{MAD} \tag{20}$$

The graph below illustrates the flowing function of individual deposits:



The flowing conventions adopted by banks respect segmentation by maturity categories and the final segmented flowing of individual deposits is given in the following table.

Maturity		Flowing percentage	<u>^</u>	Withdrawl percentage
Déc 2014	58 947 362 241	0.0%	0	0.00
1 mois	58 479 462 861	0,8%	467 899 380	0,79%
3 mois	57 554 776 586	2,4%	924 686 275	1,57%
6 mois	56 195 089 686	4,7%	1 359 686 900	2,31%
1 an	53 571 321 681	9,1%	2 623 768 006	4,45%
2 ans	48 685 579 770	17,4%	4 885 741 911	8,29%
3 ans	44 245 420 930	24,9%	4 440 158 840	7,53%
4 ans	40 210 207 674	31,8%	4 035 213 256	6,85%
5 ans	36 543 008 681	38,0%	3 667 198 992	6,22%
7 ans	30 181 461 842	48,8%	6 361 546 839	10,79%
10 ans	22 653 965 041	61,6%	7 527 496 801	12,77%
15 ans	14 043 784 314	76,2%	8 610 180 728	14,61%
20 ans	8 706 108 511	85,2%	5 337 675 803	9,05%
30 ans	3 345 830 421	94,3%	5 360 278 089	9,09%
60 ans	189 908 094	99,7%	3 155 922 327	5,35%
150 ans	34 727	100%	189 873 367	0,32%
		amount	58 947 327 515	100%

Table-16. Segmented flowing by maturity of individual deposits

Figure-8. Segmented flowing by maturity of individual deposits

The previous table shows that the majority of individual deposits (61.6%) elapses during the first 10 years, and almost all of the deposits will elapse in 60 years.

5.2. Modeling Flowing Conventions of Enterprise Deposits

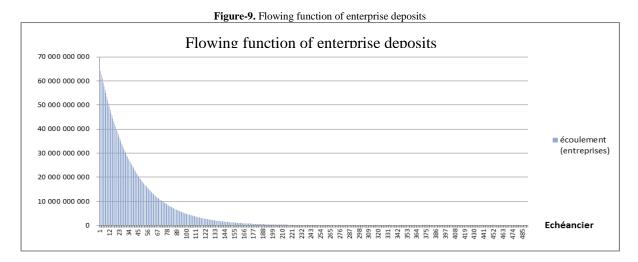
We consider that at the origin date t = 0, the month of December 2014, the bank stops its activity of collecting the individual deposits. The flowing function can be written:

Using

$$\lambda_h = \frac{D_{h+1}-D_h}{D_h} \text{ and } \lambda = \sqrt[n]{\prod_{h=1}^{N} (1+|\lambda_h|-1)}$$

we obtain

$$\lambda = 0,026385 (2.63\%)$$

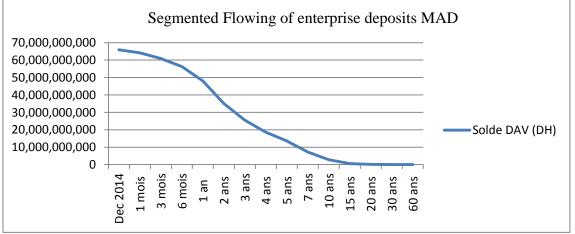

The flowing of individual deposits is obtained from the formula:

$$D(0,T) = D(0) \times exp(-\lambda T)$$

D(0) being the enterprise deposits at time 0, the month of December 2014 when the bank stops its collection activity for enterprise deposit. We have here:

$$D(0) = 65\,928\,492\,751\,\mathrm{MAD} \tag{21}$$

The graph below illustrates the flowing function of enterprise deposits:

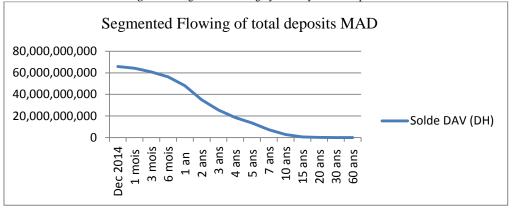


The flowing conventions adopted by banks respect a segmentation by maturity categories and the final segmented flowing of enterprise deposits is given in the following table.

Maturity	Enterprise Deposits	Flowing Percentage	Withdrawls	Withdrawl Percentage
Maturity	(MAD)	%	(MAD)	Withdrawi Tercentage
Déc 2014	65 928 492 751	0,0%	0	0,00
1 mois	64 211 701 955	2,6%	1 716 790 796	2,60%
3 mois	60 911 072 922	7,6%	3 300 629 033	5,01%
6 mois	56 275 498 646	14,6%	4 635 574 276	7,03%
1 an	48 035 858 485	27,1%	8 239 640 161	12,50%
2 ans	34 999 187 819	46,9%	13 036 670 666	19,77%
3 ans	25 500 598 649	61,3%	9 498 589 170	14,41%
4 ans	18 579 874 905	71,8%	6 920 723 744	10,50%
5 ans	13 537 397 935	79,5%	5 042 476 970	7,65%
7 ans	7 186 542 770	89,1%	6 350 855 165	9,63%
10 ans	2 779 695 625	95,8%	4 406 847 145	6,68%
15 ans	570 767 573	99,1%	2 208 928 052	3,35%
20 ans	117 198 307	99,8%	453 569 266	0,69%
30 ans	4 941 348	100,0%	112 256 960	0,17%
60 ans	370	100,0%	4 940 978	0,01%
150 ans	0	100%	370	0,00%
		Total	65 928 492 751	100%

Table-17. Segmented flowing by maturity of enterprise deposits

Figure-10. Segmented flowing by maturity of enterprise deposits



The previous table shows that the majority of individual deposits (61.3%) elapses during the first 3 years, and almost all of the deposits will elapse in 20 years.

