
                International Journal of Healthcare and Medical Sciences 

                                 ISSN(e): 2414-2999, ISSN(p): 2415-5233 
                                 Vol.  4, Issue. 8, pp: 147-154, 2018 

                       URL: http://arpgweb.com/?ic=journal&journal=13&info=aims 

 
Academic Research Publishing  

Group 

 

 
 

*Corresponding Author 

147 

Original Research                                                                                                                                                   Open Access 

KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should 

We Explore These Channels as Therapeutic Targets in Glaucoma? 
 

Devindra Sehra
*
 

Senior Consultant to Sehra Medical & Research Centre & Maharaja Agrasen Hospital, New Delhi, India 

 

Sudhish Sehra 
Senior Consultant to Sehra Medical & Research Centre & Balaji Action Hospital, New Delhi, India 

 

Shiv Tej Sehra 
Mount Auburn Hospital, Boston, USA 

 

Abstract 
Introduction: This review discusses the molecular mechanisms responsible for the normalization of otherwise 

raised intraocular pressure (IOP) in patients of glaucoma when they are administered statin therapy. Material and 

Methods: Literature published between 1990 and 2016 on the pathophysiology of glaucoma and the action of statins 

has been reviewed. Data Synthesis: A decrease in resistance to aqueous humor flow through trabecular meshwork 

(TM) in the eye tissue results in lessening of the raised intraocular pressure. KATP channels have been discovered in 

the eye tissue recently. Activation of KATP channels facilitates the flow of aqueous humor through the TM. This 

presumption is strengthened by the action of statins. Statins activate these KATP channels and, thereby, facilitate the 

aqueous flow through TM leading to relief in IOP. Statins interfere in the cholesterol biosynthesis pathway leading 

to decreased cholesterol synthesis. However, a simultaneous decrease in the level of ubiquinone leads to activation 

of KATP channels. Further, accumulation of LC Acetyl CoAs also activates these KATP channels. Expert Opinion: 

Statins decrease the elevated intraocular pressure in glaucoma by activating KATP channels. KATP channels are 

recently discovered therapeutic targets which may be exploited in the treatment of glaucoma. 

Keywords: KATP channels; Statins and pleiotropic effects; Statins and eye; Cholesterol biosynthesis; Iptakalim; Glaucoma 

pathophysiology and treatment. 
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1. Introduction 

About 3.5% of world population between 40 to 80 years is suffering from OAG (Open Angle Glaucoma) [1, 2]. 

Since glaucoma is a progressive optic neuropathy leading to irreversible blindness, this high prevalence is significant 

and efforts to discover newer treatment modalities to retard its progression are being undertaken. 

If a drug already in use for a particular indication is found to be effective for an altogether different ailment and 

is then therapeutically utilized for the same, it is called ‘Drug Repurposing [3]. If statins are included in either the 

treatment or prevention of glaucoma, it would be a classic case of drug repurposing.  

Statins are a group of drugs which inhibit 3 hydroxy 3 methylglutaryl coenzyme A (HMG-CoA) reductase. 

HMG-CoA reductase is an enzyme critical in the cholesterol biosynthesis pathway [4]; and therefore, statins lead to 

inhibition of cholesterol synthesis in a rate dependent manner. 
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A number of trials have demonstrated the beneficial effects of statins and proven beyond doubt that they reduce 

the morbidity and mortality from the cardiovascular and cerebrovascular events.  This beneficial effect is both 

because of their lipid lowering action [5, 6] and the pleiotropic effects which are independent of lipid lowering.  

 How statins are able to decrease the raised IOP in patients of glaucoma is interesting because this group of 

agents seem to act upon the mechanisms involved in etio-pathogenesis of disease [7].  

The pathophysiology and mechanisms involved in the etiology of glaucoma are under intense scrutiny, and 

KATP channels have been found to play an important role in the same. Since statins act on KATP channels and 

activate them; we propose that this action of statins leads to facilitation of flow of aqueous humor in the trabecular 

meshwork and thereby relief of raised intraocular pressure; a fact not discussed in literature so far. 

This review will focus on KATP channels which play an important role in the etiopathogenesis of glaucoma. 

That statins exert their desired and beneficial therapeutic effects by acting on KATP channels shall be delved upon in 

detail. Mode of action of statins on KATP channels; and the mechanisms that lead to the activation of KATP 

channels by statins shall also be discussed. 

 

2.  Material & Methods 
Literature published between 1990 and 2016 on the pathophysiology and treatment of glaucoma; and how 

statins may affect the same has been reviewed. A comprehensive search was carried out on Embase, PubMed and 

Cochrane databases using the search terms; pathophysiology and treatment of glaucoma; statins, pleiotropic effects 

of statins; statins and KATP channels. 

 

3.  Discussion and Data Synthesis 
Statins have been found to normalize the raised IOP in patients suffering from glaucoma. The proposed 

mechanisms leading to these pleiotropic effects in glaucoma range from inhibition of isoprenylation of Rho-GTPase 

[8] to immunomodulation [9]. It has been proposed that by these actions, statins protect the retinal ganglion cells 

(RGCs) and thus damage from glaucoma [10]. However, confirmatory data for these presumptions is lacking. 

Resistance to drainage of aqueous humor in the anterior chamber of eye is encountered at the juxta canalicular 

region of the trabecular meshwork, and at the basement  membrane of the endothelium of the Schlemm’s canal.  

Elevation of intraocular pressure occurs if resistance in the drainage system increases due to any cause. Proposed 

mechanisms for the increase in this resistance are 1) increase in cell contractility at trabecular meshwork 2)  change 

in cell volume or 3) change in cell permeability [11-18]. 

 The molecular mechanisms involved in the drainage of aqueous humor in trabecular meshwork cells are under 

extensive research. Recently, the role of KATP channels in ocular tissues has been studied [19]. Chowdhry et al have 

identified KATP channel openers (P 1075, nicorandil, diazoxide) as relatively new therapeutic agents which 

facilitate aqueous humor outflow in human anterior segment organ culture. Immunohistochemistry and RT-PCR 

studies have established the presence of KATP channel subunits (Kir 6.1, Kir 6.2, SUR 2A and SUR 2B) in the 

ocular tissues; and activation of these channels leads to increased aqueous humor flow. 

Since statins decrease intraocular pressure but the mechanisms by which they do so is still unexplained till now, 

we propose that statins may be acting upon the KATP channels in the eye in a manner similar to the one which leads 

to their pleiotropic effects on the cardiac and vascular tissue. 

 

3.1. The KATP Channels 
KATP channels are ubiquitous in human body and most diverse of all the ion transporters.  Adenosine 

triphosphote sensitive potassium channels (KATP) coordinate the membrane excitability with the metabolic state of 

the cell. The inhibition and activation of KATP channels is predominately dependent upon the micromolar 

concentration of intracellular ATP [20]. KATP channels have been implicated in glucose homeostasis in the 

hypothalamus, ischaemic preconditioning, cellular adaptation to stress, and in insulin secretion from -cells. [21-25]. 

KATP channels are octameric proteins made up of a potassium inward rectifying tetrameric subunit (Kir 6.1 or 

Kir 6.2) surrounded by another tetrameric shell which contains  sulphonylurea receptor subunits (SUR 1, SUR 2A, 

or SUR 2B). Kir 6.2/ SUR 1 channels form the functional unit in pancreatic  cells; and Kir 6.2/ SUR2B channels 

are found in the smooth muscle cells. The cardiac and skeletal muscle consist of Kir 6.2/ SUR 2A KATP channels. 

Several subunit combinations of KATP channels have been identified which confirm either to Kir 6.1 or Kir 6.2 [26-

32]. 

Kir 6.1 containing KATP channels are found in the vascular smooth muscle; [33] whereas Kir 6.2 containing 

channels are present in non vascular smooth muscle [34]. In TM, the uveal, corneoscleral and juxtacanalicular 

regions contain Kir 6.1 subunit, whereas Kir 6.2 in present at much lower level. This suggests that in TM, the 

predominant Kir channel is 6.1. Further studies are needed to evaluate the prevalence and the type of KATP channels 

in the TM because Kir 6.1 and Kir 6.2 channels vary in conductance levels.  

Chemical agents acting upon the KATP channels have been exploited as medications for various diseases. 

Activators of KATP channels like nicorandil and diazoxide find usage in treating angina and hypertension. [35, 36].  

KATP channel inhibitors like sulphonylureas are   widely used as anti diabetic medications [37]. 