5.3. Modeling Flowing Conventions of Total Deposits (Individual+Enterprises)

Table-18. Segmented flowing by maturity of total deposits							
Maturity	Total deposits (MAD)	Flowing Percentage %	Withdrawls (MAD)	Witdrawl Percentage			
Déc 2014	124 875 854 992	0,0%	0	0,00			
1 mois	122 691 164 816	1,7%	2 184 690 176	1,75%			
3 mois	118 465 849 509	5,1%	4 225 315 307	3,38%			
6 mois	112 470 588 333	9,9%	5 995 261 176	4,80%			
1 an	101 607 180 166	18,6%	10 863 408 167	8,70%			
2 ans	83 684 767 589	33,0%	17 922 412 577	14,35%			
3 ans	69 746 019 579	44,1%	13 938 748 010	11,16%			
4 ans	58 790 082 578	52,9%	10 955 937 000	8,77%			
5 ans	50 080 406 616	59,9%	8 709 675 962	6,97%			
7 ans	37 368 004 612	70,1%	12 712 402 004	10,18%			
10 ans	25 433 660 666	79,6%	11 934 343 946	9,56%			
15 ans	14 614 551 887	88,3%	10 819 108 779	8,66%			
20 ans	8 823 306 818	92,9%	5 791 245 069	4,64%			
30 ans	3 350 771 769	97,3%	5 472 535 049	4,38%			
60 ans	189 908 464	99,8%	3 160 863 305	2,53%			
150 ans	34 727	100%	189 873 738	0,15%			
		somme	124 875 820 265	100%			

Figure-11. Segmented flowing by maturity of total deposits

6. Conclusion

The most critical challenges confronting financial institutions when managing liquidity risk is so-called nonmaturity accounts. Liquidity risk is thus one of the major risks inherent in the banking business. It occurs when the bank is unable to meet its commitments at the time of their occurrence. These accounts have a non-contractual maturity, and their risk management is complicated by the embedded options that depositors may exercise. Liquidity risk is not the risk that there are massive withdrawals, but the risk they are unanticipated. In this paper, we have applied two models to assess non-maturity deposits of a Moroccan commercial bank: ARMA time series model and the Stochastic model of Jarrow and Van Deventer. We have tackled separately the individual deposits and the enterprise deposits in order to compare their decay rate in tile. We have been able to select the best models by means of a selection criteria. Through a back-testing and a forecast of future deposits we have obtained forecasts of four years of non-maturity future deposits. We conclude our study by modeling the decay rates of non-maturity deposits by assessing a flow function of these latter.

Our results have contributed to the modeling of non-maturity deposits of a Moroccan bank and consequently we have provided to the bank decision-makers a tool of liquidity risk management in a perspective of asset liability management.

References

- Basel Committee on Banking Supervision (2008). *Principles for sound liquidity risk management and supervision*. Bank for International Settlements Press & Communications: Switzerland.
- Basel Committee on Banking Supervision (2013). *Basel III: The liquidity coverage ratio and liquidity risk monitoring tools.* Bank for International Settlements Press & Communications: Switzerland.
- Brien, O. J. M. (2000). Estimating the value and interest rate risk of interest-bearing transaction deposits. *Division of Research and Statistics, Board of Governors, Federal Reserve System*:
- Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A theory of the term structure of interest rates. *Econometrica*, 53(2): 385-407.
- de Jong, F. and Wielhouwer, J. (2000). The valuation and hedging of variable rate savings accounts. *Astin Bulletin*, 33(2): 383-97.
- Dewachter, H., Lyrio, M. and Maes, K. (2006). A multi-factor model for the valuation and risk management of demand deposits, Working paper research No 83, National Bank of Belgium.
- Harrington Richard (1987). Asset and Liability Management by banks, Organization for Economic Cooperation and Development, . OECD,: Paris.
- Heath, D., Jarrow, R. A. and Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. *Econometrica*, 60(1): 77-105.
- Hutchison, D. E. and Pennacchi, G. G. (1996). Measuring rents and interest rate risk in imperfect financial markets: The case of retail bank deposits. *Journal of Financial and Quantitative Analysis*, 31(3): 399-417.
- James, D. and Hamilton (1994). Time series analysis. Princeton University Press.
- Janosi, T., Jarrow, R. and Zullo, F. (1999). An empirical analysis of the jarrow-van deventer model for valuing nonmaturity demand deposits. *The Journal of Derivatives*, 7(1): 8-31.
- Jarrow, R. and Van, D. D. (1998). The Arbitrage-free valuation and hedging of demand deposits and credit card loans. *Journal of Banking and Finance*, 22(3): 249-72.
- Kalkbrener, M. and Willing, J. (2004). Risk management of non-maturing liabilities. *Journal of Banking and Finance*, 28(7): 1547-68.
- Office of Thrift Supervision (2001). The OTS Net Portfolio Value Model.
- Paul, D., Antoine, F. and Gaël, R. (2003). Introduction à la gestion actif-passif bancaire. Economica. Collection : Gestion.
- Selvaggio, R. D. (1996). Using the OAS methodology to value and hedge commercial bank retail demand deposit premiums", In: Fabozzi, F. J., Konishi, A. (Eds.), The Handbook of Asset/Liability Management: State-of-

the-art Investment Strategies, Risk Controls and Regulatory Requirements. Irwin McGraw-Hill, Boston. 363-73.

Vasicek, O. (1977). An equilibrium characterization of the term structure. *Journal of Financial Economics*, 5(2): 177-88.