Membrane permeability and functions of cells are dependent on the electrical activity of KATP channels [38-

45].  Besides functions, the gap and junction in between the cells is also regulated by KATP channels [46-50]. 
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3.2. Statins, the Cardiovascular System, and KATP Channels  
Current view regarding as to how statins are able to exert their pleiotropic effects ranges from their anti-

inflammatory effect [51-55] to their immunomodulating effect [56]. Enzyme Cox-2; involved in synthesis of 

thromboxanes, prostaglandins and the anti-inflammatory lipid lipoxins; is nitrosylated in a more facilitated manner 

because statins activate inducible nitric oxide synthase (iNOS). The actions of the lipoxin family of anti-

inflammatory lipids are presumed to be partly responsible for the pleiotropic benefits of statins.  Further, they also  

reduce the prenylations of various pro inflammatory modulators [57]. 

A more plausible explanation for the pleiotropic effects of statins is that they activate the KATP channel, a fact 

which has not been discussed in literature so far. 

The role of pravastatin has been investigated after inducing ischemia in isolated rabbit hearts[58]. Pravastatin 

administration led to a marked improvement in the energy metabolism of myocardium and the statin achieved these 

beneficial effects by activating the KATP channels. 

In another study [59] carried out on the actions of pravastatin on ventricular hypertrophy during remodeling 

after myocardial infarction, pravastatin administration led to favorable effects on the myocardium which were, 

however, abolished with the administration of glibenclamide. This implicates KATP channels as the target of 

pravastatin action because glibenclamide exerts its action by inhibiting these channels. Glibenclamide, a KATP 

channel inhibitor, abolishes the favorable effects exhibited by pravastatin on ventricular hypertrophy during 

remodeling. This suggests that pravastatin acts in a manner which is opposite to glibenclamide, a KATP channel 

inhibitor. 

Pravastatin also protects against myocardial infarction because it activates KATP channels [60]. 

Besides pravastatin, statins like atorvastatin and cerivastatin also manifest endothelium dependent relaxation of 

preconstricted rat aorta [61-63]. This effect of cerivastatin is antagonized by glibenclamide. This suggests again that 

glibenclamide and statins act in a manner opposite to each other. The former inhibits KATP channels while the latter 

activates them. 

 

3.3. Mechanisms Leading to Activation of KATP Channels by Statins 
Flow Diagram-1 explains the molecular mechanisms which are involved in the activation of KATP channels by 

statins.   

A) Cholesterol synthesis is reduced; but ubiquinone (CoQ) levels are also reduced simultaneously. (explained in 

Para-A,) 

B) Accumulation of substrates which would have been involved in cholesterol biosynthesis pathway otherwise, 

but which  now get accumulated because of the inhibitory action of statin therapy; also cause  KATP channel 

activation.  (explained in Para-B).  

 

3.3.1. Para- A (Deficient production of ubiquinone) 
Statins (HMG CoA reductase inhibitors)  interfere in the cholesterol biosynthesis pathway leading to decreased 

production of cholesterol but therby increased accumulation of substrates like Acetyl-CoA and Acetoacetyl CoA 

[64]. Interference in the biosynthesis of cholesterol  leads to decreased production not only of cholesterol but also of 

ubiquinone (CoQ enzyme) [65-68]. Since the ratio of ATP/ ADP determines KATP channels function, a decreased 

ATP would lead to activation of kATP channels. 

 

3.3.2. Para- B (Accumulated substrates) 
LC acyl CoAs activate KATP channels in the inside out patches which have been excised from -cells of 

pancreas [69-71].  Kir 6.2 subunit is the target of acyl CoA action. LC Acyl CoA esters not only prevent the 

rundown of KATP channels, but also reactivate these channels after partial rundown. KATP channels are able to 

manifest activity even in absence of ATP if oleoyl CoA is present. The inhibitory effect of sulphonylureas on KATP 

channels is prevented by acyl CoA esters. The effects of oleoyl CoA are specific to KATP channels because oleoyl 

CoA does not prevent the rundown of cardiac inward rectifier channels [72]. In contrast, KATP channels in guinea 

pig cardiomyocytes are inhibited by palmitoleate and unsaturated fatty acid oleate. Unsaturated fatty acids have been 

shown to lead to inhibition of KATP channels in rat cardiomyocytes [73]. Elevation of LC-CoA esters and their 

products have significant effects on enzymes and ion channels [74]. Exposure of elevated long chain free fatty acids 

-cells. These long chain acyl CoA esters (LC 

CoA) are the metabolically active form of free fatty acids and are responsible for decreased sensitivity in KATP 

channels for release of insulin when stimulated by glucose [75]. Patch clamp studies show that unsaturated and 

saturated LC-CoA lead to opening of KATP channels and this action is swift and reversible. 
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Flow Diagram-1. Depicting Mechanisms leading to activation of KATP channels by statins 

 
 

3.3.3. Abbreviations & Signs Used in the Flow Diagram 

 
 

3.4. The KATP Channels and the Eye  
Demonstration of functional KATP channels in the trabecular meshwork of the eye (19)** is an exciting 

development. These channels have been found to increase outflow facility through the trabecular outflow pathway in 

human anterior segment organ culture, Also, a decrease in the IOP in brown Norway rat eyes is observed when they 

are activated by the KATP channel openers diazoxide, nicorandial and P1075.  

Statins being KATP openers, as discussed earlier, would also act in a manner similar to above mentioned KATP 

channel openers and lead to facilitation of outflow through trabecular outflow pathway and thereby decrease IOP. 

Chowdhury, et al. [19]  placed anterior segments from human eyes in perfusion organ culture and treated these 

segments with the KATP channel openers nicorandil, diazoxide and P1075, or with glibenclamide which inhibits 

KATP channels.  The presence, functional state and specificity of  KATP channels was determined by RT-PCR, 

immunohistocytochemistry and inside out patch clamp in human trabecular meshwork tissues. A rebound tonometer 

was used to measure the effect of diazoxide on IOP in Brown Norway rats.  

The presence and specificity of function KATP channels subunits Kir 6.1, Kir 6.2, SUR 2A and SUR 2B was 

confirmed by electrophysiology. These channels have been found to exist in human trabecular meshwork (TM) 

tissue and normal human trabecular meshwork (NTM) cells. Diazoxide, a KATP channel opener, lowers IOP 

significantly in vivo. 

How statins act upon KATP channels and thus decrease IOP has been explained in Flow Diagram-2. 
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Flow Diagram-2 

 
 

4. Expert Opinion 
i. That statins exert their pleiotropic effects by activating KATP channels is a subject which has not been 

discussed so far in literature. This review of literature summarizes the KATP channel activating effects of statins. 

Since glaucoma is fairly prevalent in the elderly age group; an age group where cardiovascular diseases are 

otherwise more common, administration of statins would have an added advantage because not only it would be 

beneficial in CVDs, but it would also be correcting glaucoma.  Effect of statins in glaucoma is mild; but this 

observation suggests that  research is needed to find specific pharmaceutical agents which act on the KATP channels 

in the eye tissue selectively and activate them. 

Discovery of existence of ATP sensitive potassium channels in the trabecular meshwork in the eye tissue raises 

exciting possibilities in the treatment modalities of glaucoma. It is especially so because these KATP channels in the 

eye tissue have been found to be responsive to potassium channels openers. These KATP channels may be the new 

therapeutic targets in the treatment of glaucoma. 

ii. KATP channels discovered in the trabecular meshwork and eye tissues confirm to the molecular 

configuration of subunits of Kir6.1/6.2 and of the splice variants SUR2A and SUR2B. KATP channels openers like 

chromokalim, diazoxide and P I075 activate these channels. Since the above mentioned drugs are more of 

experimental pharmaceutical agents and have not found favour in clinical usage because of the side effects in doses 

which activate KATP channels, newer KATP channel openers like Iptakalim [76] need to be subjected to trials in 

patients of glaucoma. Iptakalim is a relatively new KATP channel opener. Its structure differs from other KATP 

openers.  Iptakalim exhibits   selectivity for SUR 2B/Kir 6.1 channels and has relatively mild effects on SUR 2A/Kir 

6.2 channels. More significantly it does not open SUR1/Kir6.2 channels. Potency of iptakalim for the SUR 2B/Kir 

6.1 subtype of KATP channels is more than that of diazoxide and pinacidil. Also, iptakalim has been less studied as 

compared to these two which are the more extensively researched KATP channels openers.  Iptakalim has a 

favorable safety profile and is tolerated well. 

Use of Iptakalim, which was initially proposed as a newer pharmaceutical agent for hypertension, has now been 

extended to the field of psychiatry.  Besides Iptakalim, other KATP channel openers exhibiting high selectivity to 

the KATP channels present in the trabecular meshwork of the eye may become future modalities in treatment of 

glaucoma. 

iii. Oral therapy, rather than topical application, also will be an added option in the treatment. 

iv. We suggest that long term prospective trials need to be conducted in patients of glaucoma after they have 

been initiated on statin therapy. Further, newer drugs which specifically and selectively activate these KATP 

channels be researched upon with an idea to exploit this untried and hitherto unused therapeutic target; that is the 

KATP channel. 
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